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Table	1.	Crystal	data	and	structure	refinement	for	compound	I.	
Empirical	formula		 C21H24FN3

Formula	weight		 337.43	
Temperature/K		 296	
Crystal	system		 Monoclinic
Space	group		 P21/c	
a/Å		 17.6087(11)	
b/Å		 5.9840(2)		
c/Å		 21.6813(16)		
α/°		 90.00	
β/°		 126.496(4)		
γ/°		 90.00	
Volume/Å3		 1836.56(19)	
Z		 4	
ρcalcg/cm3		 1.220	
μ/mm‐1		 0.080	
F(000)		 720.0	
Crystal	size/mm3		 0.640	×	0.480	×	0.260		
Radiation		 MoKα	(λ	=	0.71073)	
2Θ	range	for	data	collection/°		 2.88	to	52		
Index	ranges		 ‐21	≤	h	≤	21,	‐7	≤	k	≤	7,	‐23	≤	l	≤	26		
Reflections	collected		 12542		
Independent	reflections		 3619	[Rint =	0.0425]	
Data/restraints/parameters		 3619/2/227	
Goodness‐of‐fit	on	F2		 0.898	
Final	R	indexes	[I≥2σ	(I)]		 R1 =	0.0447,	wR2 =	0.1004	
Final	R	indexes	[all	data]		 R1 =	0.1072,	wR2 =	0.1182	
Largest	diff.	peak/hole	/	e	Å‐3		 0.09/‐0.10	
	
2.	Experimental		
	
2.1.	Synthesis	of	1‐{3‐[4‐(4‐fluorophenyl)piperazin‐1‐yl]	
propyl}‐1H‐indole	(I)	
	

To	a	solution	of	4‐fluorophenyl	piperazine	(5	mmol)	in	10	
mL	 of	 acetone	was	 added	 7.5	mL	 of	 a	 25%	 solution	 sodium	
hydroxide.	 30	 minutes	 later,	 1‐bromo‐3‐chloropropane	 (5.5	
mmol)	 was	 added	 carefully	 to	 minimize	 its	 mixing	 with	
aqueous	layer.	The	mixture	was	stirred	slowly	for	22	h	with	a	
magnetic	 stirrer.	 The	 organic	 phase	was	 then	 separated	 and	
the	 solvent	was	 removed	under	 vacuum.	A	mixture	 of	 indole	
(2.5	mmol)	 and	 87%	w:v	 solution	 KOH	 (7.5	mmol)	 in	 DMSO	
(30	mL)	was	stirred	at	 room	temp.	 for	1	h.	Reaction	mixture	
was	cooled	in	ice‐water	bath	to	0	°C	and	1‐(3‐Chloropropyl)‐4‐
(4‐fluorophenyl)piperazine	 in	 DMSO	 (10	 mL)	 was	 added	
dropwise.	The	stirring	was	continued	at	room	temperature	for	
20‐30	h.	After	addition	of	water	 (50	mL)	and	extraction	with	
Et2O,	the	organic	layer	was	washed	with	water	and	dried	over	
anhydrous	 Na2SO4.	 The	 solvent	 was	 evaporated	 and	 the	 oily	
residue	was	purified	by	column	chromatography	(SiO2,	AcOEt	:	
n‐hexane,	1:2)	to	give	1‐{3‐[4‐(substituted	phenyl)piperazin‐1‐
yl]propyl}‐1H‐indole	as	an	oil.	These	data	about	the	compound	
were	published	in	elsewhere	[20].	Color:	Colorless.	Yield:	18%.	
FT‐IR	 (KBr,	 ,	 cm‐1):	 3022‐2763	 (C‐H),	 1245	 (C=C).	 1H	 NMR	
(400	MHz,	CDCl3,	δ,	ppm):	6.86‐7.64	(m,	10H,	indole	+	phenyl),	
4.24	(t,	2H,	 indole	N‐CH2‐CH2‐CH2),	3.13	(t,4H,	piperazine	H3,	
H5),	2.57	(t,	4H,	piperazine	H2,	H6),	2.33	(t,	2H,	CH2‐CH2‐CH2‐N	
piperazine),	 2.03	 (q,	 2H,	 CH2‐CH2‐CH2).	 13C	 NMR	 (100	 MHz,	
CDCl3,	δ,	ppm):	158.79,	155.45,	148.62,	136.40,	129.31,	128.73,	
121.57,	119.49,	117.70,	117.64,	116.01,	115.79,	110,43,	101.13	
(aromatics),	 55,13	 (indoleN‐CH2‐CH2‐CH2),	 55.14	 (piperazine	
C3,	 C5),	 49.65	 (piperazine	 C2,	 C6),	 43.95	 (CH2‐CH2‐CH2‐N	
piperazine),	27,67	(CH2‐CH2‐CH2).	Anal.	calcd.	for	C21H24FN3:	C,	
74.75;	H,	7.17;	N,	12.45.	Found:	C,	74.71;	H,	7.13;	N,	12.46%.	
	
2.2.	Crystallography	
	

Colorless	 single‐crystal	 of	 compound	 I	 suitable	 for	 data	
collection	 were	 selected	 and	 performed	 on	 a	 STOE	 IPDS	 II	
diffractometer	with	graphite	monochromated	MoKα	 radiation	
λ	=	0.71073	Å.	The	structures	were	solved	by	direct‐methods	
using	SHELXS‐97	[21]	and	refined	by	full‐matrix	least‐squares	
methods	on	F2	using	SHELXL‐97	[21]	 from	within	the	WINGX	
[22,23]	 suite	 of	 software.	 The	 parameters	 for	 data	 collection	
and	structure	refinement	of	compound	I	are	listed	in	Table	1.	

All	 non‐hydrogen	 atoms	 were	 refined	 with	 anisotropic	
parameters.	Hydrogen	atoms	bonded	to	carbon	were	placed	in	
calculated	 positions	 (C–H	 =	 0.93‐0.97	Å)	 and	 treated	 using	 a	
riding	model	with	U	=	1.2	times	the	U	value	of	the	parent	atom	
for	 CH	 and	 CH2.	 Molecular	 diagrams	 were	 created	 using	
MERCURY	 [24].	 Geometric	 calculations	were	 performed	with	
PLATON	[25].	Details	of	hydrogen‐bond	dimensions	are	given	
in	Table	1.	
	
2.3.	Theoretical	methods	
	

All	theoretical	computations	were	done	by	using	Gaussian	
03	 software	 package	 [26]	 and	 Gauss‐view	 visualization	
program	 [27].	 The	 compound	 I	was	 optimized	 by	 using	 DFT	
method	 [28,29].	 The	 initial	 guess	 of	 the	 compound	was	 first	
obtained	 from	 the	X‐ray	coordinates.	DFT	 calculations	with	a	
hybrid	 functional	 B3LYP	 (Becke’s	 three	 parameter	 hybrid	
functional	using	the	LYP	correlation	functional)	at	6‐31G(d,p)	
basis	set	using	the	Berny	method	[30,31]	were	performed.	To	
investigate	the	reactive	sites	of	the	compound	I,	the	molecular	
electrostatic	 potentials	 were	 calculated	 using	 the	 same	
method.	Additionally,	we	carried	out	calculations	in	four	kinds	
of	solvent	(water,	benzene,	ethanol,	and	chloroform)	 in	order	
to	evaluate	the	solvent	effect	to	total	energy,	HOMO	and	LUMO	
energies,	dipole	moment	and	chemical	reactivity	descriptors	of	
the	 title	 compound.	 The	 computations	 were	 done	 with	 the	
B3LYP/6‐31G(d,p)	level	using	PCM	model.	
	
3.	Results	and	discussion	
	
3.1.	Description	of	the	crystal	structure	
	

The	molecular	structure	of	compound	I	was	determined	by	
X‐ray	 crystallography	 have	 been	 depicted	 in	 Figure	 1.	 The	
compound	crystallizes	in	the	space	group	P21/c	with	Z	=	4	and.	
The	molecule	 is	not	planar.	The	compound	contains	a	phenyl	
ring,	a	piperazine	ring	and	a	indole	ring.	The	phenyl	and	indole	
rings	 are	 approximately	 planar	 and	 the	 dihedral	 angle	 of	
between	 these	 planes	 is	 1.47°.	 The	 respective	 maximum	
deviations	 from	 the	 least‐squares	 planes	 being	 0.0091(14)	 Å	
for	 atom	C16	 and	0.0012(13)	Å	 for	 atom	N1.	The	piperazine	
ring	 exhibits	 a	 puckered	 conformation,	 with	 puckering	
parameters	 [32]	 q2	 =	 0.0817(22)	 Å,	 q3	 =	 ‐0.5393(24)	 Å,	QT	 =	
0.5457(24)	 Å,	 ϕ	 =	 178.2(18)°	 and	 θ	 =	 ‐171.26(23)°,	 which	
indicates	that	the	piperazine	ring	has	a	chair	conformation.		
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been	determined	by	single‐crystal	X‐ray	diffraction.	Molecules	
of	compound	I	are	linked	to	a	three‐dimensional	framework	by	
C–H···π	interactions.	Molecular	geometry	of	compound	I	in	the	
ground	state	has	been	calculated	using	the	density	functional	
method	(DFT)	with	B3LYP/6‐31G(d,p)	basis	set	and	compared	
with	 the	 experimental	 data.	Despite	 the	differences	 observed	
in	 the	 geometric	 parameters,	 the	 general	 agreement	 is	 good	
and	 theoretical	 calculations	 support	 the	 solid‐state	 structure.	
In	 addition,	 HOMO	 and	 LUMO	 orbitals	 computed	 at	 the	
B3LYP/6‐31G(d,p)	 level	 for	 compound	 I.	 It	 is	 seen	 that	 the	
HOMOs	are	mainly	localized	on	the	around	indole	ring	where	
the	LUMOs	are	populated	on	 the	phenyl	 ring.	We	carried	out	
calculations	 in	 three	 kinds	 of	 solvent	 (benzene,	 ethanol,	
chloroform)	in	order	to	evaluate	the	solvent	effect	to	the	total	
energy,	 HOMO	 and	 LUMO	 energies,	 dipole	 moment	 and	
chemical	reactivity	descriptors	of	the	title	compound	and	it	is	
seen	 that	 the	HOMO‐LUMO	energy	gaps,	 the	hardness,	dipole	
moment	 and	 the	 stability	 of	 the	 molecule	 increase	 with	 the	
increasing	polarity	of	the	solvent.	According	to	MEP	map	of	the	
molecule,	 the	 phenyl	 and	 indole	 rings	 are	 the	 most	 suitable	
regions	for	the	electrophilic	reaction	and	they	can	easily	react	
with	atoms	having	high	electrophilic	attraction	such	as	metal	
atoms.	 Besides,	 on	 the	 basis	 of	 theoretical	 harmonic	
frequencies	 obtained	 from	 density	 functional	 calculations	 at	
B3LYP/6‐31G(d,p)	 level,	 the	 statistical	 standard	 thermos‐
dynamic	 functions,	 viz.,	 heat	 capacities	 (C),	 entropies	 (S)	 and	
enthalpy	 (H)	 (100	≤	T/K	 ≤	500)	 for	 the	 title	 compound	were	
obtained	 and	 it	 is	 seen	 that	 the	 standard	 heat	 capacities,	
entropies	 and	 enthalpy	 changes	 are	 increasing	 with	
temperatures	 ranging	 from	100	 to	500	K	due	 to	 the	 fact	 that	
the	 molecular	 vibrational	 intensities	 are	 increasing	 with	
temperatures.	 We	 hope	 the	 results	 of	 this	 study	 will	 help	
researchers	to	design	and	synthesis	new	materials.	
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