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2.4.	Granules	characterization	
	

The	properties	evaluated	for	the	granules	produced	during	
an	 experiment	 were;	 granule	 mean	 diameter,	 particle	 size	
distribution,	bulk	density	(untapped	density),	 tapped	density,	
Hausner	 ratio,	 Carr’s	 index	 (compressibility	 index),	 and	
moisture	 content	 of	 the	 granules	 [6].	 The	 samples	 powders	
were	manually	 collected	 from	 the	 sampling	 port	 of	 fluid	 bed	
granulator	at	regular	intervals	(2	min)	during	the	granulation	
process.	The	sample	size	was	5	g	divided	into	two	portions;	the	
first	 portion	 for	 moisture	 content	 determination	 and	 the	
second	for	particle	size	measurements.		
	
2.4.1.	Granule	mean	diameter	and	particle	size	distribution	
	

The	granule	mean	diameter	 and	particle	 size	distribution	
were	 measured	 by	 laser	 diffraction	 using	 the	 Malvern	
Mastersizer	 X/S	 (Malvern	 Inc.,	 Worcestershire,	 UK)	 and	
Fraunhofer	 model	 analysis	 routine.	 The	 dry	 powder	 feeder	
was	operated	at	an	air	pressure	of	20	psi	and	a	sample	size	of	
3	g.	The	granule	mean	diameter	was	determined	by	measuring	
the	D[4,3]	which	are	 the	particle	 sizes	 at	 the	40th	and	30th	of	
the	 cumulative	 undersize	 distribution	 [17].	 The	 particle	 size	
distribution	is	performed	by	determination	the	span	according	
to	the	following	equation:	
	

	 	 	 	 	 (1)	

	
Here,	D	(10),	D	(50)	and	D	(90)	are	the	particle	sizes	at	the	

10th,	 50th	 and	 90th	 percentiles	 of	 the	 cumulative	 undersize	
distribution,	respectively.	
	
2.4.2.	Bulk	density,	tapped	density,	Hausner	ratio	and	
Compressibility	index	(Carr’s	index)	
	

Granules	were	 analyzed	 for	 bulk	 density,	 tapped	 density,	
Hausner	 ratio	 and	 Compressibility	 index,	 all	 these	
determinations	were	performed	according	to	the	USP	method	
<616>	[18]	 for	bulk	density,	 tapped	density	and	USP	method	
<1174>	[18]	for	Hausner	ratio	and	Compressibility	index.	

Bulk	 density	 and	 tapped	 density	 were	 determined	 using	
JEL	 Stampf®Volumeter	 Model	 STAV	 2003	 (Ludwigshafen,	
Germany).	 Hausner	 ratio	 (HR)	 is	 the	 ratio	 of	 the	 tapped	
density	to	its	initial	bulk	density	
	

	 	 	 	 	 (2)	
	

A	 lower	 HR	 value	 (<	 1.25)	 is	 generally	 an	 indication	 of	
good	flow	in	accordance	with	USP	method	<1174>	[18].	

The	 compressibility	 Index	 (CI)	 was	 calculated	 using	 the	
values	 of	 bulk	 and	 tapped	density	 according	 to	 the	 following	
equation:		
	

	 100 	 	 	 (3)	
	

A	 lower	 CI	 %	 value	 (<	 20)	 is	 generally	 an	 indication	 of	
good	flow	in	accordance	with	USP	method	<1174>	[18].	
	
2.4.3.	Moisture	content	of	the	granules	
	

The	moisture	 content	of	 samples	was	determined	by	 loss	
on	 drying	 (LOD).	 To	measure	 LOD,	 about	 2	 g	 of	 sample	was	
evenly	 spread	 on	 the	 pan	 of	 the	 moisture	 analyzer	 (Mettler	
Toledo,	 Model	 HB43)	 and	 the	 sample	 weight	 loss	 was	
determined	at	105	°C.		
	
2.5.	NIR	equipment		
	

The	Metrohm	NIRS	XDS	Rapid	Content	Analyzer	(RCA)	was	
used	for	offline	NIR	reflectance	measurements.	Samples	were	

placed	 in	 sealed	 glass	 vials	 and	 scanned	 in	 reflectance	mode	
over	 a	 wavelength	 range	 of	 400	 to	 2500	 nm	 with	 data	
collected	every	0.5	nm.		
	
2.6.	Software	and	data	analysis	
	

Data	 handling,	 Principal	 component	 analysis	 (PCA)	 and	
Partial	 least	 squares	 (PLS)	 routine	 work	 were	 done	 using	
SOLO®8.0	 (Eigenvector	 Research	 Inc.,	Washington,	 USA).	 PLS	
model	was	 applied	 to	 the	 NIR	 spectra.	 In	 order	 to	 build	 PLS	
model,	 the	 raw	 data	 was	 preprocessed	 using	 one	 or	 a	
combination	of	two	preprocessing	methods	[19].	Two	types	of	
data	 preprocessing,	 namely	 mean	 centering	 (MC)	 and	 auto‐
scaling	 (AS)	 were	 used	 in	 this	 study.	 The	 root	 mean	 square	
error	 of	 prediction	 (RMSEP)	 and	 number	 of	 latent	 variables	
(LVs)	 were	 used	 to	 evaluate	 the	 performance	 PLS	 models	
[20,21].	
	
2.7.	Method	validation		
	

The	 proposed	 PLS	 model	 for	 the	 NIR	 spectroscopy	 for	
determination	the	moisture	content	of	granules	was	validated	
in	accordance	with	ICH	guidelines	[22].	The	method	linearity,	
specificity,	 accuracy	 and	 precision	 (repeatability)	 are	
measured	 for	 the	 proposed	method	 [23].	 In	 addition	 to,	 the	
traditional	chemometric	criteria	are	calculated	to	evaluate	the	
predictive	 ability	of	 the	developed	PLS	models	 to	predict	 the	
moisture	 content	 of	 granules	 [24].	 These	 criteria	 are	
regression	 coefficient	 (r2),	 the	 root	 mean	 squared	 error	 of	
cross‐validation	 (RMSECV)	 and	 of	 prediction	 (RMSEP)	 for	
external	validation	set,	not	involved	in	the	calibration	set.	
	
3.	Results	and	discussions	
	
3.1.	Analysis	of	the	influence	of	the	process	variables	on	the	
granules	properties		
	

The	Plackett‐Burman	design	was	applied	for	screening	the	
process	 variables	 in	 fluid	 bed	 granulation	 and	 to	 study	 the	
influence	of	process	variables	on	granules	physical	properties	
(granule	mean	 diameter	 and	 span),	 granules	 flow	 properties	
(Hausner	ratio	and	Carr’s	 index)	and	 the	moisture	content	of	
the	 granules.	 The	most	 important	 six	 process	 variables	were	
investigated	by	Plackett‐Burman	design;	three	variables	in	the	
spraying	 phase	 (atomization	 pressure,	 airflow	 rate	 and	 inlet	
temperature)	and	three	variables	in	the	drying	phase	(airflow	
rate,	 inlet	 temp	 and	 drying	 time).	 Results	 obtained	 are	
represented	in	Table	2.	

The	regression	analysis	table	(Table	3	and	4)	was	used	to	
show	 the	 effect	 of	 the	 process	 variables	 on	 the	properties	 of	
granules,	 it	 shows	 the	 contrasts	 (regression	 coefficients)	 of	
each	 variable,	 t‐Ratio	 values	 and	 p‐values	 to	 assess	 the	
significant	 of	 each	 variable.	 The	 t‐Ratio	 values	 are	 calculated	
as	 Contrast/	 PSE,	 where	 PSE	 is	 Pseudo	 Standard	 Error.	 p‐
Values	 are	 obtained	 by	 the	 t‐test	 to	 assess	 the	 significant	 of	
each	 variable.	 p‐Values	 more	 than	 0.1	 indicate	 that	 the	
variables	 are	 not	 significant.	 P‐values	 from	 0.05	 to	 0.10	
indicate	 that	 the	 variables	 are	 weakly	 significant.	 While	 p‐
values	 less	 than	 0.05	 indicate	 that	 the	 variables	 are	 strongly	
significant.	
	
3.1.1.	Analysis	of	the	influence	of	the	process	variables	on	
the	granule	mean	diameter	and	span	
	

The	airflow	rate	in	the	drying	phase	(p‐value	=	0.074)	has	
a	 weak	 significant	 influence	 on	 granule	 mean	 diameter,	 as	
shown	 in	 Table	 3a.	 The	 airflow	 rate	 in	 the	 drying	 phase	 (p‐
value	=	0.099),	and	the	interaction	between	the	airflow	rate	in	
the	spraying	phase	and	inlet	temperature	 in	the	drying	phase	
(p‐value	=	0.085)	have	a	weak	significant	influence	on	span,	as	
shown	in	Table	3b.		
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Table	2.	Matrix	of	the	results	after	screening	by	Plackett‐Burman	design.	
Batch	no	 Granule	mean	

diameter	(μm)	
Span	
(μm/μm)	

Moisture		
content	(%)

Bulk	density	
(g/mL)

Tapped	density	
(g/mL)

Hausner	ratio	 Carr's	index	
(%)

1	 159.129	 1.405	 1.59 0.46 0.57 1.24	 19	
2	 207.922	 1.263	 2.81 0.47 0.67 1.43	 30	
3	 346.023	 1.533	 2.74 0.43 0.61 1.42	 42	
4	 157.786	 1.738	 1.60	 0.45	 0.60	 1.33	 25	
5	 148.236	 1.427	 2.60	 0.46	 0.58	 1.35	 26	
6	 89.700	 1.780	 1.98 0.47 0.56 1.19	 16	
7	 168.800	 1.812	 2.27	 0.49	 0.56	 1.33	 25	
8	 214.690	 1.316	 3.00	 0.45	 0.63	 1.40	 29	
9	 141.281	 1.935	 2.53 0.50 0.63 1.26	 21	
10	 158.714	 1.446	 2.46 0.43 0.53 1.23	 19	
11	 143.521	 1.701	 2.27 0.46 0.61 1.33	 25	
12	 399.215	 2.169	 1.18 0.53 0.71 1.34	 25	
13	 158.841	 1.688	 1.50 0.48 0.60 1.25	 20	
14	 235.093	 1.212	 2.53 0.44 0.65 1.47	 32	
15	 237.844	 1.430	 1.94 0.84 0.68 1.42	 29	

	
Table	3.	The	influence	of	process	variables	on	granule	mean	diameter	(a),	span	(b),	bulk	density	(c),	and	tapped	density	(d).	
Term	a	 Contrast	 t‐Ratio Individual	p‐Value	
Screening	for	granule	mean	diameter	(a)	
X1	 19.7559	 0.83 0.3731	
X2	 13.0055	 0.55	 0.6169	
X3	 8.3618	 0.35 0.7454	
X4	 3.0766	 0.13 0.8981	
X5	 45.3137	 1.91 0.0735	b	
X6	 ‐3.9017	 ‐0.16 0.8705	
X5*X5	 23.7935	 1.00 0.2934	
X5*X1	 21.7830	 0.92 0.3310	
X5*X2	 18.7009	 0.79	 0.4011	
X1*X2	 7.6242	 0.32 0.7667	
X5*X3	 ‐26.0708	 ‐1.10	 0.2550	
X1*X3	 ‐36.9951	 ‐1.56	 0.1269	
Null	14	 2.1077	 0.09 0.9303	
Null	15	 1.9408	 0.08 0.9343	
Screening	span	(b)	
X1	 0.036299	 0.67 0.5081	
X2	 0.029740	 0.55	 0.6139	
X3	 0.073716	 1.35	 0.1687	
X4	 0.039131	 0.72 0.4498	
X5	 ‐0.092648	 ‐1.70 0.0989	b	
X6	 0.042560	 0.78 0.4060	
X5*X5	 ‐0.007500	 ‐0.14 0.9002	
X5*X3	 0.016833	 0.31 0.7759	
X5*X6	 ‐0.030619	 ‐0.56 0.6045	
X3*X6	 0.183212	 3.36 0.0135	c	
X5*X4	 0.025538	 0.47	 0.6659	
X3*X4	 0.098347	 1.81	 0.0852	b	
Null	14	 ‐0.056079	 ‐1.03	 0.2781	
Null	15	 ‐0.006406	 ‐0.12 0.9138	
Screening	for	bulk	density	(c)	
X1	 0.026833	 0.92 0.3323	
X2	 0.035777	 1.23	 0.2157	
X3	 0.046212	 1.59	 0.1239	
X4	 ‐0.026833	 ‐0.92	 0.3323	
X5	 ‐0.029814	 ‐1.03 0.2865	
X6	 ‐0.020870	 ‐0.72 0.4588	
X3*X3	 0.012000	 0.41 0.7039	
X3*X2	 0.015333	 0.53 0.6296	
X3*X5	 ‐0.005715	 ‐0.20 0.8537	
X2*X5	 0.014491	 0.50 0.6475	
X3*X1	 0.047329	 1.63 0.1168	
X2*X1	 ‐0.017889	 ‐0.62	 0.5710	
Null	14	 ‐0.004201	 ‐0.14	 0.8945	
Null	15	 0.000354	 0.01 0.9924	
Screening	for	tapped	density	(d)	
X1	 ‐0.005963	 ‐0.36 0.7404	
X2	 0.013416	 0.80	 0.3974	
X3	 0.017889	 1.07	 0.2687	
X4	 ‐0.011926	 ‐0.71	 0.4583	
X5	 0.020870	 1.24 0.2029	
X6	 0.007454	 0.44	 0.6835	
X5*X5	 0.008000	 0.48 0.6609	
X5*X3	 ‐0.001333	 ‐0.08 0.9402	
X5*X2	 0.017419	 1.04 0.2815	
X3*X2	 0.016102	 0.96 0.3154	
X5*X4	 0.019720	 1.18 0.2254	
X3*X4	 ‐0.010435	 ‐0.62 0.5587	
Null	14	 ‐0.003181	 ‐0.19	 0.8568	
Null	15	 0.004582	 0.27 0.7971	
a	X1,	atomizing	pressure;	X2,	 inlet	air	 temperature	(spraying);	X3,	air	 flow	rate	(spraying);	X4,	 inlet	air	 temperature	(drying);	X5,	air	 flow	rate	(drying);	X6,	
drying	time.	
b	Weak	significant	variable.		
c	Strong	significant	variable.		
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Table	4.	The	influence	of	process	variables	on	Hausner	ratio	(a),	Carr’s	index	(b)	and	moisture	content	of	granule	(c).	
Term	a	 Contrast	 t‐Ratio Individual	p‐Value	
Screening	for	Hausner	ratio	(a)	
X1	 ‐0.028324	 ‐1.34	 0.1660	
X2	 0.017889	 0.85	 0.3561	
X3	 ‐0.001491	 ‐0.07	 0.9471	
X4	 ‐0.013416	 ‐0.64	 0.5446	
X5	 0.040249	 1.91 0.0683	b	
X6	 ‐0.016398	 ‐0.78 0.3982	
X5*X5	 0.011333	 0.54 0.6202	
X5*X1	 ‐0.014667	 ‐0.70 0.4645	
X5*X2	 0.002994	 0.14 0.8948	
X1*X2	 0.010811	 0.51 0.6361	
X5*X6	 0.050428	 2.39 0.0336	c	
X1*X6	 ‐0.009690	 ‐0.46	 0.6735	
Null	14	 ‐0.011517	 ‐0.55 0.6139	
Null	15	 ‐0.015514	 ‐0.74	 0.4305	
Screening	for	Carr’s	index	(b)	
X1	 ‐0.89443	 ‐0.55 0.6168	
X2	 0	 0	 1.0000	
X3	 ‐1.04350	 ‐0.64	 0.5490	
X4	 ‐1.63978	 ‐1.00 0.2888	
X5	 3.13050	 1.91	 0.0717	b	
X6	 ‐1.93793	 ‐1.18	 0.2197	
X5*X5	 0.93333	 0.57 0.6007	
X5*X6	 2.80000	 1.71 0.0986	b	
X5*X4	 ‐0.51711	 ‐0.32 0.7735	
X6*X4	 1.95519	 1.19 0.2159	
X5*X3	 ‐2.50729	 ‐1.53 0.1278	
X6*X3	 0.67082	 0.41 0.7100	
Null	14	 0.26950	 0.16 0.8791	
Null	15	 1.14243	 0.70	 0.4729	
Screening	for	moisture	content	(c)	
X1	 ‐0.212426	 ‐2.29 0.0430	c	
X2	 ‐0.061865	 ‐0.67 0.5120	
X3	 ‐0.148326	 ‐1.60	 0.1192	
X4	 ‐0.251185	 ‐2.71 0.0280	c	
X5	 0.079753	 0.86	 0.3701	
X6	 0.026087	 0.28	 0.7956	
X4*X4	 0.038333	 0.41	 0.7056	
X4*X1	 0.042333	 0.46 0.6789	
X4*X3	 ‐0.021229	 ‐0.23 0.8318	
X1*X3	 ‐0.275687	 ‐2.97 0.0226	c	
X4*X5	 0.111734	 1.20 0.2197	
X1*X5	 0.007379	 0.08 0.9392	
Null	14	 0.171531	 2.22 0.0468	c	
Null	15	 ‐0.114287	 0.12 0.9112	
a	X1,	atomizing	pressure;	X2,	 inlet	air	 temperature	(spraying);	X3,	air	 flow	rate	(spraying);	X4,	 inlet	air	 temperature	(drying);	X5,	air	 flow	rate	(drying);	X6,	
drying	time.	
b	Weak	significant	variable.		
c	Strong	significant	variable.		
	

	
The	interaction	between	airflow	rate	in	the	spraying	phase	

with	the	drying	time	(p‐value	=	0.014)	has	a	strong	significant	
influence	on	span.	The	increase	of	airflow	rate	in	the	spraying	
phase	 with	 atomizing	 pressure	 allows	 us	 to	 obtain	 fine	
granules	 (small	 granule	 mean	 diameter)	 with	 more	 broadly	
granules	 dispersed	 (large	 span).	 This	 could	 be	 explained	 by	
increasing	 the	 atomization	 pressure	 decreases	 the	 moisture	
content	of	granules,	which	 leads	 to	a	decrease	 in	 the	granule	
size,	 thus	 obtaining	 granules	 with	 small	 mean	 diameter	 and	
more	broadly	dispersed	granules	(large	span)	[25].		
	
3.1.2.	Analysis	of	the	influence	of	the	process	variables	on	
the	bulk	and	tapped	density		
	

The	process	variables	were	found	to	have	a	little	influence	
on	 the	 bulk	 and	 tapped	 density	 which	 is	 not	 significant,	 as	
shown	in	Tables	3c	and	3d.	The	increase	of	the	airflow	rate	in	
the	spraying	phase	 leads	 to	an	 increase	 in	density	 (both	bulk	
and	 tapped).	This	 could	be	due	 to	 that	 increasing	 the	airflow	
rate	 in	 the	 spraying	 phase	 leads	 to	 denser	 granules	 by	 the	
spatial	configuration	of	the	obtained	granules.	
	
3.1.3.	Analysis	of	the	influence	of	the	process	variables	on	
the	granule	flow	properties;	Hausner	ratio	and	Carr’s	index	
	

To	 characterize	 granules	 flow	 properties,	 the	 Hausner	
ratio	 and	 compressibility	 index	 (Carr’s	 index)	 were	 deter‐

mined.	The	airflow	rate	in	drying	phase	(p‐value	=	0.07)	has	a	
weak	significant	influence	and	the	interaction	between	airflow	
rate	 in	drying	phase	and	drying	 time	has	 a	 strong	significant	
influence	 (p‐value	 =	 0.03)	 on	 the	Hausner	 ratio,	 as	 shown	 in	
Table	4a.	

The	airflow	rate	 in	drying	phase	(p‐value	=	0.07)	and	the	
interaction	 between	 airflow	 rate	 in	 drying	 phase	 and	 drying	
time	 (p‐value	=	0.1)	have	a	weak	 significant	 influence	on	 the	
compressibility	index,	as	shown	in	Table	4b.		

The	 increase	 of	 airflow	 rate	 (drying	 phase)	 in	 the	 same	
time	with	 increasing	drying	 time	 leads	to	an	 increase	of	both	
Hausner	 ratio	 and	 Carr’s	 index,	 resulting	 in	 poorer	
compressibility	 and	 flowability	 of	 the	 granules.	 Controversy,	
The	 increase	 of	 atomization	 pressure	 leads	 to	 granules	 with	
better	compressibility	and	flowability	properties.	

Generally,	 the	 adhesion	 force	 and	 gravity	 force	 are	
significant	 forces	 that	 act	 directly	 on	 the	 granules	 during	
packing	 [26].	 Therefore,	 the	 increase	 of	 airflow	 rate	 in	 the	
drying	 phase	 with	 the	 drying	 time	 leads	 to	 increase	 the	
granule	attrition,	 resulting	 in	a	decrease	 the	granule	size	and	
consequently,	 the	 flowability	 decreases.	 As	 the	 granule	 size	
decreases,	 the	 influence	of	 the	gravity	 force	becomes	 smaller	
than	 the	 adhesion	 force,	 and	 consequently	 the	 flowability	
decreases	[26].		
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