Synthesis and properties of 3-ethynylthiophene containing BODIPY derivatives

Reuben Warshawsky 1,2, Jason Vaal 1 and Priya Hewavitharanage 1,*

1 Department of Chemistry, University of Southern Indiana, Evansville, Indiana 47712, USA
2 School of Medicine, Indiana University, Indianapolis, Indiana 46202, USA

* Corresponding author at: Department of Chemistry, University of Southern Indiana, Evansville, Indiana 47712, USA.
Tel.: +1.812.4651052. E-mail address: phewavith@usi.edu (P. Hewavitharanage).

ARTICLE INFORMATION

DOI: 10.5155/eurjchem.8.4.321-327.1634

Received: 01 August 2017
Received in revised form: 08 September 2017
Accepted: 09 September 2017
Published online: 31 December 2017
Printed: 31 December 2017

KEYWORDS

BODIPY
Thiophene
Stokes shift
Fluorescence
Singlet oxygen
Photodynamic therapy

1. Introduction

A versatile small fluorescent molecule commonly known as borondipyromethene has attracted significant attention in the biomedical and electronic fields due to its unique properties [1,2]. BODIPY based molecules are preferred for biological applications due to its small size, high fluorescence quantum yields, sharp absorption and emission peaks and stability [1,2]. They are relatively nontoxic to living cells [3,4] and are widely used as fluorescence probes in molecular labeling and cell imaging [5-7]. Various properties of BODIPY molecules can be fine-tuned by synthetic modifications of the BODIPY core [2,8]. Numerous aromatic and aliphatic substituents have been used to modify the BODIPY core. Substitution at the 2,6 and 3,5 positions has been widely used to extend conjugation [9-12]. Substitution at the meso position and boron center does not cause significant shift in absorption and emission spectra [13]. In general, BODIPY dyes have very small Stokes shifts, often less than 10 nm [14]. A small Stokes shift causes reabsorption of emitted photons or the inner filter effect hence reducing the emission intensity [15]. This is a disadvantage particularly for biomedical applications where small concentrations of fluorophores are used. Resonance energy transfer in a wide variety of BODIPY based donor/acceptor systems has been used to achieve large Stokes shifts [14,15]. However, they are pseudo Stokes shifts that cannot completely eliminate the inner filter effect [16]. Another strategy to enhance Stokes shifts by geometrical relaxation has been reported [17]. Increased geometrical relaxation of excited BODIPY molecules with thienyl substitution at the 2,6 positions caused red shift of the emission, giving large Stokes shifts (96 nm) [17]. Thiophene and its derivatives have been used in modification of the BODIPY core for various applications. Thiophene and oligothiophene substituted BODIPY derivatives have been synthesized for dye sensitized solar cells [18-21]. Substitution of thiophene at the 2,6 and 3,5 positions are used to extend the absorption and emission of BODIPY dyes [22]. Wu et al. reported synthesis of BODIPY by attaching oligothiophene moieties at the meso position [23]. However, the effect of thiophene substitution at various positions of the BODIPY core through ethynyl linkage on photophysical properties has not been studied in-depth.

Upon excitation, BODIPY derivatives produce singlet excited states and decay through fluorescence, with high quantum yields. Intersystem crossing (ISC) in BODIPY derivatives is minimal. However, it is possible to enhance ISC via chemical modification of the BODIPY core. It has been shown that incorporation of heavy atoms such as iodine...
increases ISC by spin-orbit coupling [1,2,24,5]. Such molecules can act as triplet sensitizers to transfer their energy to the triplet states of other molecules. Energy transfer to molecular oxygen generates singlet oxygen which has several applications including photocatalysis [1] and photodynamic therapy (PDT) [26,27]. Triplet sensitizers are also used in triplet-triplet annihilation based upconversions [28]. BODIPY is a promising candidate for PDT due to its superior properties and non-toxic nature [2]. High ratios of light/dark toxicity in BODIPY derivatives and low quantum yield of photobleaching are additional advantages for biomedical applications [2]. Several types of BODIPY molecules have been synthesized and tested for singlet oxygen generation [229]. Impact of heavy atom effect is directly related to where they are positioned on the BODIPY core [2]. It is known that increasing the number of iodine atoms in the BODIPY molecule increases intersystem crossing [2]. However, it increases dark toxicity which limits applications of these molecules in PDT [30]. Incorporation of sulfur containing substituents such as thiophene also promotes ISC in BODIPY [31]. In addition, some thiophene substituted molecules are reported to be permeable to the cell membrane [32]. Hence, thiophene containing BODIPY derivatives are useful candidates for PDT. Efficiency of ISC depends on the nature of the BODIPY-thiophene linkage. Direct attachment of thiophene at the 2,6 positions of BODIPY core via Suzuki coupling does not effectively promote ISC. However, when two thiophenyl moieties are fixed into the BODIPY core, ISC becomes efficient due to large spin orbit coupling and smaller single triplet energy gaps [33]. However, efficiency of singlet oxygen generation when thiophene is attached to different positions of the BODIPY core through ethynyl linkage has not been studied. In this study, we report the synthesis of green, red and far-red emitting BODIPY derivatives with 3-ethylthiophene at various positions of the BODIPY core. Their photophysical properties and singlet oxygen generation capabilities were studied and compared with a BODIPY compound which contains iodine atoms at the 2,6 positions. We have chosen 3-ethylthiophenyl because it provides a route to synthesize multi-functionalized BODIPY molecules as both 2,5 positions of the thiophene moiety are open for further substitution.

2. Experimental

2.1. Instrumentation

1H NMR (300 or 400 MHz) and 13C NMR (75 or 100 MHz) spectra were recorded at room temperature on JEOL Eclipse nuclear magnetic resonance spectrophotometers. Chemical shifts are reported in parts per million (ppm) in CDCl3 using TMS as the internal reference (0.00). 1H data are reported as follows: multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad). UV-visible spectra were recorded using a Cary 5000 Series UV-VIS-NIR spectrophotometer. Fluorescence spectra were recorded using a Horiba Jobin Yvon Fluoromax-4 spectrophotometer. Quantum yields were measured using Rhodamine B as the reference (ε = 0.65 in ethanol). High resolution mass spectra were obtained at the Department of Chemistry, University of Illinois at Urbana-Champaign.

2.2. Synthesis

All the solvents were freshly distilled under argon before use. Chemicals purchased were used without further purification.

2.2.1. Synthesis of compounds 5,5-difuoro-1,3,7,9-tetramethyl-10-nonyl-5H-4,14S-dipyrrrolo[1,2-c2’, 1’-f][1,3,2]diazaborin (1) and 5,5-difuoro-2,8-dioido-1,3,7,9-tetramethyl-10-nonyl-5H-4,14S-dipyrrrolo[1,2-c2’, 1’-f][1,3,2]diazaborin (2)

Synthesis of compounds 1 and 2 is described elsewhere [34] (Scheme 1).

2.2.2. Synthesis of 5,5-difuoro-1,3,7,9-tetramethyl-10-nonyl-5H-4,14S-dipyrrrolo[1,2-c2’,1’-f][1,3,2]diazaborin (2): 1H NMR (300 MHz, CDCl3, δ ppm): 2.92 (t, J = 9.0 Hz, 2H, CH2), 2.61 (s, 6H, CH3), 2.48 (s, 6H, CH3), 1.62 (br s, 10H, CH2), 1.27 (br s, 10H, CH2), 0.88 (t, J = 6.6 Hz, 3H, CH3). 13C NMR (75 MHz, CDCl3, δ ppm): 155.2 (2C, indacene-C), 146.5 (1C, indacene-C), 140.4 (2C, indacene-C), 131.5 (2C, indacene-C), 121.6 (2C, indacene-C), 32.0 (2C, CH2), 30.5 (2C, CH2), 29.6 (1C, CH3), 29.5 (1C, CH3), 29.3 (1C, CH3), 28.6 (1C, CH3), 22.7 (2C, CH2), 16.4 (1C, CH3), 14.5 (1C, CH3), 14.1 (1C, CH3).

2.2.2.1. Synthesis of 5,5-difuoro-1,3,7,9-tetramethyl-10-nonyl-5H-4,14S-dipyrrrolo[1,2-c2’,1’-f][1,3,2]diazaborin (3)

To a Schlenk flask (Pd(PPh3)4, 26.9 mg, 0.032 mmol), CuI (12.17 mg, 0.064 mmol) and compound 2 (100 mg, 0.16 mmol) were added in a glove box and dissolved in freshly distilled THF (15 mL). Then, Et3N (0.78 mL) was added followed by 3-ethynylthiophene (42.26 mg, 0.4 mmol). The mixture was stirred at room temperature for 24 h, the residue was extracted with CH2Cl2 dried over anhydrous Na2SO4 and the solvent evaporated. Purification using silica gel column chromatography eluted with dichloromethane/hexane (40:60) yielded compound 3 (Scheme 1).

2.2.2.2. Synthesis of 5,5-difuoro-1,3,7,9-tetramethyl-10-nonyl-5H-4,14S-dipyrrrolo[1,2-c2’,1’-f][1,3,2]diazaborin (4)

The same procedure used to synthesize compound 3 was used to synthesize compound 4 (1:1 molar ratio of compound 2:3-ethylthiophene was used). The reaction mixture was stirred overnight and the compound was purified as described in the synthesis of compound 3 (Scheme 1).
Reagents and conditions: (i) HIO₃, I₂, ethanol (ii) 3-ethynylthiophene (2 mol equiv.), CuI, Pd(PPh₃)₄, NEt₃, THF, room temperature, 24 h (iii) 3-ethynylthiophene (1 mol equiv.), CuI, Pd(PPh₃)₄, NEt₃, THF, room temperature overnight (iv) 4-methoxybenzaldehyde, Mg(ClO₄)₂, piperidine, glacial acetic acid, toluene (v) 3-ethynylthiophene (1 mol equiv.), CuI, Pd(PPh₃)₄, NEt₃, THF, room temperature overnight (vi) lithium 3-ethynylthiophene, CH₂Cl₂.

Scheme 1

5,5-Difluoro-2-ido-1,3,7,9-tetramethyl-10-nonyl-8-(thiophen-3-ylethynyl)-5H-4i4,5i4-dipyrrolo[1,2-c’2;1’,3,2]diazaborinine (4): Color: Dark purple. Yield: 58%. M.p.: 205-207 °C (Dec.). FT-IR (Neat, v, cm⁻¹): 3115, 2976, 2928, 2861, 2214 (alkyne), 1533, 1183, 1085, 999, 777. ¹H NMR (400 MHz, CDCl₃, δ, ppm): 7.43 (dd, J = 6.4 Hz, 1.2 Hz, 1H, Ar-H), 7.25 (q, J = 0.007 Hz, 1H, Ar-H), 7.12 (dd, 6.4 Hz, 1.2 Hz, 1H, Ar-H), 2.93 (t, J = 2.76 Hz, 2H, CH₂), 2.59 (s, 3H, CH₃), 2.55 (s, 3H, CH₃), 2.49 (s, 3H, CH₃), 2.42 (s, 3H, CH₃), 1.55 (br m, 2H, CH₂), 1.47 (br m, 2H, CH₂), 1.21 (br s, 10H, 5CH₂), 0.82 (t, J = 6.44 Hz, 3H, CH₃). ¹³C NMR (100 MHz, CDCl₃, δ, ppm): 157.0 (1C, indacene-C), 155.0 (1C, indacene-C), 147.2 (1C, indacene-C), 141.8 (1C, indacene-C), 141.7 (1C, indacene-C), 132.0 (1C, indacene-C), 130.8 (1C, indacene-C), 129.9 (1C, indacene-C), 128.3 (1C, indacene-C), 125.5 (2C-Ar-C), 122.5 (2C-Ar-C), 116.5 (2C-Ar-C), 91.5 (2C-Ar-C), 86.2 (1C, ethynyl-C), 31.9, 30.4, 29.7, 29.5, 29.3, 22.7, 189, 16.1, 15.4, 14.2, 13.7. UV/Vis (CHCl₃, λmax, nm): 543. HRMS (ESI, m/z): calcd. for C₃₃H₃₈BN₂F₂SI [M+H]⁺, 607.1627; found: 607.1632.

2.2.4. Synthesis of 5,5-difluoro-3-(4-methoxystyryl)-1,7,9-trimethyl-10-nonyl-2,8-bis(thiophen-3-ylethynyl)-5H-5i4,6i4-dipyrrolo[1,2-c’2;1’,3,2]diazaborinine (5)

Compound 5 was synthesized according to a literature procedure [35]. Compound 3 (100 mg, 0.17mmol) and Mg(ClO₄)₂ (22 mg, 0.098 mmol) were dissolved in toluene (2 mL). 4-Methoxybenzaldehyde (46.6 mg, 0.34 mmol) and piperidine (0.299 mL) were added under argon. Then glacial acetic acid (0.11 mL) was added dropwise. Afterword the solution was refluxed in a Dean-Stark apparatus at 120 °C for 1 hour. The crude product was purified using silica gel column.
5. **Synthesis of 5,5-difuoro-10-(4-iodophenyl)-1,3,7,9-tetramethyl-5H-4f,5f-4′,5′-dipyrryl[1,2-c′,2′-f][1,3,2]diazaborinine (5)**: Color: Dark blue. Yield: 18%. M.p.: 283-285 °C (Dec). FT-IR (Neat, ν, cm⁻¹): 3117, 2929, 2856, 1725, 1602, 1532, 1512, 1263, 1194, 1014, 801. 1H NMR (400 MHz, CDCl₃, δ, ppm): 155.8 (1C, indacene-C), 143.1 (1C, indacene-C), 144.6 (1C, 6H, 2CH₃), 2.55 (s, 3H, CH₃), 2.51 (s, 3H, CH₃), 1.55 (br m, 2H, J = 16 Hz, 1H, CH₂), 1.47 (br m, 2H, CH₂), 1.21 (br s, 12H, 6CH₂), 1.08 (t, J = 8.4 Hz, 2H, CH₂), 0.82 (t, J = 8.8, 3H, CH₃). 13C NMR (100 MHz, CDCl₃, δ, ppm): 160.2, 151.4, 152.9, 139.3, 135.1, 133.1, 129.6, 128.9, 117.9, 117.2, 114.2, 55.4, 53.5, 32.1, 31.8, 30.9, 30.3, 29.5, 29.4, 29.2, 28.4, 22.6, 16.6, 14.1. UV/Vis (CHCl₃, λmax, nm): 615. HRMS (ESI, m/z): calc. for C₂₄H₂₂BN₂F₂S [M+H]+: 431.1557; found 431.1557.

6. **Synthesis of 5,5-difuoro-10-(4-iodophenyl)-1,3,7,9-tetramethyl-5H-4f,5f-4′,5′-dipyrryl[1,2-c′,2′-f][1,3,2]diazaborinine (6)**: Compound 6 was prepared from condensation of 2,4-dimethylpyrrole with 4-iodobenzyl chloride in CH₂Cl₂ and then reacted with BF₃OEt₂ [Scheme 1]. 1H NMR (400 MHz, CDCl₃, δ, ppm): 7.10 (d, J = 16 Hz, 1H, C-CH₃), 6.84 (d, J = 8.8 Hz, 4H, Ar-CH), 6.84 (d, J = 16 Hz, 1H, C-CH₃), 7.77 (s, 3H, Ar-CH₃), 2.78 (t, J = 2.76 Hz, 2H, CH₂), 2.64 (s, 3H CH₃), 2.55 (s, 3H CH₃), 2.51 (s, 3H CH₃), 1.55 (br m, 2H, J = 16 Hz, 1H, CH₂), 1.47 (br m, 2H, CH₂), 1.21 (br s, 12H, 6CH₂), 1.08 (t, J = 8.4 Hz, 2H, CH₂), 0.82 (t, J = 8.8, 3H, CH₃). 13C NMR (100 MHz, CDCl₃, δ, ppm): 160.2, 151.4, 152.9, 139.3, 135.1, 133.1, 129.6, 128.9, 117.9, 117.2, 114.2, 55.4, 53.5, 32.1, 31.8, 30.9, 30.3, 29.5, 29.4, 29.2, 28.4, 22.6, 16.6, 14.1. UV/Vis (CHCl₃, λmax, nm): 615. HRMS (ESI, m/z): calc. for C₂₄H₂₂BN₂F₂S [M+H]+: 431.1557; found 431.1557.

7. **Synthesis of 5,5-difuoro-10-(4-iodophenyl)-1,3,7,9-tetramethyl-5H-4f,5f-4′,5′-dipyrryl[1,2-c′,2′-f][1,3,2]diazaborinine (7)**: Compound 7 was synthesized from compound 6 using a similar procedure as described for the synthesis of compound 3 (Scheme 1). 1H NMR (400 MHz, CDCl₃, δ, ppm): 7.81 (d, J = 8.4 Hz, 2H, Ar-H), 7.02 (d, J = 8.4 Hz, 2H, Ar-H), 5.96 (s, 2H, indene-CH), 2.52 (s, 6H, 2CH₃), 1.39 (s, 6H, 2CH₃).

2.2.6. **Synthesis of 5,5-difuoro-10-(4-thiophen-3-ethylthiophenyl)-5H-4f,5f-4′,5′-dipyrryl[1,2-c′,2′-f][1,3,2]diazaborinine (7)**: Compound 7 was prepared from condensation of 4-dimethylpyrrole and 4-iodobenzyl chloride in CH₂Cl₂ and then reacted with BF₃OEt₂ [Scheme 1]. 1H NMR (400 MHz, CDCl₃, δ, ppm): 7.32-7.37 (m, 1H, Ar-H), 7.26 (m, 1H, Ar-H), 7.21 (m, 1H, Ar-H), 5.97 (s, 2H, 2indene-H), 2.54 (s, 6H, 2CH₃), 1.41 (s, 6H, 2CH₃). 13C NMR (100 MHz, CDCl₃, δ, ppm): 155.8 (1C, indene-C), 143.1 (1C, indene-C), 140.9 (1C, Ar-C), 135.0 (1C, indene-C), 132.3 (1C, Ar-C), 132.2 (1C, Ar-C), 132.1 (1C, Ar-C), 132.0 (1C, Ar-C), 131.3 (1C, indene-C), 129.9 (1C, indene-C), 129.2 (1C, indene-C), 128.6 (1C, Ar-C), 128.5 (1C, Ar-C), 128.3 (1C, Ar-C), 125.7 (1C, Ar-C), 124.1 (1C, Ar-C), 121.9 (1C, indene-C), 121.4 (1C, indene-C), 88.2 (1B, ethynyl-C), 86.0 (1C, ethynyl-C), 14.6 (4CH₃). UV/Vis (CHCl₃, λmax, nm): 503. HRMS (ESI, m/z): calc. for C₁₀H₁₀BN₃F₂S [M+H]+: 343.1557; found 343.1557.

2.2.7. **Synthesis of 2,3-dithiol-1,3,7,9-tetramethyl-10-nonyl-5,5-bis(thiophen-3-ylthiophenyl)-5H-4f,5f-4′,5′-dipyrryl[1,2-c′,2′-f][1,3,2]diazaborinine (9)**: 3-Ethynylthiophene (0.24 mL, 2.25 mmol) was transferred to a Schlenk flask that was previously charged with anhydrous diethyl ether (15 mL). The Schlenk flask was cooled to -70 °C and then n-BuLi (1.43 mL, 2.3 mmol) was added. The mixture was stirred at -70 °C for 1 h and at room temperature for 30 min. The mixture was then transferred to a solution of compound 8 (336 mg, 0.78 mmol) in THF (50 mL) at room temperature. The mixture was stirred at room temperature for 30 min, diluted with CH₂Cl₂, and washed with water. After evaporation of solvents the crude mixture was purified using silica gel column chromatography eluted with dichloromethane/ethyl acetate (90:10) to yield compound 9 (Scheme 1).
3.2. Photophysical properties

The UV-vis and fluorescence experiments of compounds 1-9 were carried out in CH2Cl2 (1.0×10^{-5} mol/L) using a Cary 5000 Series UV-VIS-NIR Spectrophotometer. Typical BODIPY absorption spectrum has two major absorption bands (Figure 1a). The more prominent, lowest energy absorption band ~500-600 nm, is due to the S_0→S_1 (π-π*) transition. The weaker absorption band, ~350-430 nm, is due to the S_0→S_2 (π-π*) transition. Absorption maximum of the BODIPY derivative 3 which has ethynylthiophene units at the 2,6 positions was redshifted by 65 nm in comparison to 2,6 unsubstituted compound 1 (Table 1). It was further redshifted (by 117 nm) with the styril group at the 3 position in compound 5. Placing ethynylthiophene at the 4,4’ positions has no effect on absorption wavelength as the boron atom is not in conjugation with the BODIPY core (Figure 1a and 2). Attaching ethynylthiophene units through benzene ring at the meso (8) position has no effect on the absorption spectrum (compound 6, Figure 1a and 2). Sharp emission spectra were observed for all ethynylthiophene substituted compounds (Figure 1b). As expected, emission spectra were red shifted in compounds with 3-ethynylthiophene at the 2,6 positions. Placing one styril group at the 3 position caused significant red shift (145 nm) in the emission in comparison to unsubstituted compound 1 (Table 1, Figure 1b and 2). Photonsensitizers that absorb in the deep red and NIR regions penetrates deeper in the tissues and have potential biomedical applications. Similar to absorption spectra, substitution at the meso position and boron center has no significant effect on emission spectra. Geometry of the S_0 state of BODIPY is very similar to that of the ground state S_1 [17]. Thus, BODIPY compounds have small Stokes shifts. Interestingly, Chen et al. reported 2,6 thienyl substituted BODIPY molecules with relatively larger Stokes shifts (~70-92 nm). DFT calculations revealed that the dihedral angle between the thiienyl and BODIPY moiety in the S1 and S2 was quite different. Hence, large geometry relaxation upon photoexcitation was proposed as the origin of large Stoke shift [17]. When the thiophene ring is connected through a triple bond, the Stokes shift is increased from 6 to 32 nm (Table 1). This is only a 35 nm increase in compound 4. Absence of larger Stokes shift in ethynylthiophene substituted BODIPY is probably due to smaller geometry relaxation because of restricted rotation of the thiophene ring due to the triple bond.

![Figure 1a](image1.png)

**Figure 1.** (a) Normalized absorption and (b) emission spectra of compound 3, 4, 5, 7 and 9 in CH2Cl2.

<table>
<thead>
<tr>
<th>Compound</th>
<th>λ_{max} (nm)</th>
<th>λ_{em} (nm)</th>
<th>Stokes shift (nm)</th>
<th>Quantum yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>498</td>
<td>504</td>
<td>6</td>
<td>84</td>
</tr>
<tr>
<td>2</td>
<td>520</td>
<td>524</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>563</td>
<td>595</td>
<td>32</td>
<td>34</td>
</tr>
<tr>
<td>4</td>
<td>543</td>
<td>584</td>
<td>41</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>615</td>
<td>649</td>
<td>34</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>504</td>
<td>517</td>
<td>13</td>
<td>57</td>
</tr>
<tr>
<td>7</td>
<td>503</td>
<td>512</td>
<td>9</td>
<td>82</td>
</tr>
<tr>
<td>8</td>
<td>520</td>
<td>524</td>
<td>4</td>
<td>84</td>
</tr>
<tr>
<td>9</td>
<td>517</td>
<td>525</td>
<td>8</td>
<td>86</td>
</tr>
</tbody>
</table>

*Rodamine B was used as reference (ф = 65% in ethanol).

3.3. Singlet oxygen generation

The ability of singlet oxygen generation for compounds 3, 4, 5, 7 and 9 was tested in THF solutions. All the solutions were irradiated with a tungsten lamp at 0.5 mW/cm².
Figure 2. The visual colors of compounds 2, 3, 4, 5, and 7 under ambient light and when excited at 365 nm using a hand-held UV lamp.

Figure 3. Time-dependent decrease of absorbance at 412 nm by oxidation of DPBF (9×10^−6 M) with a dye (5×10^−6 M) in THF under 60 W halogen lamp at 0.5 mW/cm².

Figure 4. Singlet oxygen generation experiment in THF solution. Decrease in absorption spectrum of DPBF at 412 nm in the presence of compound 3 (λ_{max} = 563 nm) (5×10^−6 M).

4. Conclusion

In conclusion, we have synthesized new BODIPY derivatives with 3-ethynylthiophene units at various positions of the BODIPY core and studied their photophysical properties. All these derivatives were resistant to photo-bleaching under our
experimental conditions. Styril substituted compound 5 showed a strong far-red emission. 3-ethynylthiophene units at the 2,6 positions were less effective in increasing Stokes shifts in comparison to the 2,6 thienyl substituted BODIPY. The ability of these compounds to generate singlet oxygen was studied. The effectiveness of 3-ethynylthiophene containing BODIPY derivatives in singlet oxygen generation depends on the position around the BODIPY core. Placing 3-ethynylthiophene units on the 2,6 positions is more effective compared to the 4,4' and the meso substitutions. Styril substitution at the 3 position has no significant effect on singlet oxygen generation. Cellular localization studies of these dyes are underway.

Acknowledgment

This work was supported by the University of Southern Indiana Endeavor Award for Research & Creativity (Project no: 17786-0100) and by the Lilly Summer Student Research Fellowship (Project no: 25075-01820).

References