Ammonium chloride; as a mild and efficient catalyst for the synthesis of some 2-arylbenzothiazoles and bisbenzothiazole derivatives

Behrooz Maleki* and Hafezeh Salehabadi

Department of Chemistry, Sabzevar Tarbiat Moallem University, Sabzevar, IR-397, Iran
*Corresponding author: Department of Chemistry, Sabzevar Tarbiat Moallem University, Sabzevar, IR-397, Iran. Tel: +98.571.4410104; fax: +98.571.4410622. E-mail address: maleki@stu.ac.ir (B. Maleki).

COMMUNICATION INFORMATION
Received: 14 June 2010
Accepted: 26 November 2010
Online: 31 December 2010

KEYWORDS
2-Arylbenzothiazoles
Bisbenzothiazole
Aldehydes
Ammonium chloride
2-Aminothiophenol
Mild condition

ABSTRACT
An efficient protocol has been developed for the preparation of a series of 2-arylbenzothiazoles derivatives from condensation of 2-aminophenol with aromatic aldehydes using ammonium chloride, which is a very inexpensive, metal-free and readily available reagent. The target compounds were obtained in good to excellent yields (58-92%) under fairly mild reaction conditions at room temperature.

1. Introduction
The 2-substituted benzothiazoles moiety is very interesting in the area of medicinal and biological chemistry. The benzothiazolyl system possesses highly selective and potent antitumor activity. Also, the 2-(4-dimethylamino phenyl)-benzothiazole is an integral component used for the treatment of Alzheimer disease. The presence of the benzothiazole nucleus is essential in the thermally stable rigid-rod polymers with high tensile strength and modulus. They have also found applications in industry as antioxidants, antifungal-vulcanization accelerators, and as a dopant in a light-emitting organic electroluminescent device [1-3]. Thus, the synthesis of this benzothiazole moiety is always a great challenge.

In general, benzothiazoles are synthesized by condensation of 2-aminophenol with carboxylic acid derivatives [4], one-pot reaction of 2-aminophenol with β-chlorocinnamaldehydes using p-TsOH [5], condensation of 2-aminothiophenol with acid chlorides [6], esters [7], amination of benzothiazoles with aryl bromides at 150 °C in a sealed tube catalyzed by Pd(OAc)2, Cu2O, and CuBr with Ph3P as ligand [8], multistep synthetic approaches of 2-arylbenzothiazoles [9] or Suzuki biaryl coupling of 2-arylenzymoanilines with aryl boronic acid [10].

On the other hand, the most general synthetic approach for synthesis of 2-arylbenzothiazoles involves condensation of 2-aminophenols with aldehydes using various oxidants such as MnO2/SiO2 [11], p-TsOH or graphite on the surface of solid mineral supports under microwave irradiation [12], I2/DMF [13], 1-phenyl-3-methylimidazolium bromide [PmIm]Br under microwave irradiation [14], activated carbon (Shirasagi KL or Darc® KB) under oxygen atmosphere [15], O2 or H2O2 in the presence of Sc(OTf)3 [16], CAN [17], electro oxidation [18], direct condensation of 2-aminophenol with aromatic aldehydes under microwave irradiation [19], Dowex 50W [20], H2O2/Fe(NO3)3 [21], solid heteropoly acid supported on silica gel [Cu3/2PMo12O40/SiO2] [22], alum [KAl(SO4)2.12H2O] [23], Bakers yeast [24], trichloroisocyanuric acid [25], perchloric acid-doped polyaniline [26] and tungstophosphoric acid impregnated zirconium phosphate [27].

However, many of these procedures are associated with one or more disadvantages such as the use of toxic, expensive catalyst, hazardous and carcinogenic solvents, e.g., nitro benzene and dioxane, multistep processes, and loss of the catalyst. Therefore, it was felt that there is an urgent need to overcome the above limitations by developing an efficient, simple and green methodology for the synthesis of benzothiazoles.

2. Experimental

2.1. General procedures and instrumentation
Chemicals were obtained from Merck and Fluka. IR spectra were recorded on a Shimadzu 435-U-04 spectrophotometer (KBr). 1H and 13C-NMR spectra were obtained using the FT-NMR 90 MHz spectrometer in CDCl3 using TMS as an internal reference. Melting points were determined in open capillary tubes in a Stuart BI Branstead Electrothermal Cat No: IA9200 apparatus and uncorrected.

2.2. General procedure for the preparation of 2-arylbenzo thiiazoles
To a stirred solution of aldehydes (1 mmol) in 5 mL methanol/water (15:1, v/v), 2-aminophenol (1.2 mmol) and ammonium chloride (70 mol %) were added. The mixture was
stirred at room temperature for an appropriate time (Table 1). The progress was monitored by TLC (Ethyl acetate:hexane, 8:2). After the complete conversion of the substrate, H2O (3 mL) was added to the reaction mixture, and was allowed to stand at room temperature for 10 min. During this time, the pure products formed which were collected by filtration. Then, the residue was recrystallized from EtOH (5 mL) to afford the pure products.

2.3. Recycling of the catalyst

At the end of the reaction, the catalyst was filtered, washed with diethyl ether, dried at 100 °C for 1 h, and reused in another reaction. The recycled catalyst was used for two reactions without observation of appreciable lost in its catalytic activities (Entry 1, Table 1).

2.4. Selected physical and spectral data of the 2-aryl benzothiazoles

2.4.1. 2-Phenylbenzothiazole (2a) [19]

Yield: 84%. M.p.: 113-114 °C. IR (KBr, ν, cm⁻¹): 3064, 1588, 1555, 1509, 1478, 1433, 1244, 962, 766. ¹H NMR (90 MHz, CDCl₃, δ, ppm): 7.41-8.08 (m, ArH). ¹³C NMR (22.5 MHz, CDCl₃, δ, ppm): 155.5, 150.9, 147.8, 143.3, 124.4, 96.2, 76.6. The same catalyst was used for each of the three runs.

b Isolated yields.

a All the isolated products were characterized by their physical properties, by (¹H and ¹³C NMR and IR spectra, and by direct comparison with literature data.

The development of cost-effective and environmentally benign catalytic systems is one of the main themes of modern organic synthesis. Ammonium chloride (NH₄Cl) is a very inexpensive, eco-friendly and easily available catalyst; it has effectively promoted Claisen rearrangement [28], Biginelli synthesis of 3,4-dihydropyrimidinones [29], the thia-michael addition reaction [30], the one-pot synthesis of diindolymethanes [31], and the synthesis of Quinoxalines [32].

In continuation of our research on synthesis 2-arylbenzothiazoles [33-35], here, we report a very simple synthesis of 2-arylbenzothiazoles by the condensation of 2-aminothiophenol with aromatic aldehydes under mild condition at room temperature (Scheme 1).

The aim of this study is to utilize an eco-friendly NH₄Cl-CH₃OH system for the synthesis of 2-arylbenzothiazoles at ambient temperature using ammonium chloride as catalyst and methanol as the benign reaction medium in medicinal chemistry [32]. In order to investigate the optimal conditions...

Table 1. NH₄Cl-Catalyzed synthesis of 2-arylbenzothiazoles 2a-1.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Aldehyde (1a-4)</th>
<th>2-Arylbenzothiazole (2a-1)</th>
<th>Time (Min)</th>
<th>Yield (%)b</th>
<th>Observed M.p. (°C)</th>
<th>Reference M.p. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2-Me-PhCHO</td>
<td></td>
<td>30</td>
<td>84% (80,70)c</td>
<td>113-114</td>
<td>112-114</td>
</tr>
<tr>
<td>2</td>
<td>4-Br-PhCHO</td>
<td></td>
<td>40</td>
<td>80</td>
<td>103-105</td>
<td>101-103</td>
</tr>
<tr>
<td>3</td>
<td>3-BuCHO</td>
<td></td>
<td>30</td>
<td>82</td>
<td>120-122</td>
<td>120-121</td>
</tr>
<tr>
<td>4</td>
<td>2-Me-PhCHO</td>
<td></td>
<td>60</td>
<td>74</td>
<td>127-128</td>
<td>127-128</td>
</tr>
<tr>
<td>5</td>
<td>Br</td>
<td></td>
<td>40</td>
<td>70</td>
<td>84-86</td>
<td>85</td>
</tr>
<tr>
<td>6</td>
<td>Br</td>
<td></td>
<td>50</td>
<td>64</td>
<td>52-54</td>
<td>53-54</td>
</tr>
<tr>
<td>7</td>
<td>Br</td>
<td></td>
<td>30</td>
<td>86</td>
<td>129-131</td>
<td>132</td>
</tr>
<tr>
<td>8</td>
<td>Br</td>
<td></td>
<td>30</td>
<td>84</td>
<td>82-83</td>
<td>83-84</td>
</tr>
<tr>
<td>9</td>
<td>(CH₃)₂N</td>
<td></td>
<td>40</td>
<td>86</td>
<td>159-161</td>
<td>160-161</td>
</tr>
<tr>
<td>10</td>
<td>Cl</td>
<td></td>
<td>30</td>
<td>80</td>
<td>116-118</td>
<td>115-117</td>
</tr>
<tr>
<td>11</td>
<td>N</td>
<td></td>
<td>20</td>
<td>84</td>
<td>163-164</td>
<td>162-164</td>
</tr>
<tr>
<td>12</td>
<td>NO₂</td>
<td></td>
<td>20</td>
<td>92</td>
<td>182-183</td>
<td>181-182</td>
</tr>
</tbody>
</table>

*All the isolated products were characterized by their physical properties, by (¹H and ¹³C NMR and IR spectra, and by direct comparison with literature data.
for these reactions, we start by examining the influence of the reaction time and the solvent effect at room temperature. Methanol/water (15:1, v:v) was the best solvent among those tested (EtOH, H2O, CH3CN, CH2Cl2, CHCl3).

Finally, we have developed this synthetic method for the preparation of extended bisbenzothiazole derivatives in a 2:1:0.7 molar ratio of 2-aminothiophenol to 1,4-benzenedicarboxaldehyde to NH4Cl (70 mol%) in MeOH/H2O (15:1, 10 ml) (Scheme 2). The reaction proceeded smoothly for 25 min at room temperature using the present protocol and the desired product 2m was obtained in 90% isolated yield. The isolated product was characterized by their physical properties, by (1H and 13C NMR and IR spectra, and by direct comparison with literature data [25].

Scheme 3 briefly shows the catalytic behavior of ammonium chloride throughout predicted mechanistic pathway for the synthesis of 2-arylbenzothiazoles. Ammonium chloride may activate the carbonyl compounds by hydrogen bonding to promote the reaction via the nucleophilic attack of amines[11-35].

It is important to mention that, when the same reaction with ammonium chloride was carried out under nitrogen atmosphere (in absence of oxygen), the reactions stopped at the benzothiazoline [1] stage, which never proceeded to benzothiazoles 2a-1. This surely proves that aerial oxygen is absolutely essential for the oxidation step leading to the formation of benzothiazoles.

In conclusion, we have developed an economically, and environmentally friendly catalyzed process for simple and efficient synthesis of 2-arylbenzothiazoles and bisbenzothiazole. The present methodology offers very attractive features such as reduced reaction times, high yields, recycling of the catalyst, mild reaction conditions, acid-free, metal-free, readily available system, if compared with other catalysts. This will have wide scope in organic synthesis.

Acknowledgement

I gratefully acknowledge the support of this work by the Saezvar Tabrizi Moallem University.

References