Chem European Journal of Chemistry

Check for updates

View Journal Online View Article Online

Detailed analytical studies of 1,2,4-triazole derivatized quinoline

Shilpa Mallappa Somagond ^[b] 1, Manjunath Ningappa Wari ^[b] 2, Saba Kauser Jaweed Shaikh ^[b] 1, Sanjeev Ramchandra Inamdar ^[b] 2, Madan Kumar Shankar ^[b] 3, Dasappa Jagadeesh Prasad ^[b] 4 and Ravindra Ramappa Kamble ^[b] 1,*

¹ Department of Chemistry, Karnatak University, Dharwad, Karnataka 580003, India

shilpasomagond@gmail.com (S.M.S.), saba9805@gmail.com (S.K.J.S.), kamchem9@gmail.com (R.R.K.)

² Department of Physics, Karnatak University Dharwad, Karnataka 580003, India

sm5wari@gmail.com (M.N.W.), him_lax3@yahoo.com (S.R.I.)

³ Department of Science and Technology, PURSE Laboratory, Mangalore University, Mangalagangothri, Karnataka 574199, India

madan.mx@gmail.com (M.K.S.)

⁴ Department of Chemistry, Mangalore University, Konaje, Mangalore, Karnataka 574199, India jprasad2003@gmail.com (D.J.P.)

* Corresponding author at: Department of Chemistry, Karnatak University, Dharwad, Karnataka 580003, India. Tel: +91.836.2445998 Fax: +91.836.2747884 e-mail: kamchem9@gmail.com (R.R. Kamble).

RESEARCH ARTICLE

🥹 10.5155/eurjchem.10.4.281-294.1844

Received: 07 March 2019 Received in revised form: 25 July 2019 Accepted: 30 July 2019 Published online: 31 December 2019 Printed: 31 December 2019

KEYWORDS

UV absorption Hirshfeld surface Cyclic voltammetry Single crystal structure Natural bond orbital (NBO) Time Dependent-Density Functional Theory

ABSTRACT

The present study describes, the X-ray single crystal analysis of 4-((2-chloro-6methoxyquinolin-3-yl)methyl)-2-phenyl-2H-1,2,4-triazol-3(4H)-one (TMQ). The crystal data for $C_{19}H_{15}ClN_4O_2$: monoclinic, space group $P2_1/n$ (no. 14), a = 7.3314(15) Å, b = 12.459(3) Å, c = 18.948(4) Å, $\beta = 98.322(9)^{\circ}$, V = 1712.5(6) Å³, Z = 4, T = 296.15 K, μ (MoK α) = 0.245 mm⁻¹, *Dcalc* = 1.423 g/cm^3 , 5082 reflections measured ($3.926^\circ \le 20 \le 38.556^\circ$), 1428 unique ($R_{int} =$ 0.0545, $R_{sigma} = 0.0574$) which were used in all calculations. The final R_1 was 0.0423 (I $>2\sigma(I)$ and wR_2 was 0.1145 (all data). The Density functional theory optimized molecular geometries in TMQ agree closely with those obtained from crystallographic studies. The Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) energy levels and energy gap were calculated by experimental (UV absorption & Cyclic voltammetry) and theoretical studies in two different solvents. The natural bond orbital analysis was performed to understand the molecular interaction on the basis of stability of molecule arising from hyper-conjugative interaction and charge delocalization. Hirshfeld surface and their related fingerprint plots enabled the identification of significant intermolecular interaction. The molecular electrostatic potential analysis provides the visual image of the chemically active sites and comparable reaction of atoms.

Cite this: Eur. J. Chem. 2019, 10(4), 281-294

Journal website: www.eurjchem.com

1. Introduction

Quinoline, an aza heterocycle, is pharmaceutically an important class of compound that exists as an emergence of pyridine ring and one benzene ring fused together at nearby two (side) carbon atoms [1]. These are widely used as a source compounds for the synthesis of numerous drugs. Many quinoline based drugs such as Captothecine (anticancer) [2] and Cryptolepine (antimalarial) [3] are available in the market. This skeleton also showed a broad spectrum of biological activities including antiasthmatic [4], antidiabetic [5], antibacterial [6], antitoxoplasma [7], antifungal [8] and anti-HIV [9] activities. Due to the presence of nitrogen, the quinoline moieties act as chelating agent as well as a weak base [10]. Some of thequinoline derivatives are often used as fluorescent materials and sensors due to their rigid structure, high fluorescent yield, and large energy gaps [11]. The 1,2,4-triazole scaffolds have attracted significant interest as chemotherapeutic agents, where they possess diverse pharmacological activities [12]. 1,2,4-Triazole nucleus is the main structural motif of many commercially available drugs including Fluconazole, Ribavirin, Letrozole and Itraconazole *etc.* [13-15].

4-((2-Chloro-6-methoxyquinolin-3-yl)methyl)-2-phenyl-2*H*-1,2,4-triazol-3(4*H*)-one (TMQ) was designed and molecular docking study was performed to explore the mechanism of anti-TB as well as anticancer activity and to study the intermolecular interactions between the targeted enzyme (Enoyl-acyl carrier protein) and TMQ. Based on impressive outcome of docking study (C-Score = 5.89) of the TMQ, the molecule was synthesized structure was characterized. Further, *invitro* study was carried out and it was found that this molecule is promising candidate for developing novel anticancer (GI₅₀ = 63.15 μM) and anti-tubercular (MIC₉₀ = 0.100 μM) agent [16].

European Journal of Chemistry

ISSN 2153-2249 (Print) / ISSN 2153-2257 (Online) – Copyright © 2019 The Authors – Atlanta Publishing House LLC – Printed in the USA. This work is published and licensed by Atlanta Publishing House LLC – CC BY NC – Some Rights Reserved. http://dx.doi.org/10.5155/eurjchem.10.4.281-294.1844

Table 1. Summary of the crystal structure, data collection, and crystallographic refinement data of TMQ.

Parameter	Values	
Empirical formula	$C_{19}H_{15}ClN_4O_2$	
Formula weight	366.80	
Temperature (K)	296.15	
Crystal system	Monoclinic	
Space group	<i>P</i> 2 ₁ /n	
a (Å)	7.3314(15)	
b (Å)	12.459(3)	
c (Å)	18.948(4)	
β (°)	98.322(9)	
Volume (ų)	1712.5(6)	
Z	4	
$\rho_{calc}(g/cm^3)$	1.423	
μ(mm ⁻¹)	0.245	
F(000)	760.0	
Crystal size (mm ³)	$0.15 \times 0.12 \times 0.11$	
Radiation	ΜοΚα (λ = 0.71073)	
20 range for data collection (°)	3.926 to 38.556	
Index ranges	$-5 \le h \le 6, -11 \le k \le 10, -17 \le l \le 16$	
Reflections collected	5082	
Independent reflections	1428 [$R_{int} = 0.0545$, $R_{sigma} = 0.0574$]	
Data/restraints/parameters	1428/0/236	
Goodness-of-fit on F ²	1.021	
Final R indexes [I≥2σ (I)]	$R_1 = 0.0423$, $wR_2 = 0.1029$	
Final R indexes [all data]	$R_1 = 0.0588$, $wR_2 = 0.1145$	
Largest diff. peak/hole (e.Å-3)	0.23/-0.19	
CCDC deposition number	1828103	

The structural, spectroscopic and photophysical behavior of a molecule depends on function of its overall molecular structure and hence there is a scope in the synthesis of novel conjugate molecules by combining two different moieties together and studying their properties [17]. Also, the spectroscopic and structural behaviors of various molecules using both experimental and theoretical methods have fascinated the curiosity of researchers for many years. Density functional theory (DFT) has become a very useful tool for theoretical calculation in current years. The theoretical calculations using DFT have been utilized to study molecular properties such as structural, spectroscopic and photophysical properties [18-21]. DFT is computationally less challenging than wave function as it also expresses small molecules more reliably than Hartree-Fock theory [22,23].

In the present work, a combined approach by X-ray crystallography (XRD) and DFT calculation was handled, which takes the benefit of both the reliability of the experimental technique and high interpretative influence of the theoretical studies and the accuracy. The structural confirmation was done by XRD data. Since, X-ray diffraction study has become indispensable device in crystal chemistry as it assists in solving the molecular structure, magnitudes and directional characteristics. The exact results of molecular structure of compound TMQ will become important due to experimental facts which help in designing molecules for potential pharmacological property. The theoretical structural predicttions have been carried out by using density functional theory. Ultraviolet (UV)-Visible spectra of TMQ in gaseous phase, ethanol, and acetonitrile are simulated using the Time-dependent density functional theory (TD-DFT). The HOMO and LUMO are analyzed to describe the electronic transition properties of the systems investigated. The theoretically predicted UV Visible spectra of TMQ are compared with the observed experimental results, and discussed. The HOMO and LUMO are also determined by using cyclic voltammetry technique and these are in good agreement with the theoretical results. The general structural features and to predict the reactivity of a molecule, natural bond orbital (NBO) analysis has been carried out which provides important information regarding orbital interactions and electron density among them [24].

2. Experimental

2.1. Synthesis

4-((2-Chloro-6-methoxyquinolin-3-yl)methyl)-2-phenyl-2H-1,2,4-triazol-3(4H)-one was synthesized according to reported method [16]. TMQwas dissolved in DMSO and heated until the moisture is eliminated. The saturated solution was filtered through the Whatman filter paper into a clean and dry beaker and kept aside for slow evaporation for a period of 15 days at room temperature. Purple colored rectangular shaped crystals of TMQwere collected. Good diffraction quality single crystals were studied further for structural analysis.

2.2. X-ray crystallography

A single crystal of dimensions 0.11 × 0.12 × 0.15 mm of TMQ was chosen for X-ray diffraction study. The X-ray intensity data were collected at a temperature of 293 K on a Rigaku Saturn724 diffractometer using graphite monochromated MoK_{α} radiation. A complete data set was processed using CrystalClear [25]. The structure was solved by direct method and refined by full-matrix least squares method on F^2 using SHELXS and SHELXL programs [26]. All the nonhydrogen atoms were revealed in the first difference Fourier map itself. All the hydrogen atoms were positioned geometrically and refined using a riding model. After ten cycles of refinement, the final difference Fourier map showed peaks of no chemical significance. The geometrical calculations were carried out using the program PLATON [27]. The molecular and packing diagrams were generated using the software MERCURY [28]. The details of the crystal structure and data refinement are given in Table 1. The ORTEP [28] of the molecule with thermal ellipsoids are drawn at 50%probability is shown in Figure 1.

2.3. Hirshfeld surface calculations

Three-dimensional (3D) molecular Hirshfeld surfaces and the two-dimensional (2D) fingerprint plots represent a new way of visualizing and analysing intermolecular interactions in molecular crystals, and are basically different from conventional methods of crystal structure analysis. The molecular Hirshfeld surface [29] in the crystal of organic compounds is created by dividing space in the crystal into regions where the electron distribution as the sum of atoms for the molecule dominates the corresponding sum over the crystal.

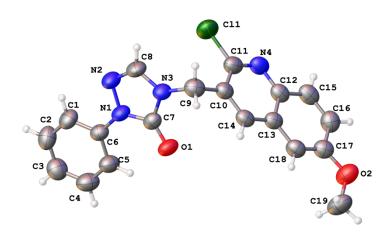


Figure 1. ORTEP of TMQ showing the atomic numbering system. Displacement ellipsoids are drawn with 50% probability.

Hirshfeld surfaces and their related fingerprint plots are generated using the program Crystal Explorer 3.0 [30]. The crystallographic information file (.cif) is given as input to the Crystal Explorer program. The Hirshfeld surface is unique for a given crystal structure and for a set of spherical atomic electron densities. Each point on the Hirshfeld surface is specified with two distances: the distance from the Hirshfeld surface to the nearest nucleus inside the surface is *d* and to the nearest nucleus outside the surface is d_e . Then d_{norm} is the normalized contact distance which is defined in terms of d_{i_i} d_e and the van der Waals radii (vdW) of the atoms. The electrostatic potential is mapped on Hirshfeld surface using STO-3G (Slater-type-orbitals simulated by 3 Gaussians) basis set at the Hartree-Fock theory over the range -0.069 au (red), through 0 (white) to 0.043 au (blue). Crystal geometries were used as input to the TONTO [31] integrated with Crystal Explorer. The acceptor atoms in these interactions are shown with negative electrostatic potentials (red regions) and donor atoms are shown with positive electrostatic potentials (blue regions) [32].

2.4. UV absorption spectroscopy

Absorption spectra of TMQ was recorded using UV-Vis, NIR (JASCO V-670, Japan) spectrophotometer at room temperature, keeping the concentrations of compound 1×10^{-5} M in ethanol and acetonitrile.

2.5. Cyclic voltammetry (CV)

Cyclic voltammetry (CV) study of TMQ was carried out using an Electrochemicalanalyzer / Work station (model 600E series, USA) at room temperature. CV consists of three electrode system that is Ag/AgCl reference electrode (RE), platinum counter electrode (CE) and glassy carbon working electrode (WE). The CV measurements of TMQ (1×10^{-3} M concentration) were obtained at 0.1 M with tetrabutyl ammonium perchlorate as supporting electrolyte in dimethylsulphoxide (Acetonitrile) solvent with a scan rate 100 mV/s.

2.6. Density functional theory (DFT) calculations

The DFT calculations were performed using Gaussian 09 software package [33]. The potential energy surface scan has been carried out with (Hartree-Fock) HF/6-31G level to place the molecule at local minima. The geometry at local minima has been assumed as starting point for the calculation by utilizing Becke's three parameter hybrid model with the Lee-

Yang-Parr correlation functional (B3LYP) method [34,35]. The geometry is optimized with 6-31++G(d,p) and 6-311++G(2d,p) basis sets for comparison with XRD data. The HOMO (E_{HOMO}), LUMO (E_{LUMO}) energy levels and energy gap (E_g) were calculated by TD-DFT in gas phase and in two different solvents using 6-311++G(2d,p) basis set. The NBO analysis was performed using NBO 3.1 program [36] as implemented in the Gaussian 09 package at the DFT/B3LYP level using 6-311++G(2d,p) basis set. The molecular electrostatic potential surfaces (MEPs) and the Mulliken charge distributions of the title molecule were obtained from the population analysis calculations and visualized using Gauss View 5 [37].

2.7. Molecular electrostatic potential

The molecular electrostatic potential (MEP) surface was determined by DFT level in order to know the relative polarity of the molecule. MEP is formed by the nuclei and the electrons (treated as static distribution of charge) and is typically visualized through its values on the molecular electron density. MEP mapping is very helpful descriptor in understanding sites for relative reactivity towards electrophilic and nucleophilic [38] attacks, in studies of biological identification as well as hydrogen bonding interactions [39,40]. The electrostatic potential V(r) has been mainly useful as sign of the regions or sites of a molecule to which an approaching electrophile is primarily attracted, and is also well matched for analyzing processes based on the "recognition" of one molecule by another, as in enzyme-substrate, drug-receptor, and interactions, since it is through their potentials that the two species initially "see" each other [41,42].

3. Results and discussion

3.1. Description of the crystal structure

The ORTEP of TMQ with thermal ellipsoids are drawn at 50% probability shown in Figure 1. The title molecule crystallizes in monoclinic crystal system (space group $P2_1/n$) with unit cell dimensions a = 7.3314(15) Å, b = 12.459(3) Å, c = 18.948(4) Å, $\beta = 98.322(9)^{\circ}$ and Z = 4. Crystallographic data, details of the data collections and structure refinement parameters of the compoundTMQ were determined. The resulted all bond lengths, bond angles and dihedral angles are in good agreement with the calculated values, and tabulated in Tables 2-4, respectively.

Atoms Experimental Calculated (B3/P/6-31 + + G(dg)) Calculated (B3/P/6-311 + + G(dg)) 07-01 1.358 1.358 1.358 07-01 1.358 1.358 1.358 07-01 1.354 1.358 1.359 07-01 1.354 1.229 1.239 07-01 1.354 1.229 1.238 07-01 1.374 1.229 1.448 07-01 1.374 1.229 1.448 07-01 1.374 1.422 1.448 07-01 1.374 1.421 1.448 07-01 1.346 1.449 1.441 07-01 1.346 1.441 1.441 07-01 1.3465 1.349 1.347 07-01 1.3465 1.342 1.441 07-01 1.347 1.441 07-01 1.347 1.441 07-01 1.347 1.443 1.442 07-01 1.347 1.342 1.347 07-01 </th <th>Table 2. Experimental and cal</th> <th></th> <th></th> <th></th>	Table 2. Experimental and cal			
02-019 1.428[0] 1.425 1.422 02-017 1.358[0] 1.364 1.238 M-C11 1.249[0] 1.299 1.201 01-07 1.359[0] 1.387 1.385 N-42 1.397[0] 1.387 1.385 N-46 1.412[0] 1.429 1.418 N-46 1.412[0] 1.383 1.375 C17-C16 1.400[0] 1.383 1.375 C17-C16 1.403[5] 1.422 1.411 C17-C16 1.403[5] 1.422 1.412 C17-C16 1.403[5] 1.422 1.411 C12-C12 1.411[0] 1.417 1.411 C12-C12 1.410[0] 1.422 1.411 C12-C12 1.410[0] 1.422 1.422 C12-C13 1.492[0] 1.433 1.422 C12-C1 1.379[0] 1.394 1.399 C2-C1 1.379[0] 1.392 1.394 C2-C1 1.379[0] 1.394 <		Experimental	Calculated (B3LYP/6-31 ++G(d,p))	Calculated (B3LYP/6-311 ++G(2d,p))
02-C171.358(5)1.3611.358N4-C121.354(5)1.2991.291N4-C121.354(6)1.3621.359N4-C71.374(5)1.3871.386N1-C71.374(5)1.3891.386N1-C61.427(5)1.4221.448N2-C61.275(6)1.3821.201N2-C71.374(5)1.3821.201N2-C81.275(6)1.4221.441C7-C81.407(5)1.4221.411C13-C121.411(5)1.4271.411C13-C121.411(5)1.4271.411C13-C121.411(5)1.4271.421C14-C101.381(5)1.3821.302C14-C101.381(5)1.3821.302C14-C101.381(5)1.3821.302C14-C101.381(5)1.3821.306C14-C101.387(6)1.3921.306C14-C101.387(5)1.3971.393C4-C21.367(5)1.3961.399C4-C31.362(5)1.3961.399C4-C31.362(5)1.3961.399C4-C41.375(5)1.3971.386C4-C41.375(5)1.3971.386C4-C41.362(5)1.3971.398C4-C31.362(5)1.3971.398C4-C41.364(5)1.3971.398C4-C41.375(5)1.3971.398C4-C41.362(5)1.3981.399C4-C41.364(5)1.398<		1.742(4)		
N-C11 1.294 1.291 N-C12 1.35461 1.353 1.357 N-C4 1.35561 1.387 1.358 N-C5 1.412 1.418 1.357 N-C6 1.41251 1.422 1.418 N-C6 1.41251 1.422 1.418 N-C6 1.41251 1.422 1.418 C7-C16 1.40515 1.358 1.375 C37-C16 1.40515 1.422 1.410 C37-C17 1.41051 1.427 1.411 C4-C10 1.35851 1.351 1.311 C4-C10 1.35851 1.352 1.351 C4-C11 1.41051 1.426 1.420 C4-C2 1.35751 1.342 1.426 C4-C3 1.35751 1.342 1.346 C4-C4 1.37951 1.342 1.416 C5-C4 1.37951 1.342 1.416 C5-C4 1.37951 1.342 1.416 C5-C1		1.420(5)	1.425	1.422
N-C12 1.354(4) 1.363 1.359 OL-C7 1.254(4) 1.239 1.239 N1-R6 1.355(4) 1.387 1.388 N1-R6 1.425(5) 1.429 1.438 N1-R6 1.425(5) 1.429 1.438 N2-G6 1.426(5) 1.421 1.431 N2-G7 1.440(5) 1.442 1.441 C17-C16 1.442(5) 1.442 1.441 C14-C17 1.441 1.441(5) 1.442 C14-C10 1.538(5) 1.535 1.511 C14-C10 1.538(5) 1.339 1.3367 C14-C11 1.416(5) 1.442 1.349 C14-C11 1.416(5) 1.442 1.349 C14-C11 1.416(5) 1.442 1.349 C14-C11 1.416(5) 1.442 1.349 C14-C1 1.357(5) 1.443 1.399 C14-C1 1.357(6) 1.342 1.340 C14-C1 1.379(6) 1.398	02-C17	1.358(5)	1.361	1.358
0-C7 1.215(4) 1.229 1.220 NH-R2 1.355(4) 1.389 1.385 NL-C7 1.374(5) 1.389 1.385 NL-C7 1.374(5) 1.489 1.385 C7-C16 1.464(5) 1.420 1.420 C7-C16 1.464(5) 1.422 1.411 C17-C16 1.442(5) 1.420 1.420 C13-C14 1.401(5) 1.427 1.411 C14-C10 1.441(5) 1.427 1.431 C14-C10 1.441(5) 1.426 1.420 C14-C10 1.441(5) 1.426 1.430 C14-C20 1.326(5) 1.338 1.3397 C14-C21 1.326(5) 1.339 1.3397 C4-C2 1.326(5) 1.339 1.3397 C4-C3 1.326(5) 1.339 1.3397 C4-C4 1.379(5) 1.339 1.339 C4-C3 1.326(5) 1.339 1.349 C17-C10 1.364(5) 1.339	N4-C11	1.294(5)	1.299	1.291
Ni-R2 1.386/4) 1.387 1.385 Ni-C6 1.42(5) 1.422 1.418 Ni-C6 1.42(5) 1.422 1.418 Ni-C6 1.42(5) 1.422 1.418 C12-C16 1.463(5) 1.422 1.416 C13-C12 1.441(5) 1.425 1.420 C13-C12 1.41(5) 1.427 1.416 C13-C12 1.41(5) 1.427 1.421 C14-C10 1.348(5) 1.387 1.372 C14-C10 1.348(5) 1.387 1.395 C4-C3 1.452(4) 1.463 1.460 C4-C3 1.352(4) 1.372 1.397 C4-C3 1.352(4) 1.372 1.397 C4-C3 1.352(5) 1.403 1.397 C4-C3 1.352(5) 1.398 1.399 C4-C3 1.362(5) 1.398 1.399 C3-C2 1.364(5) 1.372 1.398 C12-C15 1.404(5) 1.425 1.461 C12-C15 1.404(5) 1.425 1.461 C12-C16 1.394(5) 1.398 1.398 C12-C16 1.394(5) 1.398 1.398 C12-C16 1.394(5) <	N4-C12	1.354(4)	1.363	1.359
Ni-R2 1.387 1.387 1.386 Ni-C6 1.4225 1.422 1.418 Ni-C6 1.4225 1.422 1.418 Ni-C6 1.4215 1.422 1.418 C17-C16 1.40515 1.422 1.416 C17-C16 1.40615 1.442 1.416 C13-C12 1.4115 1.427 1.416 C13-C12 1.4115 1.427 1.416 C14-C10 1.5813 1.383 1.371 C14-C10 1.5813 1.383 1.395 C14-C10 1.4105 1.463 1.460 C14-C10 1.4315 1.463 1.460 C14-C10 1.4351 1.463 1.460 C4-C3 1.3551(1) 1.372 1.360 C4-C3 1.362(5) 1.397 1.399 C4-C3 1.364(5) 1.372 1.360 C12-C1 1.756(4) 1.4841 1.462 C12-C1 1.364(5) 1.374 1.360 <	01-C7	1.215(4)	1.229	1.220
N1-C71.374(5)1.3891.386N2-C61.42(5)1.42(2)1.418N2-C81.275(4)1.2981.291N2-C81.40(5)1.3381.376C17-C181.40(5)1.4221.411C13-C141.40(15)1.4221.411C13-C121.411(5)1.4271.421C13-C141.401(5)1.4471.421C14-C101.536(5)1.5151.511C14-C101.536(5)1.5151.511C14-C101.337(5)1.4021.367C6-C31.357(5)1.4021.367C6-C41.377(5)1.4021.367C5-C41.377(5)1.4021.396C5-C41.377(5)1.4021.306C5-C41.375(5)1.3971.306C2-C11.375(5)1.3981.391C2-C21.345(5)1.3341.381C2-C11.375(5)1.3941.386C2-C11.375(5)1.3941.386C2-C11.375(5)1.3941.386C2-C11.375(5)1.3941.386C2-C11.375(5)1.3941.386C2-C11.375(5)1.3941.386C2-C11.375(5)1.3941.396C2-C11.375(5)1.3941.396C2-C11.375(5)1.3941.396C2-C11.375(5)1.3941.396C2-C11.375(5)1.3941.396C2-C11.375(5)1.394	N1-N2			
N1-C6 142[5] 1422 1418 N2-C6 125(4) 129 1376 C17-C16 136(5) 1333 1376 C17-C16 1407(5) 1427 1441 C18-C14 1407(5) 1427 1441 C18-C12 1411(5) 1427 1441 C14-C10 1358(5) 1382 1375 C16-C9 152(2) 1515 1511 C16-C9 152(5) 1393 1397 C16-C3 137(4) 1398 1397 C6-C3 137(5) 1402 1306 C5-C4 137(5) 1397 1397 C6-C3 136(5) 1396 1399 C2-C2 136(15) 1398 1396 C2-C2 136(15) 1397 1398 C2-C2 136(15) 1397 1398 C2-C2 136(15) 1397 1398 C2-C2 136(15) 1397 1398 C2-C2 <td< td=""><td>N1-C7</td><td></td><td></td><td></td></td<>	N1-C7			
N2-081275[4]12881291C77-C181406[5]13831376C77-C181405[5]14221446C17-C181407[5]14221416C13-C121411(5]14271431C13-C121411(5]14271431C14-C101535[5]15351511C14-C101535[5]15351511C16-C111440[5]14621440C0-C11572[4]13921397C0-C31377[5]14031397C6-C31367[5]14021396C5-C41375[5]13971390C5-C41362[5]13961391C5-C41355[5]13921391C5-C41355[5]13921391C5-C41355[5]13921391C5-C41375[5]13941381C5-C41375[5]13921381C5-C41375[5]13941381C5-C41375[5]13941381C5-C51374[6]185518271C6-C11141[3]11174511154C7-C41143[3]11274C11441144[3]14421C11441144[3]14421C11441144[3]14421C11441144[3]114519C11441144[3]114519C11441249[6]12512C217-C161144[4]11429C11441249[6]1209[6]C114412249[6]				
C17-C161.360(5)1.3831.376C17-C161.440(5)1.4421.440C18-C131.407(5)1.4221.411C13-C141.401(5)1.4271.421C13-C121.411(5)1.4271.421C10-C71.501(5)1.4271.421C10-C71.501(5)1.4271.421C10-C71.52(4)1.4261.423C10-C71.52(4)1.4361.460N3-C71.372(4)1.3981.395N3-C81.35(4)1.3721.307C4-C31.337(5)1.3961.399C4-C31.336(5)1.3961.399C4-C41.374(5)1.3961.391C2-C21.361(5)1.3961.391C2-C41.374(5)1.3941.391C2-C41.375(5)1.3941.391C2-C41.375(5)1.3941.391C2-C41.375(5)1.3941.391C2-C41.375(5)1.3941.391C2-C41.374(5)1.3941.381C2-C41.374(5)1.3941.381C2-C41.374(5)1.3941.391C2-C41.374(5)1.3941.391C2-C41.374(5)1.3941.391C2-C51.444(5)1.4441.445C2-C41.374(5)1.3641.362C1-74-C41.374(5)1.3641.364C1-72-C51.3941.3241.324C1-72-C61.994(4)1.2243 <td></td> <td></td> <td></td> <td></td>				
C17-C161443[5]14251420C18-C131407(5)14221416C13-C121411(3)14471411C13-C121413(3)14271421C14-C10138(6)13821375C14-C10138(6)13821375C14-C10138(6)14421372C9-N31452(4)14631460N3-G71372(4)13981395N3-G81355(4)14021396C4-C2137(5)14021396C4-C3137(6)14021396C4-C4137(6)13721396C4-C51361(7)13721367C4-C4137(5)13721366C12-C151384(8)14221416C12-C151354(8)13721368C12-C161354(8)1182751368C17-02-C161354(8)1182751466C17-02-C171168(3)11827511663C17-02-C181254(4)11827511663C17-02-C191168(3)1182711674C17-02-C191168(3)11827511663C17-02-C191168(3)11827511663C17-02-C191168(3)11827511663C17-02-C191168(3)11827511674C17-02-C191168(3)11827511663C17-02-C191126(4)11627611674C17-02-C191126(4)11627611674C17-02-C191126(4)116276 <td></td> <td></td> <td></td> <td></td>				
C18 C13 1407(2) 1422 1416 C13 C14 1401(5) 1427 1421 C14 C10 1389(5) 1382 1375 C14 C10 1389(5) 1382 1375 C14 C10 1389(5) 1382 1375 C14 C11 1410(3) 1424 1420 N3-67 1372(4) 1393 1395 N3-68 1355(4) 1372 1367 C6-C3 1367(5) 1403 1397 C5-C4 1379(5) 1402 1396 C4-C2 1364(5) 1392 1396 C4-C3 1342(5) 1397 1398 C4-C3 1342(5) 1392 1391 C4-C4 1354(6) 1422 1416 C4-C4 1354(7) 1392 1392 C4-C2 1354(7) 1428 1416 C4-C2 1276(4) 118491 1182 C14-C4 1276(4) 118491 1182 C14-C4 </td <td></td> <td></td> <td></td> <td></td>				
C13-C12 1.410 1.417 1.411 C13-C12 1.4116) 1.427 1.421 C14-C10 1.358(5) 1.382 1.375 C10-C9 1.552(5) 1.511 1.426 C14-C11 1.410(5) 1.426 1.420 C14-C1 1.410(5) 1.426 1.420 NS-C 1.372(6) 1.402 1.397 C4-C3 1.377(5) 1.402 1.390 C4-C3 1.362(5) 1.396 1.391 C2-C2 1.361(5) 1.392 1.365 C2-C1 1.375(5) 1.402 1.365 C2-C1 1.375(5) 1.492 1.416 C2-C1 1.375(5) 1.492 1.365 C2-C1 1.159(4) 1.2009 1.20134				
C13-C121.411(5)1.4271.421C14-C101.358(5)1.5151.517C10-C91.552(5)1.5151.511C9-N31.452(4)1.4631.460C9-N31.452(4)1.4631.460C9-N31.452(4)1.4631.460C9-C31.357(5)1.4031.397C6-C31.357(5)1.4021.396C5-C41.379(5)1.4021.396C5-C41.379(5)1.4021.398C5-C41.379(5)1.3981.391C5-C41.354(5)1.3981.391C5-C41.354(5)1.3921.388C5-C41.354(5)1.3941.388C5-C41.354(5)1.3941.388C5-C41.354(5)1.3921.388C5-C41.354(5)1.3921.388C5-C41.354(5)1.3921.388C5-C41.354(5)1.3921.388C5-C41.354(5)1.3921.388C5-C41.354(5)1.8551.8630C7-C151.56(4)1.82551.8630C7-N1-N21.164(3)1.10041.8630C7-N1-N21.153(4)1.82041.2628C7-N1-N21.153(4)1.20041.2028C7-N1-N21.153(4)1.20041.2028C7-N1-N21.153(4)1.20041.2028C7-N1-N21.153(4)1.20041.2028C7-N1-N21.204(4)1.20041.2028C7-N1-N2 <t< td=""><td></td><td></td><td></td><td></td></t<>				
C14-C10 1.586[5] 1.582 1.575 C10-C9 1.520[5] 1.515 1.511 C10-C9 1.420[7] 1.420 1.420 C0-N3 1.425[7] 1.463 1.420 N3-C7 1.327[4] 1.398 1.397 C6-C1 1.375[5] 1.402 1.396 C6-C4 1.375[5] 1.397 1.390 C6-C4 1.375[5] 1.398 1.391 C12-C5 1.406[5] 1.398 1.391 C12-C15 1.406[5] 1.392 1.365 C2-C1 1.375[5] 1.394 1.385 C2-C1 1.375[5] 1.394 1.385 C2-C1 1.375[5] 1.394 1.385 C2-C1 1.375[5] 1.394 1.385 C2-C2 1.36[5] 1.388 1.391 C2-C2 1.36[5] 1.383 1.385 C2-C1 1.575[6] 1.384 1.381 C2-C2 1.58[5] 1.383 1.555 <td></td> <td></td> <td></td> <td></td>				
C10-C91502(5)1.5151.5171.420C0-N31.422(4)1.4631.460N3-C71.327(4)1.3981.395N3-C81.355(4)1.3721.367C4-C11.377(5)1.4031.397C5-C11.377(5)1.4021.396C5-C21.367(5)1.4021.396C5-C31.377(5)1.3961.399C4-C41.367(5)1.3961.399C5-C41.377(5)1.3941.393C5-C41.354(5)1.3721.365C2-C11.354(5)1.3721.365C2-C11.354(5)1.3721.365C17-02-C191.66(3)118.555118.630C17-02-C191.66(3)118.91118.275C17-02-C191.166(3)118.91118.275C17-02-C191.15(4)120.099120.134C17-02-C191.06(3)112.009120.134C7-N1-C61.91(4)120.091120.134C7-N1-C61.91(4)120.091120.134C7-N1-C61.99(4)120.134120.134C7-N1-C61.99(4)120.134120.134C17-C16-C11.99(4)120.63120.144C18-C12-C21.20.3(4)120.64120.99C14-C13-C121.74(4)116.056160.90C14-C13-C121.74(4)116.056160.90C14-C13-C121.74(4)120.64120.99C14-C13-C121.74(4)120.64120.299C14				
Cl0-Cl11 1.410[5] 1.426 1.460 N3-C7 1.372(4) 1.398 1.395 N3-C8 1.355(4) 1.372 1.367 6-C5 1.367(5) 1.403 1.397 6-C6 1.367(5) 1.402 1.396 C5-C4 1.379(5) 1.396 1.389 C3-C2 1.361(5) 1.398 1.391 C3-C4 1.357(5) 1.396 1.389 C3-C2 1.361(5) 1.394 1.398 C4-C1 1.357(5) 1.394 1.389 C4-C1 1.357(5) 1.394 1.389 C4-C1 1.357(5) 1.394 1.388 C4-C1 1.357(5) 1.394 1.338 C4-C1 1.364(3) 1.422 1.431 C17-O2C19 1.66(2) 1.8491 1.8215 C17-O2C19 1.66(2) 1.8491 1.8236 N2-N1-C6 1.91(4) 1.28243 1.8281 N2-N1-C6 1.924(4) 1.2056				
CP-N31.452[4]1.4631.460N3-C71.357(4)1.3981.395N3-C81.355(4)1.3721.367C6-C11.379(5)1.4021.396C6-C21.367(5)1.4021.396C6-C31.362(5)1.3971.390C4-C31.362(5)1.3921.391C4-C31.362(5)1.3921.391C4-C41.375(5)1.3921.396C4-C51.375(5)1.3921.386C4-C11.375(5)1.3921.386C4-C21.375(5)1.3941.8275C4-C11.375(5)1.3941.8275C17-02-C191.66(3)1.184911.8275C17-02-C191.66(3)1.184911.8275C17-02-C191.66(3)1.184911.8275C17-02-C191.66(3)1.184911.8275C17-02-C191.66(3)1.184911.8275C17-02-C191.56(3)1.128431.8275C17-02-C191.56(3)1.128431.8271C17-02-C191.52(4)1.220091.2014C7-N1-661.94(4)1.84511.8271C7-N1-661.94(4)1.82431.8271C2-C1-C161.14(4)1.44681.4519C17-C161.44(4)1.44681.4519C17-C161.94(4)1.24641.26061C17-C161.94(4)1.24661.9901C17-C161.94(4)1.24661.9901C17-C161.94(4)1.26061 <td></td> <td></td> <td></td> <td></td>				
N2-C71.372[4]1.3961.395N2-C81.367(5)1.4031.397C6-C51.367(5)1.4021.396C5-C41.379(5)1.3971.390C5-C41.379(5)1.3961.399C4-C31.362(5)1.3961.399C4-C21.361(5)1.3981.391C2-C11.375(5)1.3941.306C2-C11.375(5)1.3941.308Table 3. Experimental and calculated boot angles (*) for TMQ.Table 3. Experimental and calculated boot angles (*) for TMQ.Table 3. Experimental and calculated (*) for TMQ.Calculated (*) for TMQ.				
N3-68 1.357(i) 1.472 1.367 C6-C5 1.379(5) 1.403 1.397 C6-C1 1.379(5) 1.396 1.396 C5-C4 1.379(5) 1.397 1.396 C4-C3 1.362(5) 1.398 1.391 C12-C1 1.361(5) 1.372 1.365 C2-C1 1.375(5) 1.394 1.388 C2-C1 1.375(5) 1.394 1.388 C2-C1 1.375(5) 1.394 1.388 C2-C1 1.375(5) 1.394 1.388 C2-C1 1.375(5) 1.8491 1.8275 C1-N4-C2 17.5(4) 118.55 1.186.63 N2-N1-C6 119.1(4) 120.009 1.2184 C7-N1-R2 11.3(3) 11.745 1.1594 C7-N1-R2 11.3(3) 1.1594 1.56 C7-N1-R2 11.3(3) 1.1594 1.56 C7-N1-R2 11.3(3) 1.1594 1.56 C7-N1-R2 119.9(4) 120.049<				
C6C5 1.307(5) 1.403 1.397 C5C4 1.379(5) 1.397 1.396 C5C4 1.379(5) 1.396 1.389 C4C3 1.362(5) 1.396 1.389 C3C2 1.361(5) 1.398 1.391 C12C15 1.408(5) 1.422 1.416 C12C15 1.384(5) 1.372 1.365 C1402 1.375(5) 1.394 1.388 Table 3. Experimental and calculated (B3LVP/6-31 ++6(d.p.)) Calculated (B3LVP/6-31 ++6(d.p.)) C17-02-C19 116.6(3) 118.491 118.275 C17-02-C19 116.6(3) 118.491 118.275 C17-02-C19 116.6(3) 116.491 118.491 C17-02-C19 115.6(3) 113.491 11.495 C17-02-C19 115.6(3) 115.94 126.191 C7-N1-C6 119.4(4) 114.486 145.191 C2-C17-C16 119.4(4) 114.486 145.191 C16-C1-C16 119.9(4) 120.512 120.5161 <				
C6C1 1.379(5) 1.402 1.396 C5C4 1.379(5) 1.397 1.390 C4C3 1.362(5) 1.396 1.391 C12C15 1.408(5) 1.422 1.416 C15C16 1.375(5) 1.394 1.388 Table 2. Experimental and calculated boar angles (*) for TMQ. 1.388 Table 3. Experimental and calculated (B3LVP/6-31 ++6(d.p.)) Calculated (B3LVP/6-31 ++6(d.p.)) C17-02C19 116.8(3) 118.491 118.275 C11-N4-C12 117.5(4) 118.555 118.630 N2-N1-C6 119.1(4) 120.009 120.134 C7-N1-A2 11.3(3) 11.745 111.594 C7-N1-A2 11.2(3) 120.009 120.134 C7-N1-C6 129.4(4) 128.243 128.271 C8-N2-N1 104.0(3) 105.004 105.007 C2-C1-C16 119.9(4) 120.291 122.968 C1-C1C4 129.4(4) 120.491 120.591 C1-C1C41 120.4(4) 120.664 <td></td> <td></td> <td></td> <td></td>				
C5-C4 1.379 1.390 C4-C3 1.362(5) 1.396 1.391 C3-C2 1.361(5) 1.392 1.391 C12-C15 1.400(5) 1.422 1.416 C12-C15 1.354(5) 1.324 1.388 Toble 3. Experimental and c20/est of pr TMQ. 1.388 1.388 Toble 3. Experimental and c20/est of pr TMQ. 1.384 1.88.30 C17-02-C19 116.8(3) 118.491 118.630 C17-02-C19 116.8(3) 117.45 118.630 C7-N1-C6 119.1(4) 128.243 128.271 C7-N1-C6 119.4(4) 114.466 114.519 C7-C1-C18 125.6(4) 125.123 125.192 C2-C17-C16 114.4(4) 114.466 114.519 C18-C17-C16 114.4(4) 114.519 120.288 C17-C16 114.4(4) 120.636 120.041 C14-C13-C1 120.3(4) 120.64 120.64 C14-C14-C1 120.3(4) 120.66 16.990 C				
C4-C3 1.362(5) 1.396 1.389 C3-C2 1.361(5) 1.398 1.391 C12-C15 1.408(5) 1.322 1.365 C2-C1 1.375(5) 1.394 1.388 Table 3.Experimental calc/later borned Calculated (B3LVP/6-31 ++6(d.p.) Calculated (B3LVP/6-31 ++6(d.p.)) C17-02 C19 116.6(3) 118.491 118.275 C11-N-C12 117.5(4) 118.555 118.630 N2-N1-C6 119.1(4) 120.009 120.134 C7-N1-N2 111.3(3) 11.745 111.594 C7-N1-C6 129.4(4) 128.234 128.271 C7-N1-C6 129.4(4) 120.309 120.144 C7-N1-C6 119.9(4) 120.391 120.288 C7-C1-C16 119.9(4) 120.391 120.241 C17-C216 129.4(4) 120.666 120.041 C14-C13-C12 120.3(4) 120.661 120.61 C14-C13-C12 120.8(4) 120.661 120.61 C14-C14-C13 120.8(4)				
C3-C2 1.361(5) 1.398 1.391 C12C15 1.400(5) 1.422 1.416 C15C16 1.354(5) 1.372 1.365 C2-C1 1.375(5) 1.394 1.388 Table 3. Experimental and calculated bond angles (*) for TNQ. Calculated (B3LYP/6-31++6(d.pl)) Calculated (B3LYP/6-31++6(d.pl)) Calculated (B3LYP/6-31++6(d.pl)) C17-02-C19 115.64(3) 118.491 18.275 118.610 C7-N1-C6 119.1(4) 112.55 118.610 11.544 C7-N1-C6 119.1(4) 112.624 111.54 C7-N1-C6 12.94(4) 12.8243 128.271 C8-N2-N1 104.0(3) 105.004 105.007 C2-C17-C16 11.44(4) 114.466 114.519 C2-C17-C16 11.54(4) 112.55 113.611 C18-C17-C16 11.94(4) 120.361 120.246 C14-C13 120.4(4) 120.261 120.561 C14-C14 120.3(4) 122.972 122.646 C14-C14-C11 115.4(4) <td< td=""><td></td><td>1.379(5)</td><td></td><td></td></td<>		1.379(5)		
$\begin{array}{ccccccc} C:C2 & 1.361(5) & 1.398 & 1.391 \\ C12C15 & 1.408(5) & 1.372 & 1.365 \\ C2C1 & 1.375(5) & 1.372 & 1.365 \\ \hline \\ $	C4-C3	1.362(5)	1.396	1.389
C12-C15 1.406[5] 1.422 1.416 C15-C16 1.354(5) 1.372 1.365 C2-C1 1.375[5] 1.394 1.388 Table 3.Sperimental and calculated ond angles (") for TMQ. Atoms Calculated (B3LYP/6-31 ++G(2d,p)) Calculated (B3LYP/6-31 ++G(2d,p)) <td>C3-C2</td> <td></td> <td>1.398</td> <td>1.391</td>	C3-C2		1.398	1.391
C15-C16 $1.374(5)$ 1.372 1.365 C2-C1 $1.375(5)$ 1.394 1.388 C2-C1Calculated (B3LYP/6-31 ++6(d.p))Calculated (B3LYP/6-31 ++6(d.p))C	C12-C15	1.408(5)		1.416
C2-C1 1.375(5) 1.394 1.388 Table 3. Stperimental and calculated bond angles (*) for TMQ. Calculated (B31.VP/6-31 ++G(d,p)) Calculated (B31.VP/6-31 ++G(d,p)) C17.02.C19 116.63 118.491 118.275 C11.N4-C12 117.5(4) 120.009 120.134 C7-N1-C6 119.1(4) 120.009 120.134 C7-N1-C6 129.4(4) 128.243 128.271 C8-N2-N1 104.0(3) 105.004 105.087 C2-C17-C16 114.4(4) 114.486 114.519 C14-C17-C16 119.9(4) 120.391 120.288 C17-C18-C13 119.9(4) 120.063 120.041 C14-C13-C12 120.3(4) 120.064 120.296 C14-C13-C13 120.8(4) 120.064 120.296 C14-C13-C13 120.8(4) 120.246 120.296 C14-C10-C11 116.3(3) 113.281 113.494 C7-N3-C9 123.2(4) 122.496 122.555 C14-C10-C11 116.3(3) 113.281 120.6(4)	C15-C16	1.354(5)	1.372	1.365
Table 3. Experimental and calculated bond angles (°) for TMQ. Atoms Experimental Calculated (B3LYP/6-31 ++6(d.p)) Calculated (B3LYP/6-31 ++6(d.p)) C17-02-C19 116.8(3) 118.491 118.275 118.630 C17-02-C19 116.3(3) 118.455 118.630 N2-N1-C6 119.1(4) 120.009 120.134 C7-N1-N2 111.3(3) 111.745 111.594 C7-N1-C6 129.4(4) 128.243 128.271 C6-N2-N1 104.0(3) 105.004 105.087 O2-C17-C16 114.4(4) 114.486 114.519 C18-C17-C16 119.9(4) 120.391 120.288 C17-C16.11 119.9(4) 120.965 119.611 C18-C12 120.3(4) 122.096 124.461 C14-C13-C12 117.4(4) 116.966 116.990 C14-C16-C11 116.3(3) 113.281 13.444 C7-N3 128.1(4) 122.496 122.496 C14-C10-C9 123.2(4) 123.657 130.712 C14-C10				
AtomsExperimentalCalculated (B3LVP/6-31 ++G(d,p))Calculated (B3LVP/6-311 ++G(2d,p))C17-02-C19115.68(3)118.491118.275C17-02-C12117.5(4)118.555118.630N2-N1-C6119.1(4)120.009120.134C7-N1-C6129.4(4)128.243128.271C8-N2-N1104.0(3)105.004105.087O2-C17-C16114.4(4)114.486114.519C17-C18-C16119.9(4)120.391120.288C17-C18-C13119.9(4)120.391120.288C17-C18-C13119.9(4)120.063120.041C14-C13-C12120.3(4)120.063120.041C14-C13-C12117.4(4)116.966116.990C14-C13-C12117.4(4)116.966116.990C14-C10-C9120.5(4)120.246120.289C14-C10-C11116.3(3)113.281113.484C14-C10-C3123.2(4)123.724123.657N3-C9123.2(4)123.724123.657N3-C9123.2(4)123.724123.657N3-C9123.2(4)123.724123.657N3-C9123.2(4)123.724123.657N3-C9123.2(4)123.724123.657N3-C9123.2(4)123.65513.0712O1-C7-N1128.6(4)130.05513.0712O1-C7-N1128.6(4)130.335103.000C5-C6-C1120.1(4)120.352120.169C1-C6-N1119.3(4)119.215119.276C3-C4-C4 <th></th> <th></th> <th></th> <th></th>				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Table 3. Experimental and cal	culated bond angles (°) for TMQ.		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Atoms	Experimental	Calculated (B3LYP/6-31 ++G(d.p))	Calculated (B3LYP/6-311 ++G(2d.p))
C11-M-C12 17,5(4) 118,55 118,630 N2-N1-C6 119,1(4) 120,090 120,134 C7-N1-N2 111,3(3) 111,745 111,594 C7-N1-C6 129,4(4) 128,243 128,271 C3-N2-C1 104,0(3) 105,004 105,007 O2-C17-C16 114,4(4) 114,486 114,519 C17-C18-C1 119,9(4) 120,391 120,288 C17-C18-C1 129,9(4) 120,063 120,041 C14-C13-C12 120,3(4) 120,063 120,041 C14-C13-C12 117,4(4) 116,966 116,990 C14-C13-C12 120,5(4) 120,246 120,248 C14-C10-C1 160,3(4) 116,026 16,051 C14-C10-C2 123,2(4) 123,274 123,657 C14-C10-C3 123,0(4) 120,246 120,248 C14-C10-C3 123,0(4) 120,246 120,248 C14-C10-C3 123,0(4) 120,246 120,248 C14-C10-C3 123,0(4) 120,255 120,555 C4-N3-C9 123,0(4) 120,755 <t< td=""><td></td><td><u> </u></td><td></td><td></td></t<>		<u> </u>		
N2-N1-C6191 [4]120.009120.134C7-N1-C6129.4(4)128.243128.271C8-N2-N1104.0(3)105.004105.007C2-L7-C16125.6(4)125.123125.192C2-L7-C16114.4(4)114.486114.519C18-C17-C16119.9(4)120.391120.288C17-C18-C13119.9(4)120.053120.041C18-C17-C16119.9(4)120.053120.041C14-C13-C18122.3(4)122.972122.968C14-C13-C18122.3(4)120.046120.059C14-C13-C18123.2(4)123.724123.657C14-C10-C9123.2(4)123.724123.657C14-C10-C9123.2(4)123.724123.657C14-C10-C9123.2(4)123.724123.657C14-C10-C9123.2(4)123.724123.657C14-C10-C9123.2(4)123.724123.657C14-C10-C9123.2(4)123.724123.657C14-C10-C9123.2(4)123.724123.657C14-C10-C9123.2(4)127.72129.630C14-C10-C9123.2(4)120.726123.61C14-C10-C9123.2(4)120.726123.63C7-N3128.1(4)126.309126.286C3-C4-C5120.6(4)120.736120.797C5-C6-C1120.1(4)120.736120.169C1-C5-C4119.2(4)119.151119.622C3-C4-C5120.6(4)120.726121.005C3-C4-C5120.6(4)120.726				
C7-N1-N21113(3)11174511594C7-N1-C61294(4)128243128.271C8-N2-N1104.0(3)105.004105.087C2-C17-C16114.4(4)114.486114.519C3-C17-C16119.9(4)120.391120.288C17-C18-C13119.9(4)129.49120.063120.041C18-C13-C12120.3(4)120.063120.041C14-C13-C12120.3(4)120.063120.041C14-C13-C1217.4(4)116.966116.990C14-C13-C12120.8(4)121.064120.060C14-C13-C12120.8(4)120.246120.289C14-C10-C1116.3(4)116.026116.051C14-C10-C29123.2(4)123.724123.657C14-C10-C3123.0(4)122.90129.630C14-C10-C3123.0(4)122.9702129.630C4-N3-C9123.0(4)122.9702129.630C4-N3-C9123.0(4)120.736120.169C4-N3-C7107.8(4)100.655130.712C4-N3-C7107.8(4)130.655103.000C5-C6-C1120.1(4)120.352120.169C3-C4-C5120.6(4)120.736120.169C3-C4-C5120.6(4)120.262120.169C3-C4-C5120.6(4)120.736120.05C3-C4-C5120.6(4)120.736121.005C3-C4-C5120.6(4)120.736120.05C3-C4-C5120.6(4)120.732123.04C3-C4-C5120.6(4)119.15 <td></td> <td></td> <td></td> <td></td>				
C7-N1-C6 1294(4) 128243 128271 C8-N2-N1 104.0(3) 105.004 105.007 C9-C17-C16 114.4(4) 114.486 114.519 C17-C18-C13 119.9(4) 120.391 120.228 C17-C18-C13 119.9(4) 120.391 120.228 C17-C18-C13 119.9(4) 120.391 120.228 C17-C18-C13 129.3(4) 120.0663 120.041 C14-C13-C18 122.3(4) 122.972 122.968 C14-C13-C18 122.3(4) 120.046 120.060 C14-C13-C18 122.8(4) 121.064 120.600 C14-C10-C11 16.3(5) 113.613 113.844 C14-C10-C11 16.3(6) 116.9051 124.555 C14-C10-C11 16.3(6) 112.0246 120.286 C14-C10-C11 16.3(6) 113.63 13.844 C7-N3 123.0(4) 122.972 129.630 C4N3-C7 107.8(4) 107.074 107.8(1 O1-C7-N1 128.6(4) 107.365 130.010 O1-C7-N1 128.6(4) 120.52 <td< td=""><td></td><td></td><td></td><td></td></td<>				
C8-N2-N1 104.0 ⁽²⁾ 105.004 105.087 02-C17-C18 125.6(4) 125.123 125.192 02-C17-C16 114.4(4) 114.486 114.519 C18-C17-C16 119.9(4) 120.2391 120.288 C17-C18-C13 119.9(4) 120.545 119.611 C18-C13-C12 120.3(4) 120.063 120.041 C14-C13-C12 117.4(4) 116.966 116.990 C14-C13-C12 117.4(4) 116.056 116.051 C14-C10-C11 116.3(4) 116.026 116.051 C14-C10-C9 123.2(4) 123.724 123.657 C14-C10-C9 123.2(4) 122.9702 129.630 C4-N3-C9 123.0(4) 122.496 122.555 C8-N3-C7 107.8(4) 107.794 107.803 O1-C7-N3 128.1(4) 126.309 126.286 O1-C7-N3 128.1(4) 120.630 120.049 C3-C4-C1 120.1(4) 120.352 120.169 C1-C-N1 120.6(4) 120.05				
02-C17-C18 125.123 125.192 02-C17-C16 114.4(4) 114.486 114.519 02-C17-C16 119.9(4) 120.391 120.208 C17-C18-C13 119.9(4) 119.545 119.611 C18-C13-C18 122.3(4) 122.972 122.968 C14-C13-C12 117.4(4) 116.966 116.990 C14-C13-C12 117.4(4) 116.966 116.990 C14-C13-C12 117.4(4) 116.966 116.990 C14-C13-C11 116.3(4) 116.026 116.051 C14-C10-C9 123.2(4) 123.724 123.657 N3-GP-C10 113.6(3) 113.281 113.484 C7-N3-C9 123.0(4) 122.496 122.555 C8-N3-C7 107.8(4) 107.794 107.803 O1-C7-N1 128.6(4) 120.355 130.712 O1-C7-N1 128.6(4) 120.55 120.69 O1-C7-N1 128.6(4) 120.56 120.69 O1-C7-N1 128.6(4) 120.57 120.164				
02-C17-C16 114.4 ⁷ (4) 114.46 114.519 C18-C17-C16 119.9(4) 120.391 120.288 C17-C18-C13 119.9(4) 120.063 120.041 C18-C13-C12 120.3(4) 120.063 120.041 C14-C13-C12 117.4(4) 116.966 116.990 C10-C14-C13 120.8(4) 121.064 120.289 C14-C10-C1 116.3(4) 116.026 116.051 C14-C10-C9 123.2(4) 123.724 123.657 C14-C10-C9 123.0(4) 122.496 122.555 C8-N3-C9 123.0(4) 122.496 122.555 C8-N3-C7 107.8(4) 107.794 107.803 O1-C7-N3 128.1(4) 126.309 126.286 N3-C7-N1 128.6(4) 130.355 130.712 O1-C7-N3 128.1(4) 120.352 120.169 C1-C-K-N1 120.6(4) 120.055 120.169 C1-C-K-N1 120.6(4) 120.05 120.169 C1-C-K-N1 120.1(4) 120.352<	C7-N1-C6	129.4(4)	128.243	128.271
C18-C17-C16 119.9(4) 120.391 120.288 C17-C18-C13 119.9(4) 119.545 119.611 C14-C13-C12 120.3(4) 120.063 120.041 C14-C13-C12 127.3(4) 122.972 122.968 C14-C13-C12 17.4(4) 116.666 116.690 C10-C14-C13 120.8(4) 121.064 121.060 C14-C10-C9 120.5(4) 120.246 120.289 C14-C10-C11 116.3(4) 116.026 116.051 C11-C10-C9 123.2(4) 123.724 123.657 N3-G9-C10 113.6(3) 113.281 113.484 C7-N3-C9 123.0(4) 122.496 122.555 C8-N3-C7 107.8(4) 177.94 107.803 O1-C7-N1 128.6(4) 130.655 130.712 O1-C7-N3 128.1(4) 120.305 130.000 C5-C6-C1 120.1(4) 120.736 120.797 C5-C6-C1 120.1(4) 120.736 120.797 C5-C6-C1 120.6(4) 120.26	C7-N1-C6 C8-N2-N1	129.4(4) 104.0(3)	128.243 105.004	128.271 105.087
C17-C18-C13119.9(4)119.545119.611C18-C13-C12120.3(4)120.063120.041C14-C13-C18122.3(4)122.972122.968C14-C13-C12117.4(4)116.966116.990C10-C14-C13120.8(4)121.064120.289C14-C10-C9120.5(4)120.246120.289C14-C10-C9123.2(4)123.724123.657C14-C10-C9123.2(4)123.724123.657C14-C10-C9123.2(4)127.42123.657C8-N3-C9123.0(4)122.496122.555C8-N3-C9129.2(4)129.702129.630C8-N3-C7107.8(4)107.794107.803O1-C7-N3128.1(4)126.309126.286C9-C4-C5120.6(4)120.352120.169C1-C6-N1119.3(4)119.033162.266C3-C4-C5120.6(4)120.552120.169C3-C4-C5120.6(4)120.352120.169C3-C4-C5120.6(4)120.263120.979C5-C6-C1120.3(4)119.213119.217C4-C5120.6(4)120.43119.217C4-C5120.6(4)120.43119.217C4-C1-C1120.0(4)125.470118.915C1-C1-C1118.6(4)118.915118.27V+C12-C13118.0(4)118.936118.904C15-C12-C13118.0(4)118.936118.904C16-C15-C12120.6(4)120.273120.279C15-C12-C13118.0(4)118.936118.904	C7-N1-C6 C8-N2-N1 O2-C17-C18	129.4(4) 104.0(3) 125.6(4)	128.243 105.004 125.123	128.271 105.087 125.192
CH8-C13-C12 120.3(4) 120.063 120.041 C14-C13-C18 122.3(4) 122.972 122.968 C14-C13-C12 17.4(4) 116.966 116.990 C10-C14-C13 120.8(4) 121.064 120.289 C14-C10-C9 120.5(4) 120.246 120.289 C14-C10-C9 123.2(4) 123.724 123.657 N3-C9-C10 13.6(3) 113.281 113.484 C7-N3-C9 123.0(4) 122.496 122.555 C8-N3-C7 10.78(4) 107.794 107.803 O1-C7-N1 128.6(4) 130.655 130.712 O1-C7-N1 128.1(4) 126.309 126.286 N3-C7-1 10.78(4) 103.035 103.000 C5-C6-C1 120.1(4) 120.352 120.169 C1-C-N1 120.6(4) 120.352 120.169 C1-C6-N1 120.1(4) 120.352 120.169 C1-C6-N1 120.1(4) 120.352 120.169 C1-C6-N1 120.1(4) 120.352 <	C7-N1-C6 C8-N2-N1 O2-C17-C18 O2-C17-C16	129.4(4) 104.0(3) 125.6(4) 114.4(4)	128.243 105.004 125.123 114.486	128.271 105.087 125.192 114.519
C14-C13-C18 122.3(4) 122.972 122.968 C14-C13-C12 117.4(4) 116.966 116.990 C14-C13-C12 120.5(4) 121.064 121.060 C14-C10-C9 120.5(4) 120.246 120.289 C14-C10-C11 116.3(3) 113.281 113.484 C7-N3-C9 123.0(4) 122.496 122.555 C8-N3-C7 107.8(4) 107.794 107.803 O1-C7-N1 128.6(4) 130.635 130.010 O1-C7-N1 128.6(4) 130.635 130.010 O1-C7-N3 128.1(4) 120.352 120.169 O1-C7-N1 128.6(4) 130.335 130.000 C5-C6-N1 120.1(4) 120.352 120.169 C1-C6-N1 119.3(4) 119.912 119.033 C5-C6-C1 120.6(4) 121.026 120.05 C3-C4-C5 120.6(4) 121.026 120.05 C3-C4-C5 120.6(4) 120.22 120.61 C4-C5-C4 119.2(4) 119.152 119.03 C4-C5-C5 120.6(4) 120.27 120.570	C7-N1-C6 C8-N2-N1 O2-C17-C18 O2-C17-C16 C18-C17-C16	129.4(4) 104.0(3) 125.6(4) 114.4(4) 119.9(4)	128.243 105.004 125.123 114.486 120.391	128.271 105.087 125.192 114.519 120.288
C14-C13-C12 117.4(1) 116.966 116.990 C10-C14-C13 120.8(4) 121.064 121.060 C14-C10-C9 120.5(4) 120.246 120.289 C14-C10-C11 116.3(4) 116.026 116.051 C11-C10-C9 123.2(4) 123.724 123.657 N3-C9-C10 113.6(3) 113.281 113.484 C7-N3-C9 123.0(4) 122.496 122.555 C8-N3-C7 107.8(4) 107.794 107.803 O1-C7-N1 128.6(4) 130.655 130.712 O1-C7-N3 128.1(4) 120.305 103.000 C5-C6-C1 120.1(4) 120.325 120.169 C1-C6-N1 119.3(4) 118.912 119.033 C6-C5-C4 120.6(4) 120.26 120.05 C3-C4-C5 120.6(4) 120.126 120.105 C3-C4-C5 120.6(4) 120.32 129.121 N4-C11-C10 115.4(4) 115.611 115.700 N4-C11-C10 126.0(4) 125.473 125.470 C1-C4-S1 120.6(4) 125.473 125.470<	C7-N1-C6 C8-N2-N1 O2-C17-C18 O2-C17-C16 C18-C17-C16 C17-C18-C13	129.4(4) 104.0(3) 125.6(4) 114.4(4) 119.9(4) 119.9(4)	128.243 105.004 125.123 114.486 120.391 119.545	128.271 105.087 125.192 114.519 120.288 119.611
C10-C14-C13120.8(4)121.064121.060C14-C10-C9120.5(4)120.246120.289C14-C10-C11116.3(4)116.026116.051C11-C10-C9123.2(4)123.724123.657N3-C9-C10113.6(3)113.281113.484C7-N3-C9123.0(4)122.496122.555C8-N3-C7107.8(4)107.794107.803O1-C7-N1128.6(4)130.655130.712O1-C7-N3128.1(4)126.309126.286N3-C7-N1103.4(4)103.035103.000C5-C6-N1120.6(4)120.352120.169C1-C6-N1119.2(4)119.151119.262C3-C4-C5120.6(4)121.026121.005C2-C3-C4119.2(4)119.151119.262C3-C4-C5120.6(4)121.026121.005C2-C3-C4120.3(4)119.213119.217N4-C11-C11115.4(4)115.611115.700N4-C11-C11118.4(4)118.915118.827N4-C12-C13120.0(4)125.473125.470C10-C11-C11118.6(4)118.915118.827N4-C12-C13118.0(4)118.936118.904C15-C12-C13118.0(4)118.936118.904C15-C12-C13118.0(4)118.936118.904C15-C12-C13118.0(4)120.792120.874N2-C8-N3113.5(4)112.072120.874N2-C8-N3113.5(4)112.072120.874N2-C8-N3113.5(4)120.792 <td< td=""><td>C7-N1-C6 C8-N2-N1 O2-C17-C18 O2-C17-C16 C18-C17-C16 C17-C18-C13 C18-C13-C12</td><td>129.4(4) 104.0(3) 125.6(4) 114.4(4) 119.9(4) 119.9(4) 120.3(4)</td><td>128.243 105.004 125.123 114.486 120.391 119.545 120.063</td><td>128.271 105.087 125.192 114.519 120.288 119.611 120.041</td></td<>	C7-N1-C6 C8-N2-N1 O2-C17-C18 O2-C17-C16 C18-C17-C16 C17-C18-C13 C18-C13-C12	129.4(4) 104.0(3) 125.6(4) 114.4(4) 119.9(4) 119.9(4) 120.3(4)	128.243 105.004 125.123 114.486 120.391 119.545 120.063	128.271 105.087 125.192 114.519 120.288 119.611 120.041
C14-C10-C1120.5(4)120.246120.289C14-C10-C11116.3(4)116.026116.051C14-C10-C11116.3(4)123.724123.657N3-C9-C10113.6(3)113.281113.484C7-N3-C9123.0(4)122.496122.555C8-N3-C9129.2(4)129.702129.630C8-N3-C7107.8(4)107.794107.80301-C7-N1128.6(4)130.655130.71201-C7-N3128.1(4)126.309126.286N3-C7-N1103.4(4)103.035103.000C5-C6-C1120.6(4)120.736120.797C5-C6-C1120.6(4)120.352120.169C1-C6-N1119.3(4)118.912119.033C6-C5-C4120.3(4)119.213119.217N4-C11-C11115.4(4)115.611115.700N4-C11-C11115.4(4)115.611115.700N4-C11-C11118.6(4)118.915118.827N4-C12-C13119.9(4)119.152119.304C15-C12120.6(4)120.728120.794C15-C12120.6(4)120.792120.874N4-C12-C13118.0(4)118.916118.904C16-C15-C12120.6(4)120.792120.874N2-C8-N3113.5(4)120.728120.711	C7-N1-C6 C8-N2-N1 O2-C17-C18 O2-C17-C16 C18-C17-C16 C17-C18-C13 C18-C13-C12 C14-C13-C12	129.4(4) 104.0(3) 125.6(4) 114.4(4) 119.9(4) 119.9(4) 120.3(4) 122.3(4)	128.243 105.004 125.123 114.486 120.391 119.545 120.063 122.972	128.271 105.087 125.192 114.519 120.288 119.611 120.041 122.968
C14-C10-C11 116.3(4) 116.026 116.051 C11-C10-C9 123.2(4) 123.724 123.657 N3-C9-C10 113.6(3) 113.281 113.484 C7-N3-C9 123.0(4) 122.496 122.555 C8-N3-C7 129.2(4) 129.702 129.630 C8-N3-C7 128.6(4) 130.655 130.712 01-C7-N1 128.6(4) 126.309 126.286 N3-C7-N1 128.1(4) 120.303 103.000 C5-C6-N1 120.6(4) 120.736 120.797 C5-C6-C1 120.1(4) 120.352 120.169 C1-C6-N1 19.3(4) 18.912 119.033 C6-C5-C4 120.2(4) 121.026 120.05 C3-C4-C5 120.6(4) 121.026 121.005 C2-C3-C4 120.3(4) 125.473 125.470 C10-C11-C11 115.4(4) 115.611 115.700 N4-C11-C10 126.0(4) 125.473 125.470 C10-C11-C11 118.6(4) 118.915 118.827 N4-C12-C15 119.9(4) 119.152 12.304 <td>C7-N1-C6 C8-N2-N1 02-C17-C18 02-C17-C16 C18-C17-C16 C17-C18-C13 C18-C13-C12 C14-C13-C12 C14-C13-C12</td> <td>129.4(4) 104.0(3) 125.6(4) 114.4(4) 119.9(4) 120.3(4) 122.3(4) 117.4(4)</td> <td>128.243 105.004 125.123 114.486 120.391 119.545 120.063 122.972 116.966</td> <td>128.271 105.087 125.192 114.519 120.288 119.611 120.041 122.968 116.990</td>	C7-N1-C6 C8-N2-N1 02-C17-C18 02-C17-C16 C18-C17-C16 C17-C18-C13 C18-C13-C12 C14-C13-C12 C14-C13-C12	129.4(4) 104.0(3) 125.6(4) 114.4(4) 119.9(4) 120.3(4) 122.3(4) 117.4(4)	128.243 105.004 125.123 114.486 120.391 119.545 120.063 122.972 116.966	128.271 105.087 125.192 114.519 120.288 119.611 120.041 122.968 116.990
C11-C10-C9123.2(4)123.724123.657N3-C9-C10113.6(3)113.281113.484C7-N3-C9123.0(4)122.496122.555C8-N3-C7107.8(4)107.794107.803O1-C7-N1128.6(4)130.655130.712O1-C7-N3128.1(4)126.309126.286N3-C7-N1103.4(4)103.035103.000C5-C6-N1120.6(4)120.736120.797C5-C6-C1120.1(4)120.352120.169C1-C6-N1119.2(4)119.512119.033C6-C5-C4120.3(4)119.213119.217C3-C4-C5120.6(4)121.026121.005C2-C3-C4120.3(4)119.213119.217N4-C11-C11115.4(4)115.611115.700N4-C11-C11118.6(4)118.915118.827N4-C12-C13122.1(4)121.912121.791N4-C12-C13118.0(4)118.915118.827N4-C12-C13118.0(4)118.936118.904C16-C5-C12120.6(4)120.273120.279C15-C12-C13118.0(4)18.936118.904C16-C5-C12120.6(4)120.273120.279C15-C12-C13113.5(4)112.417112.512C3-C2-C1119.9(4)120.728120.711	C7-N1-C6 C8-N2-N1 02-C17-C18 02-C17-C16 C18-C17-C16 C17-C18-C13 C18-C13-C12 C14-C13-C12 C14-C13-C12	129.4(4) 104.0(3) 125.6(4) 114.4(4) 119.9(4) 120.3(4) 122.3(4) 117.4(4)	128.243 105.004 125.123 114.486 120.391 119.545 120.063 122.972 116.966	128.271 105.087 125.192 114.519 120.288 119.611 120.041 122.968 116.990
N3-C9-C10113.6(3)113.281113.484C7-N3-C9123.0(4)122.496122.555C8-N3-C9129.2(4)129.702129.630C8-N3-C7107.8(4)107.794107.80301-C7-N1128.6(4)130.655130.71201-C7-N3128.1(4)126.309126.286N3-C7-N1103.4(4)103.035103.000C5-C6-N1120.6(4)120.736120.797C5-C6-C1120.1(4)120.352120.169C1-C6-N1119.3(4)118.912119.033C6-C5-C4119.2(4)119.151119.262C3-C4-C5120.6(4)121.026121.005C2-C3-C4120.3(4)119.213119.217N4-C11-C11115.4(4)115.611115.700N4-C11-C10126.0(4)125.473125.470C10-C11-C11118.6(4)118.915118.827N4-C12-C13122.1(4)121.912121.912N4-C12-C13118.0(4)118.936118.904C15-C12-C13118.0(4)118.936118.904C16-C15-C12120.6(4)120.273120.279C15-C16-C17121.1(4)120.792120.874N2-C8-N313.5(4)120.728120.711	C7-N1-C6 C8-N2-N1 02-C17-C18 02-C17-C16 C18-C17-C16 C17-C18-C13 C18-C13-C12 C14-C13-C12 C14-C13-C12 C10-C14-C13	129.4(4) $104.0(3)$ $125.6(4)$ $114.4(4)$ $119.9(4)$ $120.3(4)$ $122.3(4)$ $117.4(4)$ $120.8(4)$	128.243 105.004 125.123 114.486 120.391 119.545 120.063 122.972 116.966 121.064	128.271 105.087 125.192 114.519 120.288 119.611 120.041 122.968 116.990 121.060
C7-N3-C9123.0(4)122.496122.555C8-N3-C9129.2(4)129.702129.630C8-N3-C7107.8(4)107.794107.80301-C7-N1128.6(4)130.655130.71201-C7-N3128.1(4)126.309126.286N3-C7-N1103.4(4)103.035103.000C5-C6-N1120.6(4)120.736120.797C5-C6-C1120.1(4)120.352120.169C1-C6-N1119.3(4)118.912119.033C6-C5-C4120.6(4)121.026121.005C2-C3-C4120.3(4)119.213119.217N4-C11-C1115.4(4)115.611115.700N4-C11-C10126.0(4)121.921121.791N4-C12-C13122.1(4)121.912121.791N4-C12-C13119.9(4)119.152119.304C15-C12-C13118.0(4)118.936118.904C15-C12-C13120.6(4)120.273120.279C15-C12-C13120.6(4)120.273120.279C15-C12-C13120.6(4)120.273120.874N2-C8-N313.5(4)120.728120.711	C7-N1-C6 C8-N2-N1 02-C17-C18 02-C17-C16 C18-C17-C16 C17-C18-C13 C18-C13-C12 C14-C13-C18 C14-C13-C12 C10-C14-C13 C14-C10-C9	129.4(4) $104.0(3)$ $125.6(4)$ $114.4(4)$ $119.9(4)$ $120.3(4)$ $122.3(4)$ $117.4(4)$ $120.8(4)$ $120.5(4)$	128.243 105.004 125.123 114.486 120.391 119.545 120.063 122.972 116.966 121.064 120.246	128.271 105.087 125.192 114.519 120.288 119.611 120.041 122.968 116.990 121.060 120.289
C7-N3-C9123.0(4)122.496122.555C8-N3-C9129.2(4)129.702129.630C8-N3-C7107.8(4)107.794107.80301-C7-N1128.6(4)130.655130.71201-C7-N3128.1(4)126.309126.286N3-C7-N1103.4(4)103.035103.000C5-C6-N1120.6(4)120.736120.797C5-C6-C1120.1(4)120.352120.169C1-C6-N119.3(4)118.912119.033C6-C5-C4120.6(4)121.026121.005C2-C3-C4120.3(4)119.213119.217N4-C11-C1115.4(4)115.611115.700N4-C11-C10126.0(4)121.912121.791N4-C12-C13122.1(4)121.912121.791N4-C12-C13118.0(4)118.915118.827N4-C12-C13119.9(4)119.152119.304C15-C12-C13118.0(4)118.936118.904C15-C12-C13118.0(4)118.936118.904C15-C12-C13120.6(4)120.273120.279C15-C12-C13120.6(4)120.273120.874N2-C8-N313.5(4)120.728120.711	C7-N1-C6 C8-N2-N1 O2-C17-C18 O2-C17-C16 C17-C18-C13 C18-C13-C12 C14-C13-C12 C14-C13-C12 C10-C14-C13 C14-C10-C9 C14-C10-C11	129.4(4) $104.0(3)$ $125.6(4)$ $114.4(4)$ $119.9(4)$ $120.3(4)$ $122.3(4)$ $117.4(4)$ $120.8(4)$ $120.5(4)$ $116.3(4)$	128.243 105.004 125.123 114.486 120.391 119.545 120.063 122.972 116.966 121.064 120.246 116.026	128.271 105.087 125.192 114.519 120.288 119.611 120.041 122.968 116.990 121.060 120.289 116.051
C8-N3-C9129.2(4)129.702129.630C8-N3-C7107.8(4)107.794107.80301-C7-N1128.6(4)130.655130.71201-C7-N3128.1(4)26.309126.286N3-C7-N1103.4(4)103.035103.000C5-C6-N1120.6(4)120.736120.797C5-C6-C1120.1(4)120.352120.169C1-C6-N1119.3(4)118.912119.033C6-C5-C4119.2(4)119.151119.262C3-C4-C5120.6(4)121.026121.005C2-C3-C4120.3(4)119.213119.217N4-C11-C11115.4(4)115.611115.700N4-C11-C10126.0(4)125.473125.470C10-C11-C11118.6(4)118.915118.827N4-C12-C13122.1(4)121.912121.791N4-C12-C13118.0(4)118.936118.904C15-C12-C13118.0(4)118.936118.904C15-C12-C13118.0(4)120.273120.279C15-C16-C17121.1(4)120.792120.874N2-C8-N3113.5(4)112.417125.12C3-C2-C1119.9(4)120.728120.711	C7-N1-C6 C8-N2-N1 O2-C17-C18 C17-C16 C17-C16-C13 C18-C13-C12 C14-C13-C12 C14-C13-C12 C10-C14-C13 C14-C10-C9 C14-C10-C11 C11-C10-C9	129.4(4) $104.0(3)$ $125.6(4)$ $114.4(4)$ $119.9(4)$ $120.3(4)$ $122.3(4)$ $122.3(4)$ $120.8(4)$ $120.5(4)$ $116.3(4)$ $123.2(4)$	128.243 105.004 125.123 114.486 120.391 119.545 120.063 122.972 116.966 121.064 120.246 116.026 123.724	128.271 105.087 125.192 114.519 120.288 119.611 120.041 122.968 116.990 121.060 120.289 116.051 123.657
C8-N3-C7107.8(4)107.794107.80301-C7-N1128.6(4)130.655130.71201-C7-N3128.1(4)126.309126.286N3-C7-N1103.4(4)103.035103.000C5-C6-N1120.6(4)120.736120.797C5-C6-C1120.1(4)120.352120.169C1-C6-N1119.3(4)118.912119.033C6-C5-C4119.2(4)119.151119.262C3-C4-C5120.6(4)121.026121.005C2-C3-C4120.3(4)119.213119.217N4-C11-C11115.4(4)115.611115.700N4-C11-C10126.0(4)125.473125.470C10-C11-C11118.6(4)118.915118.827N4-C12-C13119.9(4)119.152119.304C15-C12-C13118.0(4)118.936118.904C15-C12-C13118.0(4)118.936118.904C15-C12-C13113.5(4)120.773120.279C15-C16-C17121.1(4)120.792120.874N2-C8-N3113.5(4)112.417112.512C3-C2-C1119.9(4)120.728120.711	C7-N1-C6 C8-N2-N1 O2-C17-C18 C17-C16 C18-C17-C16 C17-C18-C13 C18-C13-C12 C14-C13-C12 C14-C13-C12 C14-C13-C12 C14-C10-C14 C14-C10-C9 C14-C10-C11 C11-C10-C9 N3-C9-C10	129.4(4) $104.0(3)$ $125.6(4)$ $114.4(4)$ $119.9(4)$ $120.3(4)$ $122.3(4)$ $122.3(4)$ $120.8(4)$ $120.5(4)$ $116.3(4)$ $123.2(4)$ $113.6(3)$	128.243 105.004 125.123 114.486 120.391 119.545 120.063 122.972 116.966 121.064 120.246 116.026 123.724 113.281	128.271 105.087 125.192 114.519 120.288 119.611 120.041 122.968 116.990 121.060 120.289 116.051 123.657 113.484
01-C7-N1128.6(4)130.655130.71201-C7-N3128.1(4)126.309126.286N3-C7-N1103.4(4)103.035103.000C5-C6-N1120.6(4)120.736120.797C5-C6-C1120.1(4)120.352120.169C1-C6-N1119.3(4)118.912119.033C6-C5-C4119.2(4)121.026121.005C2-C3-C4120.6(4)121.026121.005C2-C3-C4120.3(4)119.213119.217N4-C11-C11115.4(4)115.611115.700N4-C11-C11118.6(4)128.915128.277N4-C12-C13122.1(4)129.12121.791N4-C12-C15119.9(4)119.152119.304C15-C12-C13118.0(4)118.936118.904C15-C12-C13118.0(4)120.792120.279C15-C16-C17121.1(4)120.792120.874N2-C8-N3113.5(4)112.417112.512C3-C2-C1119.9(4)120.728120.711	C7-N1-C6 C8-N2-N1 02-C17-C18 02-C17-C16 C18-C17-C16 C17-C18-C13 C18-C13-C12 C14-C13-C12 C14-C13-C12 C10-C14-C13 C14-C10-C9 C14-C10-C9 N3-C9-C10 C7-N3-C9	129.4(4) $104.0(3)$ $125.6(4)$ $114.4(4)$ $119.9(4)$ $120.3(4)$ $122.3(4)$ $122.3(4)$ $122.3(4)$ $120.8(4)$ $120.5(4)$ $116.3(4)$ $123.2(4)$ $113.6(3)$ $123.0(4)$	128.243 105.004 125.123 114.486 120.391 119.545 120.063 122.972 116.966 121.064 120.246 116.026 123.724 113.281 122.496	128.271 105.087 125.192 114.519 120.288 119.611 120.041 122.968 116.990 121.060 120.289 116.051 123.657 113.484 122.555
01-C7-N3128.1(4)126.309126.286N3-C7-N1103.4(4)103.035103.000C5-C6-N1120.6(4)120.736120.797C5-C6-C1120.1(4)120.352120.169C1-C6-N1119.3(4)118.912119.033C6-C5-C4119.2(4)119.151119.262C3-C4-C5120.6(4)121.026121.005C2-C3-C4120.3(4)119.213119.217N4-C11-C1115.4(4)115.611115.700N4-C11-C10126.0(4)125.473125.470C10-C11-C11118.6(4)118.915118.827N4-C12-C13122.1(4)121.912121.791N4-C12-C15119.9(4)119.152119.304C15-C12-C13118.0(4)118.936118.904C15-C12-C12120.6(4)120.792120.874C15-C16-C17121.1(4)120.792120.874N2-C8-N3113.5(4)112.417112.512C3-C2-C1119.9(4)120.728120.711	C7-N1-C6 C8-N2-N1 02-C17-C18 02-C17-C16 C18-C17-C16 C17-C18-C13 C18-C13-C12 C14-C13-C12 C14-C13-C12 C14-C13-C12 C14-C10-C9 C14-C10-C9 C14-C10-C11 C11-C10-C9 N3-C9-C10 C7-N3-C9 C8-N3-C9	129.4(4) $104.0(3)$ $125.6(4)$ $114.4(4)$ $119.9(4)$ $120.3(4)$ $122.3(4)$ $122.3(4)$ $122.3(4)$ $120.5(4)$ $120.5(4)$ $116.3(4)$ $123.2(4)$ $113.6(3)$ $123.0(4)$ $129.2(4)$	128.243 105.004 125.123 114.486 120.391 119.545 120.063 122.972 116.966 121.064 120.246 116.026 123.724 113.281 122.496 129.702	128.271 105.087 125.192 114.519 120.288 119.611 120.041 122.968 116.990 121.060 120.289 116.051 123.657 113.484 122.555 129.630
N3-C7-N1103.4(4)103.035103.000C5-C6-N1120.6(4)120.736120.797C5-C6-C1120.1(4)120.352120.169C1-C6-N1119.3(4)118.912119.033C6-C5-C4119.2(4)119.151119.262C3-C4-C5120.6(4)121.026121.005C2-C3-C4120.3(4)119.213119.217N4-C11-C11115.4(4)115.611115.700N4-C11-C11115.4(4)118.915118.827N4-C11-C11118.6(4)118.915118.827N4-C12-C13122.1(4)121.912121.791N4-C12-C15119.9(4)119.152119.304C15-C12-C13118.0(4)118.936118.904C15-C12-C13118.0(4)120.792120.874C15-C16-C17121.1(4)120.792120.874N2-C8-N3113.5(4)112.417112.512C3-C2-C1119.9(4)120.728120.711	C7-N1-C6 C8-N2-N1 02-C17-C18 02-C17-C16 C18-C17-C16 C17-C18-C13 C18-C13-C12 C14-C13-C12 C14-C13-C12 C14-C13-C12 C14-C10-C9 C14-C10-C9 N3-C9-C10 C7-N3-C9 C8-N3-C9 C8-N3-C7	129.4(4) $104.0(3)$ $125.6(4)$ $114.4(4)$ $119.9(4)$ $120.3(4)$ $122.3(4)$ $122.3(4)$ $120.5(4)$ $120.5(4)$ $116.3(4)$ $123.2(4)$ $113.6(3)$ $123.0(4)$ $129.2(4)$ $107.8(4)$	128.243 105.004 125.123 114.486 120.391 119.545 120.063 122.972 116.966 121.064 120.246 116.026 123.724 113.281 122.496 129.702 107.794	128.271 105.087 125.192 114.519 120.288 119.611 120.041 122.968 116.990 121.060 120.289 116.051 123.657 113.484 122.555 129.630 107.803
C5-C6-N1120.6(4)120.736120.797C5-C6-C1120.1(4)120.352120.169C1-C6-N1119.3(4)118.912119.033C6-C5-C4119.2(4)119.151119.262C3-C4-C5120.6(4)121.026121.005C2-C3-C4120.3(4)119.213119.217N4-C11-C11115.4(4)115.611115.700N4-C11-C10126.0(4)125.473125.470C10-C11-C11118.6(4)118.915118.827N4-C12-C13122.1(4)121.912121.791N4-C12-C15119.9(4)119.152119.304C15-C12-C13118.0(4)118.936118.904C15-C16-C17121.1(4)120.792120.874N2-C8-N3113.5(4)112.417112.512C3-C2-C1119.9(4)120.728120.711	C7-N1-C6 C8-N2-N1 O2-C17-C18 O2-C17-C16 C17-C16-C13 C18-C13-C12 C14-C13-C12 C14-C13-C12 C14-C13-C12 C14-C10-C9 C14-C10-C9 C14-C10-C9 N3-C9-C10 C7-N3-C9 C8-N3-C7 O1-C7-N1	129.4(4) $104.0(3)$ $125.6(4)$ $114.4(4)$ $119.9(4)$ $120.3(4)$ $122.3(4)$ $122.3(4)$ $120.8(4)$ $120.5(4)$ $116.3(4)$ $123.2(4)$ $113.6(3)$ $123.0(4)$ $129.2(4)$ $107.8(4)$ $128.6(4)$	128.243 105.004 125.123 114.486 120.391 119.545 120.063 122.972 116.966 121.064 120.246 116.026 123.724 113.281 122.496 129.702 107.794 130.655	128.271 105.087 125.192 114.519 120.288 119.611 120.041 122.968 116.990 121.060 120.289 116.051 123.657 113.484 122.555 129.630 107.803 130.712
C5-C6-C1120.1(4)120.352120.169C1-C6-N1119.3(4)118.912119.033C6-C5-C4119.2(4)119.51119.262C3-C4-C5120.6(4)121.026121.005C2-C3-C4120.3(4)119.213119.217N4-C11-C11115.4(4)115.611115.700N4-C11-C10126.0(4)125.473125.470C10-C11-C11118.6(4)118.915118.827N4-C12-C13122.1(4)121.912121.791N4-C12-C15119.9(4)119.152119.304C15-C12-C13118.0(4)118.936118.904C16-C15-C12120.6(4)120.273120.279C15-C16-C17121.1(4)120.792120.874N2-C8-N3113.5(4)112.417112.512C3-C2-C1119.9(4)120.728120.711	C7-N1-C6 C8-N2-N1 O2-C17-C18 C17-C16 C17-C16-C13 C18-C13-C12 C14-C13-C12 C14-C13-C12 C14-C13-C12 C14-C10-C13 C14-C10-C9 C14-C10-C9 C14-C10-C11 C11-C10-C9 N3-C9-C10 C7-N3-C9 C8-N3-C7 O1-C7-N1 O1-C7-N3	129.4(4) $104.0(3)$ $125.6(4)$ $114.4(4)$ $119.9(4)$ $120.3(4)$ $122.3(4)$ $122.3(4)$ $122.3(4)$ $120.5(4)$ $120.5(4)$ $116.3(4)$ $123.2(4)$ $113.6(3)$ $123.0(4)$ $129.2(4)$ $107.8(4)$ $128.6(4)$ $128.1(4)$	128.243 105.004 125.123 114.486 120.391 119.545 120.063 122.972 116.966 121.064 120.246 116.026 123.724 113.281 122.496 129.702 107.794 130.655 126.309	128.271 105.087 125.192 114.519 120.288 119.611 120.041 122.968 116.990 121.060 120.289 116.051 123.657 113.484 122.555 129.630 107.803 130.712 126.286
C1-C6-N1119.3(4)118.912119.033C6-C5-C4119.2(4)119.151119.262C3-C4-C5120.6(4)121.026121.005C2-C3-C4120.3(4)119.213119.217N4-C11-C11115.4(4)115.611115.700N4-C11-C10126.0(4)125.473125.470C10-C11-C11118.6(4)118.915118.827N4-C12-C13122.1(4)121.912121.791N4-C12-C15119.9(4)119.152119.304C15-C12-C13118.0(4)118.936118.904C16-C15-C12120.6(4)120.273120.279C15-C16-C17121.1(4)120.792120.874N2-C8-N3113.5(4)112.417112.512C3-C2-C1119.9(4)120.728120.711	C7-N1-C6 C8-N2-N1 02-C17-C18 02-C17-C16 C18-C17-C16 C17-C18-C13 C14-C13-C12 C14-C13-C12 C10-C14-C13 C14-C10-C9 C14-C10-C9 C14-C10-C9 N3-C9-C10 C7-N3-C9 C8-N3-C7 01-C7-N3 N3-C7-N1	129.4(4) $104.0(3)$ $125.6(4)$ $114.4(4)$ $119.9(4)$ $120.3(4)$ $122.3(4)$ $122.3(4)$ $120.8(4)$ $120.5(4)$ $116.3(4)$ $123.2(4)$ $113.6(3)$ $123.0(4)$ $129.2(4)$ $107.8(4)$ $128.6(4)$ $128.1(4)$ $103.4(4)$	128.243 105.004 125.123 114.486 120.391 119.545 120.063 122.972 116.966 121.064 120.246 116.026 123.724 113.281 122.496 129.702 107.794 130.655 126.309 103.035	128.271 105.087 125.192 114.519 120.288 119.611 120.041 122.968 116.990 121.060 120.289 116.051 123.657 113.484 122.555 129.630 107.803 130.712 126.286 103.000
C6-C5-C4119.2(4)119.151119.262C3-C4-C5120.6(4)121.026121.005C2-C3-C4120.3(4)119.213119.217N4-C11-C11115.4(4)115.611115.700N4-C11-C10126.0(4)125.473125.470C10-C11-C11118.6(4)118.915118.827N4-C12-C13122.1(4)121.912121.791N4-C12-C15119.9(4)119.152119.304C15-C12-C13118.0(4)118.936118.904C16-C15-C12120.6(4)120.792120.279C15-C16-C17121.1(4)120.792120.874N2-C8-N3113.5(4)112.417112.512C3-C2-C1119.9(4)120.728120.711	C7-N1-C6 C8-N2-N1 02-C17-C18 02-C17-C16 C18-C17-C16 C17-C18-C13 C18-C13-C12 C14-C13-C12 C14-C13-C12 C14-C10-C9 C14-C10-C9 C14-C10-C9 C14-C10-C9 N3-C9-C10 C7-N3-C9 C8-N3-C9 C8-N3-C7 01-C7-N1 01-C7-N1 C5-C6-N1	129.4(4) $104.0(3)$ $125.6(4)$ $114.4(4)$ $119.9(4)$ $120.3(4)$ $122.3(4)$ $122.3(4)$ $122.3(4)$ $120.5(4)$ $116.3(4)$ $123.2(4)$ $113.6(3)$ $123.0(4)$ $129.2(4)$ $107.8(4)$ $128.6(4)$ $128.1(4)$ $103.4(4)$ $120.6(4)$	128.243 105.004 125.123 114.486 120.391 119.545 120.063 122.972 116.966 121.064 120.246 116.026 123.724 113.281 122.496 129.702 107.794 130.655 126.309 103.035 120.736	128.271 105.087 125.192 114.519 120.288 119.611 120.041 122.968 116.990 121.060 120.289 116.051 123.657 113.484 122.555 129.630 107.803 130.712 126.286 103.000 120.797
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7-N1-C6 C8-N2-N1 O2-C17-C18 O2-C17-C16 C17-C18-C13 C18-C13-C12 C14-C13-C12 C14-C13-C12 C14-C13-C12 C14-C10-C9 C14-C10-C9 N3-C9-C10 C7-N3-C9 C8-N3-C9 C8-N3-C7 O1-C7-N1 O1-C7-N1 O1-C7-N1 C5-C6-C1	129.4(4) $104.0(3)$ $125.6(4)$ $114.4(4)$ $119.9(4)$ $120.3(4)$ $122.3(4)$ $122.3(4)$ $122.3(4)$ $120.5(4)$ $120.5(4)$ $116.3(4)$ $123.2(4)$ $113.6(3)$ $123.0(4)$ $129.2(4)$ $107.8(4)$ $128.6(4)$ $128.1(4)$ $103.4(4)$ $120.6(4)$ $120.1(4)$	128.243 105.004 125.123 114.486 120.391 119.545 120.063 122.972 116.966 121.064 120.246 116.026 123.724 113.281 122.496 129.702 107.794 130.655 126.309 103.035 120.736 120.352	128.271 105.087 125.192 114.519 120.288 119.611 120.041 122.968 116.990 121.060 120.289 116.051 123.657 113.484 122.555 129.630 107.803 130.712 126.286 103.000 120.797 120.169
C2-C3-C4120.3(4)119.213119.217N4-C11-Cl1115.4(4)115.611115.700N4-C11-C10126.0(4)125.473125.470C10-C11-Cl1118.6(4)118.915118.827N4-C12-C13122.1(4)121.912121.791N4-C12-C15119.9(4)119.152119.304C15-C12-C13118.0(4)118.936118.904C15-C12-C13120.6(4)120.792120.279C15-C16-C17121.1(4)120.792120.874N2-C8-N3113.5(4)112.417112.512C3-C2-C1119.9(4)120.728120.711	C7-N1-C6 C8-N2-N1 O2-C17-C18 O2-C17-C16 C17-C18-C13 C18-C13-C12 C14-C13-C12 C14-C13-C12 C14-C13-C12 C14-C10-C9 C14-C10-C9 C14-C10-C9 C14-C10-C9 N3-C9-C10 C7-N3-C9 C8-N3-C7 O1-C7-N1 O1-C7-N3 N3-C7-N1 C5-C6-N1 C5-C6-C1 C1-C6-N1	129.4(4) $104.0(3)$ $125.6(4)$ $114.4(4)$ $119.9(4)$ $120.3(4)$ $122.3(4)$ $122.3(4)$ $122.3(4)$ $120.5(4)$ $116.3(4)$ $123.2(4)$ $113.6(3)$ $123.2(4)$ $113.6(3)$ $123.0(4)$ $129.2(4)$ $107.8(4)$ $128.6(4)$ $128.1(4)$ $103.4(4)$ $120.6(4)$ $120.1(4)$ $119.3(4)$	128.243 105.004 125.123 114.486 120.391 119.545 120.063 122.972 116.966 121.064 120.246 116.026 123.724 113.281 122.496 129.702 107.794 130.655 126.309 103.035 120.736 120.352 118.912	128.271 105.087 125.192 114.519 120.288 119.611 120.041 122.968 116.990 121.060 120.289 116.051 123.657 113.484 122.555 129.630 107.803 130.712 126.286 103.000 120.797 120.169 119.033
N4-C11-Cl1115.4(4)115.611115.700N4-C11-C10126.0(4)125.473125.470C10-C11-Cl1118.6(4)118.915118.827N4-C12-C13122.1(4)121.912121.791N4-C12-C15119.9(4)119.152119.304C15-C12-C13118.0(4)118.936118.904C16-C15-C12120.6(4)120.273120.279C15-C16-C17121.1(4)120.792120.874N2-C8-N3113.5(4)112.417112.512C3-C2-C1119.9(4)120.728120.711	C7-N1-C6 C8-N2-N1 02-C17-C18 02-C17-C16 C18-C17-C16 C17-C18-C13 C14-C13-C12 C14-C13-C12 C10-C14-C13 C14-C10-C9 C14-C10-C9 N3-C9-C10 C7-N3-C9 C8-N3-C9 C8-N3-C7 O1-C7-N1 O1-C7-N3 N3-C7-N1 C5-C6-N1 C5-C6-N1 C6-C5-C4	129.4(4) $104.0(3)$ $125.6(4)$ $114.4(4)$ $119.9(4)$ $120.3(4)$ $122.3(4)$ $122.3(4)$ $122.3(4)$ $120.5(4)$ $120.5(4)$ $123.2(4)$ $113.6(3)$ $123.0(4)$ $129.2(4)$ $107.8(4)$ $128.6(4)$ $128.1(4)$ $103.4(4)$ $120.6(4)$ $120.1(4)$ $119.3(4)$ $119.2(4)$	128.243 105.004 125.123 114.486 120.391 119.545 120.063 122.972 116.966 121.064 120.246 116.026 123.724 113.281 122.496 129.702 107.794 130.655 126.309 103.035 120.736 120.736 120.352 118.912 119.151	128.271 105.087 125.192 114.519 120.288 119.611 120.041 122.968 116.990 121.060 120.289 116.051 123.657 113.484 122.555 129.630 107.803 130.712 126.286 103.000 120.797 120.169 119.033 119.262
N4-C11-C10126.0(4)125.473125.470C10-C11-Cl1118.6(4)118.915118.827N4-C12-C13122.1(4)121.912121.791N4-C12-C15119.9(4)119.152119.304C15-C12-C13118.0(4)118.936118.904C16-C15-C12120.6(4)120.273120.279C15-C16-C17121.1(4)120.792120.874N2-C8-N3113.5(4)112.417112.512C3-C2-C1119.9(4)120.728120.711	C7-N1-C6 C8-N2-N1 02-C17-C18 02-C17-C16 C18-C17-C16 C17-C18-C13 C14-C13-C12 C14-C13-C12 C14-C13-C12 C14-C10-C9 C14-C10-C9 C14-C10-C9 C14-C10-C9 N3-C9-C10 C7-N3-C9 C8-N3-C7 01-C7-N1 01-C7-N3 N3-C7-N1 C5-C6-N1 C5-C6-N1 C6-C5-C4 C3-C4-C5	129.4(4) $104.0(3)$ $125.6(4)$ $114.4(4)$ $119.9(4)$ $120.3(4)$ $122.3(4)$ $122.3(4)$ $122.3(4)$ $120.5(4)$ $120.5(4)$ $116.3(4)$ $123.2(4)$ $123.2(4)$ $123.0(4)$ $129.2(4)$ $107.8(4)$ $128.6(4)$ $128.1(4)$ $103.4(4)$ $120.6(4)$ $120.1(4)$ $119.3(4)$ $120.6(4)$	128.243 105.004 125.123 114.486 120.391 119.545 120.063 122.972 116.966 121.064 120.246 116.026 123.724 113.281 122.496 129.702 107.794 130.655 126.309 103.035 120.736 120.352 118.912 119.151 121.026	128.271 105.087 125.192 114.519 120.288 119.611 120.041 122.968 116.990 121.060 120.289 116.051 123.657 113.484 122.555 129.630 107.803 130.712 126.286 103.000 120.797 120.169 119.033 119.262 121.005
C10-C11-Cl1118.6(4)118.915118.827N4-C12-C13122.1(4)121.912121.791N4-C12-C15119.9(4)119.152119.304C15-C12-C13118.0(4)118.936118.904C16-C15-C12120.6(4)120.273120.279C15-C16-C17121.1(4)120.792120.874N2-C8-N3113.5(4)112.417112.512C3-C2-C1119.9(4)120.728120.711	C7-N1-C6 C8-N2-N1 02-C17-C18 02-C17-C16 C18-C17-C16 C17-C18-C13 C18-C13-C12 C14-C13-C12 C14-C13-C12 C14-C10-C9 C14-C10-C9 C14-C10-C9 C14-C10-C11 C11-C10-C9 N3-C9-C10 C7-N3-C9 C8-N3-C9 C8-N3-C9 C8-N3-C7 01-C7-N1 01-C7-N3 N3-C7-N1 C5-C6-N1 C5-C6-C1 C3-C4-C5 C3-C4-C5 C2-C3-C4	129.4(4) $104.0(3)$ $125.6(4)$ $114.4(4)$ $119.9(4)$ $120.3(4)$ $122.3(4)$ $122.3(4)$ $122.3(4)$ $120.5(4)$ $120.5(4)$ $116.3(4)$ $123.2(4)$ $113.6(3)$ $123.0(4)$ $129.2(4)$ $107.8(4)$ $128.6(4)$ $128.6(4)$ $128.6(4)$ $128.1(4)$ $103.4(4)$ $120.6(4)$ $120.1(4)$ $119.3(4)$ $120.6(4)$ $120.6(4)$ $120.3(4)$	128.243 105.004 125.123 114.486 120.391 119.545 120.063 122.972 116.966 121.064 120.246 116.026 123.724 113.281 122.496 129.702 107.794 130.655 126.309 103.035 120.736 120.352 118.912 119.151 121.026 119.213	128.271 105.087 125.192 114.519 120.288 119.611 120.041 122.968 116.990 121.060 120.289 116.051 123.657 113.484 122.555 129.630 107.803 130.712 126.286 103.000 120.797 120.169 119.033 119.262 121.005 119.217
N4-C12-C13122.1(4)121.912121.791N4-C12-C15119.9(4)119.152119.304C15-C12-C13118.0(4)118.936118.904C16-C15-C12120.6(4)120.273120.279C15-C16-C17121.1(4)120.792120.874N2-C8-N3113.5(4)112.417112.512C3-C2-C1119.9(4)120.728120.711	C7-N1-C6 C8-N2-N1 O2-C17-C18 O2-C17-C16 C17-C18-C13 C18-C13-C12 C14-C13-C12 C14-C13-C12 C14-C13-C12 C14-C10-C9 C14-C10-C9 C14-C10-C9 N3-C9-C10 C7-N3-C9 C8-N3-C9 C8-N3-C9 C8-N3-C7 O1-C7-N1 O1-C7-N3 N3-C7-N1 C5-C6-C1 C1-C6-N1 C5-C6-C1 C1-C6-N1 C6-C5-C4 C3-C4-C5 C2-C3-C4 N4-C11-C11	129.4(4) $104.0(3)$ $125.6(4)$ $114.4(4)$ $119.9(4)$ $120.3(4)$ $122.3(4)$ $122.3(4)$ $122.3(4)$ $120.5(4)$ $120.5(4)$ $116.3(4)$ $123.2(4)$ $113.6(3)$ $123.0(4)$ $129.2(4)$ $107.8(4)$ $128.6(4)$ $128.1(4)$ $103.4(4)$ $120.6(4)$ $120.1(4)$ $119.3(4)$ $120.6(4)$ $120.6(4)$ $120.6(4)$ $120.6(4)$ $120.6(4)$ $120.6(4)$ $120.6(4)$ $120.6(4)$ $120.3(4)$ $115.4(4)$	128.243 105.004 125.123 114.486 120.391 119.545 120.063 122.972 116.966 121.064 120.246 116.026 123.724 113.281 122.496 122.496 122.702 107.794 130.655 126.309 103.035 120.736 120.736 120.352 118.912 119.151 121.026 119.213 115.611	128.271 105.087 125.192 114.519 120.288 119.611 120.041 122.968 116.990 121.060 120.289 116.051 123.657 113.484 122.555 129.630 107.803 130.712 126.286 103.000 120.797 120.169 119.033 119.262 121.005 119.217 115.700
N4-C12-C15119.9(4)119.152119.304C15-C12-C13118.0(4)118.936118.904C16-C15-C12120.6(4)120.273120.279C15-C16-C17121.1(4)120.792120.874N2-C8-N3113.5(4)112.417112.512C3-C2-C1119.9(4)120.728120.711	$\begin{array}{c} \text{C7-N1-C6} \\ \text{C8-N2-N1} \\ \text{O2-C17-C18} \\ \text{O2-C17-C16} \\ \text{C18-C17-C16} \\ \text{C17-C18-C13} \\ \text{C18-C13-C12} \\ \text{C14-C13-C12} \\ \text{C14-C13-C12} \\ \text{C14-C13-C12} \\ \text{C10-C14-C13} \\ \text{C14-C10-C9} \\ \text{C14-C10-C9} \\ \text{C14-C10-C9} \\ \text{C14-C10-C9} \\ \text{C14-C10-C9} \\ \text{C14-C10-C9} \\ \text{C3-N3-C9} \\ \text{C8-N3-C7} \\ \text{C6-N3-C9} \\ \text{C8-N3-C7} \\ \text{O1-C7-N1} \\ \text{O1-C7-N3} \\ \text{N3-C7-N1} \\ \text{C5-C6-C1} \\ \text{C1-C6-N1} \\ \text{C5-C6-C1} \\ \text{C1-C6-N1} \\ \text{C5-C6-C1} \\ \text{C3-C3-C4} \\ \text{C3-C4-C5} \\ \text{C2-C3-C4} \\ \text{N4-C11-C11} \\ \text{N4-C11-C11} \\ \end{array}$	129.4(4) $104.0(3)$ $125.6(4)$ $114.4(4)$ $119.9(4)$ $120.3(4)$ $122.3(4)$ $122.3(4)$ $122.3(4)$ $120.5(4)$ $120.5(4)$ $120.5(4)$ $123.2(4)$ $123.2(4)$ $123.2(4)$ $123.2(4)$ $123.2(4)$ $123.2(4)$ $123.2(4)$ $123.2(4)$ $128.6(4)$ $128.1(4)$ $103.4(4)$ $120.6(4)$ $120.1(4)$ $119.2(4)$ $120.6(4)$ $120.6(4)$ $120.3(4)$ $125.4(4)$ $126.0(4)$	128.243 105.004 125.123 114.486 120.391 119.545 120.063 122.972 116.966 121.064 120.246 116.026 123.724 113.281 122.496 129.702 107.794 130.655 126.309 103.035 120.736 120.352 118.912 119.151 121.026 119.213 115.611 125.473	128.271 105.087 125.192 114.519 120.288 119.611 120.041 122.968 116.990 121.060 120.289 116.051 123.657 113.484 122.555 129.630 107.803 130.712 126.286 103.000 120.797 120.169 119.033 119.262 121.005 119.217 115.700 125.470
C15-C12-C13118.0(4)118.936118.904C16-C15-C12120.6(4)120.273120.279C15-C16-C17121.1(4)120.792120.874N2-C8-N3113.5(4)112.417112.512C3-C2-C1119.9(4)120.728120.711	$\begin{array}{c} \text{C7-N1-C6} \\ \text{C8-N2-N1} \\ \text{O2-C17-C18} \\ \text{O2-C17-C16} \\ \text{C18-C17-C16} \\ \text{C18-C17-C16} \\ \text{C17-C18-C13} \\ \text{C14-C13-C12} \\ \text{C14-C13-C12} \\ \text{C14-C13-C12} \\ \text{C10-C14-C13} \\ \text{C14-C10-C9} \\ \text{C14-C10-C10} \\ \text{C10-C11-C11} \\ \textbf{C10-C11-C11} \\ \textbf{C10-C11-C11-C11} \\ \textbf{C10-C11-C11-C11} \\ \textbf{C10-C11-C11-C11} \\ \textbf{C10-C11-C11} \\$	129.4(4) $104.0(3)$ $125.6(4)$ $114.4(4)$ $119.9(4)$ $120.3(4)$ $122.3(4)$ $122.3(4)$ $122.3(4)$ $120.5(4)$ $120.5(4)$ $123.2(4)$ $123.2(4)$ $123.2(4)$ $123.2(4)$ $123.2(4)$ $123.0(4)$ $129.2(4)$ $107.8(4)$ $128.6(4)$ $128.1(4)$ $103.4(4)$ $120.6(4)$ $120.1(4)$ $119.2(4)$ $120.6(4)$ $120.3(4)$ $125.4(4)$ $126.6(4)$ $120.3(4)$ $115.4(4)$ $126.0(4)$ $118.6(4)$	128.243 105.004 125.123 114.486 120.391 119.545 120.063 122.972 116.966 121.064 120.246 116.026 123.724 113.281 122.496 129.702 107.794 130.655 126.309 103.035 120.736 120.352 118.912 119.151 121.026 119.213 115.611 125.473 118.915	128.271 105.087 125.192 114.519 120.288 119.611 120.041 122.968 116.990 121.060 120.289 116.051 123.657 113.484 122.555 129.630 107.803 130.712 126.286 103.000 120.797 120.169 119.033 119.262 121.005 119.217 115.700 125.470 118.827
C16-C15-C12120.6(4)120.273120.279C15-C16-C17121.1(4)120.792120.874N2-C8-N3113.5(4)112.417112.512C3-C2-C1119.9(4)120.728120.711	$\begin{array}{c} \text{C7-N1-C6} \\ \text{C8-N2-N1} \\ \text{O2-C17-C18} \\ \text{O2-C17-C16} \\ \text{C18-C17-C16} \\ \text{C17-C18-C13} \\ \text{C18-C13-C12} \\ \text{C14-C13-C12} \\ \text{C14-C13-C12} \\ \text{C14-C13-C12} \\ \text{C10-C14-C13} \\ \text{C14-C10-C9} \\ \text{C3-C3-C10} \\ \text{C7-N3-C9} \\ \text{C8-N3-C7} \\ \text{C3-C4-C5} \\ \text{C3-C4-C5} \\ \text{C2-C3-C4} \\ \text{N4-C11-C11} \\ \text{N4-C11-C10} \\ \text{C10-C11-C11} \\ \text{N4-C12-C13} \\ \end{array}$	129.4(4) $104.0(3)$ $125.6(4)$ $114.4(4)$ $119.9(4)$ $120.3(4)$ $122.3(4)$ $122.3(4)$ $122.3(4)$ $122.3(4)$ $120.5(4)$ $120.5(4)$ $123.2(4)$ $123.2(4)$ $123.2(4)$ $123.2(4)$ $123.2(4)$ $123.2(4)$ $123.2(4)$ $123.2(4)$ $123.2(4)$ $123.2(4)$ $123.2(4)$ $123.2(4)$ $123.2(4)$ $124.4(4)$ $120.6(4)$ $120.6(4)$ $120.3(4)$ $125.4(4)$ $126.6(4)$ $120.3(4)$ $115.4(4)$ $126.6(4)$ $126.0(4)$ $118.6(4)$ $122.1(4)$	128.243 105.004 125.123 114.486 120.391 119.545 120.063 122.972 116.966 121.064 120.246 116.026 123.724 113.281 122.496 129.702 107.794 130.655 126.309 103.035 120.736 120.736 120.736 120.736 120.352 118.912 119.151 121.026 119.213 118.915 121.912	128.271 105.087 125.192 114.519 120.288 119.611 120.041 122.968 116.990 121.060 120.289 116.051 123.657 113.484 122.555 129.630 107.803 130.712 126.286 103.000 120.797 120.169 119.033 119.262 121.005 119.217 115.700 125.470 118.827 121.791
C15-C16-C17121.1(4)120.792120.874N2-C8-N3113.5(4)112.417112.512C3-C2-C1119.9(4)120.728120.711	$\begin{array}{c} \text{C7-N1-C6} \\ \text{C8-N2-N1} \\ \text{O2-C17-C18} \\ \text{O2-C17-C16} \\ \text{C18-C17-C16} \\ \text{C17-C18-C13} \\ \text{C18-C13-C12} \\ \text{C14-C13-C12} \\ \text{C14-C13-C12} \\ \text{C14-C13-C12} \\ \text{C14-C10-C9} \\ \text{C14-C10-C9} \\ \text{C14-C10-C9} \\ \text{C14-C10-C11} \\ \text{C11-C10-C9} \\ \text{N3-C9-C10} \\ \text{C7-N3-C9} \\ \text{C8-N3-C9} \\ C$	129.4(4) $104.0(3)$ $125.6(4)$ $114.4(4)$ $119.9(4)$ $120.3(4)$ $122.3(4)$ $122.3(4)$ $122.3(4)$ $120.5(4)$ $120.5(4)$ $116.3(4)$ $123.2(4)$ $113.6(3)$ $123.0(4)$ $129.2(4)$ $107.8(4)$ $128.6(4)$ $128.6(4)$ $128.6(4)$ $120.1(4)$ $119.3(4)$ $119.2(4)$ $120.6(4)$ $120.3(4)$ $115.4(4)$ $126.0(4)$ $118.6(4)$ $122.1(4)$ $119.9(4)$	128.243 105.004 125.123 114.486 120.391 119.545 120.063 122.972 116.966 121.064 120.246 116.026 123.724 113.281 122.496 129.702 107.794 130.655 126.309 103.035 120.736 120.352 118.912 119.151 121.026 119.213 115.611 125.473 118.915 121.912 119.152	128.271 105.087 125.192 114.519 120.288 119.611 120.041 122.968 116.990 121.060 120.289 116.051 123.657 113.484 122.555 129.630 107.803 130.712 126.286 103.000 120.797 120.169 119.033 119.262 121.005 119.217 115.700 125.470 118.827 121.791 119.304
N2-C8-N3 113.5(4) 112.417 112.512 C3-C2-C1 119.9(4) 120.728 120.711	$\begin{array}{c} \text{C7-N1-C6} \\ \text{C8-N2-N1} \\ \text{O2-C17-C18} \\ \text{O2-C17-C16} \\ \text{C18-C17-C16} \\ \text{C17-C18-C13} \\ \text{C18-C13-C12} \\ \text{C14-C13-C12} \\ \text{C14-C13-C12} \\ \text{C14-C13-C12} \\ \text{C14-C10-C9} \\ \text{C14-C10-C9} \\ \text{C14-C10-C11} \\ \text{C11-C10-C9} \\ \text{N3-C9-C10} \\ \text{C7-N3-C9} \\ \text{C8-N3-C9} \\ \text{C8-N3-C9} \\ \text{C8-N3-C7} \\ \text{O1-C7-N1} \\ \text{O1-C7-N1} \\ \text{O1-C7-N3} \\ \text{N3-C7-N1} \\ \text{C5-C6-N1} \\ \text{C5-C6-N1} \\ \text{C5-C6-N1} \\ \text{C5-C6-C1} \\ \text{C1-C5-C4} \\ \text{C3-C4-C5} \\ \text{C2-C3-C4} \\ \text{N4-C11-C11} \\ \text{N4-C11-C10} \\ \text{C10-C11-C11} \\ \text{N4-C12-C13} \\ \text{N4-C12-C15} \\ \text{C15-C12-C13} \\ \end{array}$	129.4(4) $104.0(3)$ $125.6(4)$ $114.4(4)$ $119.9(4)$ $120.3(4)$ $122.3(4)$ $122.3(4)$ $122.3(4)$ $120.5(4)$ $120.5(4)$ $123.2(4)$ $120.6(4)$ $120.1(4)$ $119.3(4)$ $120.6(4)$ $120.3(4)$ $115.4(4)$ $126.0(4)$ $126.0(4)$ $122.1(4)$ $119.9(4)$ $118.0(4)$	128.243 105.004 125.123 114.486 120.391 119.545 120.063 122.972 116.966 121.064 120.246 116.026 123.724 113.281 122.496 129.702 107.794 130.655 126.309 103.035 120.336 120.352 118.912 119.151 121.026 119.213 115.611 125.473 118.915 121.912 119.152 118.936	128.271 105.087 125.192 114.519 120.288 119.611 120.041 122.968 116.990 121.060 120.289 116.051 123.657 113.484 122.555 129.630 107.803 130.712 126.286 103.000 120.797 120.169 119.033 119.262 121.005 119.217 115.700 125.470 118.827 121.791 119.304
C3-C2-C1 119.9(4) 120.728 120.711	$\begin{array}{c} \text{C7-N1-C6} \\ \text{C8-N2-N1} \\ \text{O2-C17-C18} \\ \text{O2-C17-C16} \\ \text{C18-C17-C16} \\ \text{C18-C13-C12} \\ \text{C14-C13-C12} \\ \text{C14-C13-C12} \\ \text{C14-C13-C12} \\ \text{C14-C10-C9} \\ \text{C14-C10-C9} \\ \text{C14-C10-C11} \\ \text{C11-C10-C9} \\ \text{N3-C9-C10} \\ \text{C7-N3-C9} \\ \text{C8-N3-C9} \\ \text{C8-N3-C7} \\ \text{O1-C7-N1} \\ \text{O1-C7-N3} \\ \text{N3-C7-N1} \\ \text{C5-C6-C1} \\ \text{C1-C6-N1} \\ \text{C5-C6-C1} \\ \text{C1-C6-N1} \\ \text{C5-C6-C1} \\ \text{C1-C6-N1} \\ \text{C6-C5-C4} \\ \text{C3-C4-C5} \\ \text{C2-C3-C4} \\ \text{N4-C11-C11} \\ \text{N4-C12-C13} \\ \text{N4-C12-C13} \\ \text{N4-C12-C13} \\ \text{C15-C12-C13} \\ \text{C16-C15-C12} \\ \end{array}$	129.4(4) $104.0(3)$ $125.6(4)$ $114.4(4)$ $119.9(4)$ $120.3(4)$ $122.3(4)$ $122.3(4)$ $122.3(4)$ $120.5(4)$ $120.5(4)$ $123.2(4)$ $120.6(4)$ $120.1(4)$ $119.3(4)$ $120.6(4)$ $120.3(4)$ $115.4(4)$ $126.0(4)$ $126.0(4)$ $122.1(4)$ $119.9(4)$ $118.0(4)$	128.243 105.004 125.123 114.486 120.391 119.545 120.063 122.972 116.966 121.064 120.246 116.026 123.724 113.281 122.496 129.702 107.794 130.655 126.309 103.035 120.352 118.912 119.151 121.026 119.213 115.611 125.473 118.915 121.912 118.936 120.273	128.271 105.087 125.192 114.519 120.288 119.611 120.041 122.968 116.990 121.060 120.289 116.051 123.657 113.484 122.555 129.630 107.803 130.712 126.286 103.000 120.797 120.169 119.033 119.262 121.005 119.217 115.700 125.470 118.827 121.791 119.304 118.904 120.279
C3-C2-C1 119.9(4) 120.728 120.711	$\begin{array}{c} \text{C7-N1-C6} \\ \text{C8-N2-N1} \\ \text{O2-C17-C18} \\ \text{O2-C17-C16} \\ \text{C18-C17-C16} \\ \text{C18-C13-C12} \\ \text{C14-C13-C12} \\ \text{C14-C13-C12} \\ \text{C14-C13-C12} \\ \text{C14-C10-C9} \\ \text{C14-C10-C9} \\ \text{C14-C10-C11} \\ \text{C11-C10-C9} \\ \text{N3-C9-C10} \\ \text{C7-N3-C9} \\ \text{C8-N3-C9} \\ \text{C8-N3-C7} \\ \text{O1-C7-N1} \\ \text{O1-C7-N3} \\ \text{N3-C7-N1} \\ \text{C5-C6-C1} \\ \text{C1-C6-N1} \\ \text{C5-C6-C1} \\ \text{C1-C6-N1} \\ \text{C5-C6-C1} \\ \text{C1-C6-N1} \\ \text{C6-C5-C4} \\ \text{C3-C4-C5} \\ \text{C2-C3-C4} \\ \text{N4-C11-C11} \\ \text{N4-C12-C13} \\ \text{N4-C12-C13} \\ \text{N4-C12-C13} \\ \text{C15-C12-C13} \\ \text{C16-C15-C12} \\ \end{array}$	129.4(4) $104.0(3)$ $125.6(4)$ $114.4(4)$ $119.9(4)$ $120.3(4)$ $122.3(4)$ $122.3(4)$ $122.3(4)$ $120.5(4)$ $120.5(4)$ $123.2(4)$ $123.2(4)$ $123.2(4)$ $123.2(4)$ $123.2(4)$ $129.2(4)$ $107.8(4)$ $128.6(4)$ $128.1(4)$ $103.4(4)$ $120.6(4)$ $120.6(4)$ $120.6(4)$ $122.1(4)$ $118.6(4)$ $122.1(4)$ $119.9(4)$ $128.6(4)$ $122.1(4)$ $119.9(4)$ $120.6(4)$	128.243 105.004 125.123 114.486 120.391 119.545 120.063 122.972 116.966 121.064 120.246 116.026 123.724 113.281 122.496 129.702 107.794 130.655 126.309 103.035 120.352 118.912 119.151 121.026 119.213 115.611 125.473 118.915 121.912 118.936 120.273	128.271 105.087 125.192 114.519 120.288 119.611 120.041 122.968 116.990 121.060 120.289 116.051 123.657 113.484 122.555 129.630 107.803 130.712 126.286 103.000 120.797 120.169 119.033 119.262 121.005 119.217 115.700 125.470 118.827 121.791 119.304 118.904 120.279
	$\begin{array}{c} \text{C7-N1-C6} \\ \text{C8-N2-N1} \\ \text{O2-C17-C18} \\ \text{O2-C17-C16} \\ \text{C18-C17-C16} \\ \text{C18-C17-C16} \\ \text{C17-C18-C13} \\ \text{C14-C13-C12} \\ \text{C14-C13-C12} \\ \text{C14-C13-C12} \\ \text{C14-C10-C9} \\ \text{C7-N3-C9} \\ \text{C8-N3-C7} \\ \text{C0-C10} \\ \text{C7-N3} \\ \text{C1-C7-N1} \\ \text{O1-C7-N3} \\ \text{N3-C7-N1} \\ \text{C5-C6-C1} \\ \text{C1-C6-N1} \\ \text{C5-C6-C1} \\ \text{C1-C6-N1} \\ \text{C6-C5-C4} \\ \text{C3-C4-C5} \\ \text{C2-C3-C4} \\ \text{N4-C11-C10} \\ \text{C10-C11-C11} \\ \text{N4-C12-C13} \\ \text{C15-C12-C13} \\ \text{C16-C15-C12} \\ \text{C15-C12-C13} \\ \text{C15-C16-C17} \\ \end{array}$	129.4(4) $104.0(3)$ $125.6(4)$ $114.4(4)$ $119.9(4)$ $120.3(4)$ $122.3(4)$ $122.3(4)$ $122.3(4)$ $122.3(4)$ $120.5(4)$ $120.5(4)$ $123.2(4)$ $123.2(4)$ $123.2(4)$ $123.2(4)$ $123.2(4)$ $123.0(4)$ $129.2(4)$ $107.8(4)$ $128.6(4)$ $128.1(4)$ $103.4(4)$ $120.6(4)$ $120.6(4)$ $120.3(4)$ $115.4(4)$ $126.0(4)$ $118.6(4)$ $122.1(4)$ $119.9(4)$ $118.0(4)$ $120.6(4)$ $120.6(4)$ $122.1(4)$	128.243 105.004 125.123 114.486 120.391 119.545 120.063 122.972 116.966 121.064 120.246 116.026 123.724 113.281 122.496 129.702 107.794 130.655 126.309 103.035 120.736 120.352 118.912 119.151 121.026 119.213 115.611 125.473 118.915 121.912 118.936 120.273 120.792	128.271 105.087 125.192 114.519 120.288 119.611 120.041 122.968 116.990 121.060 120.289 116.051 123.657 113.484 122.555 129.630 107.803 130.712 126.286 103.000 120.797 120.169 119.033 119.262 121.005 119.217 115.700 125.470 118.827 121.791 119.304 118.904 120.279 120.874
	$\begin{array}{c} \text{C7-N1-C6} \\ \text{C8-N2-N1} \\ \text{O2-C17-C18} \\ \text{O2-C17-C16} \\ \text{C18-C17-C16} \\ \text{C17-C18-C13} \\ \text{C18-C13-C12} \\ \text{C14-C13-C12} \\ \text{C14-C13-C12} \\ \text{C14-C13-C12} \\ \text{C14-C10-C9} \\ \text{C14-C10-C10} \\ \text{C10-C1-C10} \\ \text{C10-C1-C11} \\ \text{N4-C12-C13} \\ \text{C10-C1-C11} \\ \text{N4-C12-C13} \\ \text{C15-C12-C13} \\ \text{C15-C12-C12} \\ \text{C15-C12-C12} \\ \text{C15-C12-C17} \\ \text{N2-C8-N3} \\ \end{array}$	129.4(4) $104.0(3)$ $125.6(4)$ $114.4(4)$ $119.9(4)$ $120.3(4)$ $122.3(4)$ $122.3(4)$ $122.3(4)$ $122.3(4)$ $122.5(4)$ $116.3(4)$ $123.2(4)$ $123.2(4)$ $123.2(4)$ $123.2(4)$ $123.2(4)$ $123.2(4)$ $123.2(4)$ $123.2(4)$ $123.2(4)$ $123.2(4)$ $124.4(4)$ $124.4(4)$ $120.6(4)$ $120.6(4)$ $122.1(4)$ $119.9(4)$ $120.6(4)$ $122.1(4)$ $119.9(4)$ $120.6(4)$ $122.1(4)$ $119.9(4)$ $120.6(4)$ $122.1(4)$ $119.9(4)$ $120.6(4)$ $122.1(4)$ $119.9(4)$ $120.6(4)$ $121.1(4)$ $113.5(4)$	128.243 105.004 125.123 114.486 120.391 119.545 120.063 122.972 116.966 121.064 120.246 116.026 123.724 113.281 122.496 129.702 107.794 130.655 126.309 103.035 120.736 120.352 118.912 119.151 121.026 119.213 115.611 125.473 118.915 121.912 119.152 118.936 120.273 120.792 112.417	128.271 105.087 125.192 114.519 120.288 119.611 120.041 122.968 116.990 121.060 120.289 116.051 123.657 113.484 122.555 129.630 107.803 130.712 126.286 103.000 120.797 120.169 119.033 119.262 121.005 119.217 115.700 125.470 118.827 121.791 119.304 118.904 120.279 120.874 112.512

Table 2. Experimental and calculated bond lengths (Å) for TMQ.

The Cg1: N1/N2/C8/N3/C7 makes dihedral angles of 78.1(2) and 77.54(18)° with Cg3:C1-C6 and Cg5:N4/C11/C10/C14/C13/C18/C17/C16/C15/C12, respectively. The dihedral angle between Cg3 and Cg5 is $81.31(17)^\circ$. In the crystal structure (Table 5 and Figure 2), the intermolecular

hydrogen bonds (C(8)-H(8)…O(1)) and intermolecular interaction of the type C(9)-H(9A)[1] \rightarrow Cg(3) are observed and also intramolecular hydrogen bonds (Table 5) of the type C-H…N and C-H…O are viewed.

Atoms	Experimental	Calculated (B3LYP/6-31 ++G(d,p))	Calculated (B3LYP/6-311 ++G(2d,p))
D2-C17-C18-C13	178.8(3)	-179.74	-179.7641
11-N2-C8-N3	0.7(4)	-0.2628	-0.221
I2-N1-C6-C1	-4.5(5)	0.61318	0.8157
V2-N1-C6-C5	175.5(3)	-179.27	-179.9411
N2-N1-C7-O1	178.6(4)	-179.83	-179.9411
V2-N1-C7-N3	-1.1(4)	0.40339	0.3116
V3-C9-C10-C11	72.1(4)	93.382	93.1891
N3-C9-C10-C14	-108.8(4)	-85.798	-86.4007
V4-C12-C13-C14	-1.1(5)	-0.3902	-0.4741
V4-C12-C13-C18	-179.9(3)	179.709	179.6304
N4-C12-C15-C16	178.7(3)	-179.762	-179.7144
C1-C2-C3-C4	0.4(7)	-0.00438	0.0114
2-C1-C6-N1	-179.6(3)	-179.933	-179.9218
2-C1-C6-C5	0.4(6)	-0.04305	0.0238
2-C3-C4-C5	0.0(7)	0.00853	0.0119
C3-C4-C5-C6	-0.2(6)	-0.02968	-0.0169
24-C5-C6-N1	-180.0(3)	179.935	179.9436
C4-C5-C6-C1	0.0(6)	0.04691	-0.0011
C6-N1-N2-C8	-175.8(3)	179.782	179.8188
C6-N1-C7-O1	-5.9(6)	0.29240	0.1822
C6-N1-C7-N3	174.5(3)	-179.471	-179.5652
C6-C1-C2-C3	-0.6(6)	0.02160	-0.0291
C7-N1-N2-C8	0.2(4)	-0.1035	-0.0694
C7-N1-C6-C1	-179.7(4)	-179.521	-179.3168
C7-N1-C6-C5		0.5886	0.738
	0.3(5)		0.738
C7-N3-C8-N2	-1.4(5) 62.9(4)	0.5289	87.0644
C7-N3-C9-C10		87.4729	
C8-N3-C7-O1	-178.2(4)	179.684	179.8111
C8-N3-C7-N1	1.4(4)	-0.5383	-0.4265
C8-N3-C9-C10	-117.4(4)	-91.375	-92.2879
C9-N3-C7-O1	1.5(6)	0.6145	0.3349
C9-N3-C7-N1	-178.8(3)	-179.607	-179.9026
C9-N3-C8-N2	178.8(3)	179.508	179.8543
C9-C10-C11-Cl1	-1.9(5)	0.62079	0.1931
C9-C10-C11-N4	177.4(4)	179.757	179.8796
C9-C10-C14-C13	-178.2(3)	179.259	179.5551
C11-N4-C12-C13	0.4(5)	-0.08046	-0.0464
C11-N4-C12-C15	-179.3(3)	179.878	179.9016
C11-C10-C14-C13	1.0(5)	0.01812	-0.0649
C12-N4-C11-Cl1	-179.6(3)	-179.792	-179.7365
C12-N4-C11-C10	1.1(6)	0.57460	0.5683
C12-C13-C14-C10	0.3(5)	0.40370	0.5128
C12-C13-C18-C17	0.8(5)	0.07475	0.1291
C12-C15-C16-C17	1.7(6)	0.0285	0.0353
C13-C12-C15-C16	-1.1(5)	0.1977	0.235
C14-C10-C11-Cl1	178.9(3)	179.833	179.7988
C14-C10-C11-N4	-1.8(6)	-0.545	-0.5147
C14-C13-C18-C17	-177.9(3)	-179.819	-179.7598
C15-C12-C13-C14	178.6(3)	179.650	179.5777
C15-C12-C13-C18	-0.2(5)	-0.250	-0.3177
C15-C16-C17-O2	179.8(3)	179.702	179.6871
C15-C16-C17-C18	-1.1(6)	-0.2094	-0.2302
C16-C17-C18-C13	-0.1(5)	0.15403	0.1437
C18-C13-C14-C10	179.1(3)	-179.698	-179.595
C19-02-C17-C16	-172.1(3)	-179.189	-179.1433
C19-02-C17-C18	8.9(5)	0.71771	0.7693

 Table 5. Intermolecular and Intramolecular interactions of TMQ.

D-H···A/Cg	D-H	H…A/Cg	D···A	D-H…A	Symmetry
C(1)-H(1)···N(2)	0.93	2.43	2.767(6)	102	
C(5)-H(5)···O(1)	0.93	2.30	2.934(5)	125	
C(8)-H(8)····O(1)	0.93	2.27	3.180(5)	167	1/2-x, 1/2+y, 1/2-z
$C(9)-H(9A)[1] \rightarrow Cg(3)$		2.68	3.499(4)	143	1+ <i>x</i> , <i>y</i> , <i>z</i>

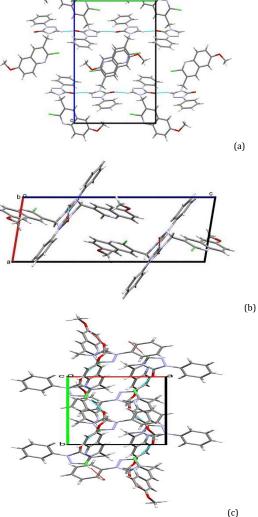
3.2. Hirshfeld surface calculations

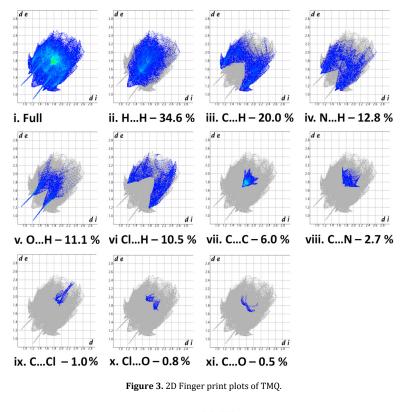
Hirshfeld surface analysis is a graphical tool for visualization and was carried out to comprehend relative contributions of various molecular contacts to intermolecular interactions in TMQ [43]. The Hirshfeld surface is a drawing of shape engaged by a molecule in the crystal structure and can be constructed from the electron division [44,45]. The 2D (two-dimensional) fingerprint plots [46,47] obtained by Hirshfeld surface analysis can classify each type of intermolecular interactions, and their relative input can be obtained from the area of the surfaces. The 2D fingerprint plots are constructed based on d_e and d_i distances scales,

displayed on the graph axes, in which the d_e represents the distance between the Hirshfeld surface and the nearest atom_{outside}, while the d_i represents the distance between this surface and the nearest atom_{inside}. The crystal structure packing of the C₁₉H₁₅N₄ClO₂compound was generated and quantified with Hirshfeld surface analysis and the associated 2D-fingerprint plots using Crystal Explorer package [48] which accepts a crystal structure input file in CIF format.

The 2D fingerprint plot for all the intermolecular interacttions are shown in Figure 3. The H…H interactions which show the most significant contribution of 34.6% to the total Hirshfeld surfaces are reflected in the middle of scattered points in the 2D fingerprint plot.

Intercontacts	Contribution (%)	Intercontacts	Contribution (%)	
Н…Н	34.6	С…С	06.0	
С…Н/Н…С	20.0	C···Cl/Cl···C	01.0	
N····H/H····N	12.8	C···N/N···C	02.7	
0H/HO	11.1	CO/OC	00.5	
Cl····H/H····Cl	10.5	Cl0/0Cl	00.8	
	2			




Figure 2. Packing of the molecules viewed along the *a*-(a), *b*-(b) and *c*-axis (c).

The C···H interactions appear as two wings and show a contribution of 20%. The N···H interaction is identified by sharp peaks which comprises 12.8% of the total Hirshfeld surface. The O···H intermolecular contact has covered 11.1% of total Hirshfeld surface area of the molecule apart from that, there are smaller contributions of Cl...H (10.5%), C···C (6.0%), C···Cl (1.0%), C···N (2.7%), C···O (0.5%), and Cl···O (0.8%) (Table 6). Hence, Hirshfeld surface analysis and fingerprint plots illustrate that the crystal lattice is stabilized by four major interactions H···H, C···H, N···H, and O···H.

In the d_{norm} surface intermolecular contacts relative to the van der Waals radii are represented by method of red-whiteblue color scheme where red regions denote shorter contacts with a negative d_{norm} value (higher electron density regions), white regions indicate the distance of contacts exactly comparable to the Van der Waals separation with zero d_{norm} value and blue regions represent longer contacts with a positive d_{norm} value (lower electron density regions) [49]. The large circular deep red colored depressions visible on d_{norm} surfaces indicate hydrogen bonding contacts such asC-H···O and additional spots are due to H-H contacts. The intermolecular interactions are also revealed from the views of electro-static potential mapped over Hirshfeld surface, shown in Figure 4. The acceptor and donor atoms participating in these interactions are shown with respective negative (red regions) and positive electrostatic potentials (blue regions).

3.3. DFT Calculations

The potential energy surface (PES) scan has been carried out on dihedral angles C_1 - C_3 - C_{12} - H_{14} , C_{30} - N_{35} - C_{12} - H_{14} at HF/6-31G level to examine all possible conformations of the title compound. The PES scan was done by minimizing the potential energy in all geometrical parameters by changing the dihedral angle for 360° rotation for both dihedral angles at steps of every 20°.

Figure 4. *d_{norm}* mapped over the Hirshfeld surface with color scale in the range -0.21 au (red) to 1.2 au (blue), green dotted lines show C-H···O intermolecular interaction. The acceptor and donor atoms are shown with respective negative (red) and positive electrostatic potentials (blue).

The geometry of molecule at local minima is selected on the basis of results obtained in PES scan study. The geometry at local minima has been assumed as starting point for the optimization calculation by utilizing Becke's three parameter hybrid model with the Lee-Yang-Parr correlation functional (B3LYP) method. The geometrical parameters (bond lengths, bond angles and dihedral angles) obtained by B3LYP/6-31++G(d,p) and B3LYP/6-31++G(2d,p) methods are compared with experimental results and were found to be reasonably in good agreement with each other (Tables 1-3).

Eventually the theoretical and experimental values differ slightly, as the experimental values of molecule have been recorded in solid phase while theoretical values were computed in gas phase. The optimized structure (Figure 5) from theoretical calculation (DFT) is superimposed with the molecular skeleton from XRD, giving a molecular overlay RMSD value of 0.09 Å (Figure 6). From the obtained results, it is concluded that the B3LYP calculations very well reproduced the geometry of TMQ.

3.4. Molecular electrostatic potential (MEP)

The MEP plot of TMQ (Figure 5) provides a visual image of the chemically active sites and comparative reactivity of atoms. The negative electrostatic potential (red) regions are mainly localized of C=O and C=N group and are promising sites for electrophilic attack. The positive regions (blue) are localized on all the rings, representing possible sites for nucleophilic attack.

3.5. Frontier molecular orbitals

The frontier molecular orbital, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) are key factors for quantum chemistry and the way of the molecule interacts with other species may be analyzed by knowing the HOMO and LUMO energy values. For organic derivatives, the HOMO-LUMO gap is very important because they relate to specific movements of electrons and may be most significant for single electron transfer.

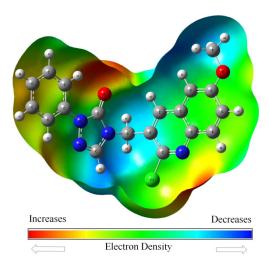


Figure 5. The optimized geometry and MEP plot of TMQ.

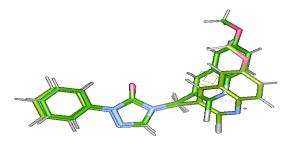


Figure 6. Superimposition diagram TMQ, experimental (Yellow stick model) and theoretical (Green stick model).

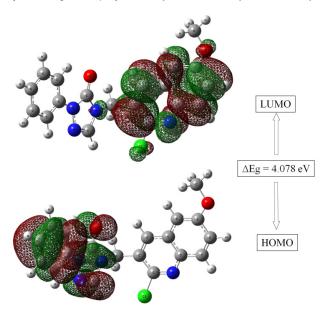


Figure 7. The molecular orbitals and energies for the HOMO and LUMO of TMQ.

The value of HOMO, LUMO and HOMO-LUMO energy gap for the TMQ was calculated by DFT/B3LYP method with 6-311++G(2d,p) basis set. The electron density plots of the HOMO and LUMO for the title molecule is presented in Figure 7. As can be seen from Figure 7 of TMQ, the HOMO is delocalized over the triazole and phenyl ring and LUMO localized over quinoline moiety.The energy values of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of TMQ are about -6.164 and -2.086 eV, respectively. In the present study, calculated $(Eg = E_{HOMO}-E_{LUMO})$ energy gap is found to be 4.078 eVwhich shows that there is a transfer of electrons from HOMO to LUMO. Accordingly, the HOMO–LUMO transition implied an electron density transfer from the triazole to quinoline.

3.6. Electronic absorption spectra

Figure 8 showed the experimental absorption spectra of the compound TMQ.

Experimenta	l method	TD-DFT B	3LYP/6-311+	++G (2d,p)						
Ethanol	Acetonitrile	Gas			Ethanol			Acetonitr	ile	
۱ (nm) Abs.	λ (nm) Abs.	λ (nm)	E (eV)	f	λ (nm)	E (eV)	f	λ (nm)	E (eV)	f
241	252	343.11	3.6135	0.0026	325.60	3.8079	0.0193	326.87	3.7931	0.0273
327	336	318.73	3.8900	0.0676	322.65	3.8427	0.0731	324.43	3.8216	0.0639
		280.85	4.4146	0.0156	282.94	4.3820	0.0193	284.24	4.3619	0.0196
		272.70	4.5465	0.0046	264.69	4.6842	0.0194	265.91	4.6626	0.0175
		271.24	4.5710	0.0252	261.90	4.7340	0.2104	262.92	4.7156	0.2116
		268.52	4.6173	0.0004	257.35	4.8178	0.1212	258.39	4.7983	0.0977
юмо			-6.3820			-6.3571			-6.1443	
JUMO			-2.1075			-2.0686			-2.0530	
Energy gap			4.2745			4.2885			4.0913	

Table 7. Experimental and calculated absorption wavelength λ (nm), excitation energies *E* (eV), and oscillator strengths (*f*) of TMQ calculated by the B3LYP method using 6-311++G(2d,p)basis set.

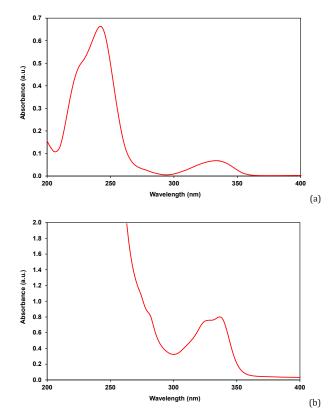


Figure 8. Experimental electronic absorption spectra of TMQ (1×10-5 M) in ethanol (a) and acetonitrile (b) at room temperature.

From Figure 8 maximum absorption wavelength bands were observed at 241, 327 nm in ethanol and 252, 336 nm in acetonitrile for the compound TMQ.

3.6.1. The theoretical electronic absorption spectrum of TMQ

In the UV absorption region, six absorptions at 343.11 nm (λ₁), 318.73 nm (λ₂), 280.85 nm (λ₃) 272.70 nm (λ₄), 271.24 nm (λ_5), and 268.52 nm (λ_6) were observed for the gas phase (Table 7). The oscillator strength (f) values corresponding to six wavelengths were 0.0026, 0.0676, 0.0156, 0.0046, 0.0252, 0.0004 oscillator strength value. In the ethanol environment, TMQ exhibited the following six wavelengths at 325.60, nm (λ_1) , 322.65 nm (λ_2) , 282.94 nm (λ_3) , 264.69, nm (λ_4) , 261.90 nm (λ_5), and 257.35 nm (λ_6), and the parallel oscillator strength (f) values were observed to be 0.0193, 0.0731, 0.0193, 0.0194, 0.2104, 0.1212, respectively. Acetonitrile environment of TMQ was absorbed at 326.87 nm (λ_1), 324.43 nm (λ_2), 284.24 nm (λ_3), 265.91 nm (λ_4), 262.92 nm (λ_5), and 258.39 nm (λ_6), and the equivalent oscillator strength (f) values were observed to be 0.0273, 0.0639, 0.0196, 0.0175, 0.2116, 0.0977.

3.7. Cyclic voltammetry (CV)

In order to investigate the electrochemical properties (HOMO and LUMO) of TMQ, cyclic voltammetry (CV) measurements were carried out. Figure 9 shows cyclic voltammogram of TMQ. HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) energy levels were calculated by using the Equations (2) and (3), respectively [50-52] and given in Table 8.

$$E_{\rm g}=1240/\lambda \tag{1}$$

$$HOMO = -[4.44 + E^{OX}_{onset}] (eV)$$
⁽²⁾

$$LUMO = [HOMO + E_{Opt}] (eV)$$
(3)

where, E^{OX}_{onset} and E_{Opt} are onset oxidation potential and optical band gap respectively. The HOMO energy levels of TMQwas determined and found to be in the range -5.052 eV (v/s. Ag/AgCl).

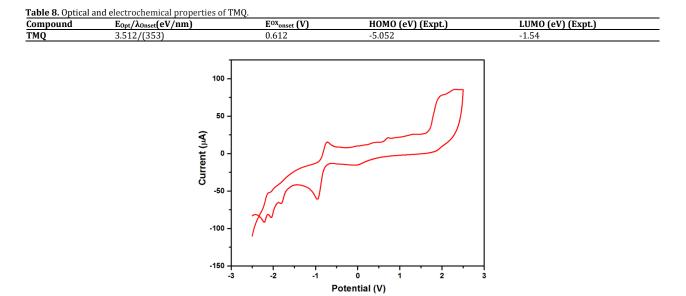


Figure 9. Cyclic voltammogram of TMQ in acetonitrile in the presence of tetrabutylammoniumhexafluorophosphate (Supporting electrolyte) at a scan rate of 100 mV/s.

From Tables 7 and 8, it was observed that the band gaps, HOMO and LUMO values obtained experimentally are approximately in close agreement with values obtained using DFT.

3.8. Mulliken atomic charges and natural charges

The calculation of atomic charges plays a vital role in the application of quantum mechanical calculations to molecular systems. Mulliken charges are evaluated by determining the electron population analysis of each atom as defined in the basic functions. The charge distributions calculated by the Mulliken [53] and NBO methods for the equilibrium geometry of TMQ are given in Table 7. Atomic charges particularly that of reactive ones are very important in defining the reactive nature of molecules under study [54]. This analysis was performed at DFT/B3LYP using two methods 6-31++G (d,p) and 6-311G++(2d,p) basis set. All the hydrogen atoms have positive charges, an acceptor atom for the studied molecule. The distribution of charge on the molecule has an important influence on the vibrational spectra.Mulliken atomic charge of the carbon atoms in the neighbourhood of C22, C23 and C36 become more positive, due to surrounded by more electronegative atoms and shows that the natural atomic charges are more sensitive to the changes in the molecular structure than Mulliken's net charges [55]. C14, Cl1, N5, C17 were changed from negative to positive, due to the effect of Cl atom. Besides, C30, C31, C34 positive to negative most possibly due to electro negativity contribution from halogen (Table 9) [54].

Mulliken charges obtained by different basis sets have been compared and represented in Table 9 in order to examine the sensitivity of the calculated charges to alter in the selection of the basis set. It is interesting to note that change in the charge distribution value is observed with two different basis sets. These natural charge calculations showed the electronegative nature of the 0, N and Cl atoms. The carbon (C22) of the triazole C=0 group possess the highest positive value of 0.79993 e (6-31++G(d,p)) and 0.78821e (6-311G++ (2d,p)) resulting from its bonding to one electronegative oxygen atom. Of the N-atoms of the triazole ring, the first Natom has the least negative charge of -0.29196. In addition, all carbon atoms are negatively charged except those attached to the strong electronegative N, O and Cl atom. The oxygen atom attached to aromatic ring (O2) has the lesser negative value - 0.53951 e / -0.52973 compared with the O4 (-0.66976 e) [6-31++G (d,p)] / O4 (-0.66559 e) [6-311G++ (2d,p)] attached with the triazole ring. The electropositive nature of all the hydrogen atoms was observed. The nitrogen atom (N3) present in the quinoline ring system possesses more electronegative value -0.45714 and -0.43291.

3.9. NBO analysis

Natural bond orbital (NBO) analysis provides the most precise possible 'natural Lewis structure' by utilizing details of all orbital that are mathematically chosen to consist of the highest probable percentage of the electron density (ED). NBO analysis helps us to understand the delocalization of electron density from 'Lewis occupied donor' NBOs to properly unoccupied 'non-Lewis acceptor' NBOs in the molecule. To explore the intra and inter-molecular interactions, the stabilization energies TMQ were calculated by using second-order perturbation theory. For each donor NBO (i) and acceptor NBO (j), the stabilization energy E⁽²⁾ associated with electron delocalization between donor and acceptor is calculated as [56].

$$E^{(2)} = \Delta E_{ij} = q_i \frac{F(i,j)^2}{e_i - e_i}$$
(4)

Where, $q_i \rightarrow$ donor orbital occupancy, $E_i, E_j \rightarrow$ diagonal elements (orbital energies) and $F(i,j) \rightarrow$ the off-diagonal NBO Fock matrix element. The complete NBO analysis and second order Fock matrix perturbation theory analysis was carried for the title molecule under study using B3LYP/6-311++G(2d,p) level of theory. In NBO analysis, the greater the $E^{(2)}$ (stabilization energy) value, the more exhaustive is the interacttion between electron-donors and electron-acceptors i.e. the more donating tendency from electron donors to electron acceptors, and greater the extent of conjugation of the whole system. The stabilization energies $[E^{(2)}]$ of the donor-acceptor interactions with more than 5 kcal/mol determined by second order perturbation analysis of Fock matrix of TMQ is reported in the Table 10.

Atoms	Atomic charges(Mulliken)	Natural charges	Atomic charges (Mulliken)	Natural charges
	6-31++G(d, p)	6-31++G(d, p)	6-311++G(2d, p)	6-311++G(2d, p)
Cl1	0.026991	-0.02079	-0.063774	-0.01987
02	-0.33771	-0.52973	-0.436535	-0.53951
N3	-0.0695	-0.43291	-0.200568	-0.45714
04	-0.52227	-0.66559	-0.48729	-0.66976
N5	0.30345	-0.28286	0.118766	-0.29196
N6	-0.37689	-0.29664	-0.376311	-0.3006
C7	-0.201	-0.29866	-0.253533	-0.20103
-18	0.165256	0.20343	0.141882	0.171
H9	0.160746	0.22838	0.173438	0.19262
H10	0.167261	0.20492	0.145156	0.17253
C11	-0.34359	0.31909	0.060499	0.33368
C12	-0.21804	-0.28958	-0.371064	-0.2701
H13	0.09385	0.24587	0.166663	0.21371
C14	0.154984	-0.08152	0.535227	-0.08708
C15	0.300682	-0.14415	-0.222587	-0.0684
H16	0.18063	0.2638	0.235302	0.22128
C17	1.282312	-0.11966	0.939888	-0.12958
C18	-0.71334	-0.25643	-0.714541	-0.18742
H19	0.207724	0.27264	0.209468	0.23384
H20	0.198725	0.26297	0.199435	0.22845
N21	-0.32406	-0.47188	-0.032455	-0.47685
C22	-0.03983	0.78821	0.081885	0.79993
223	-0.56993	0.14635	0.224346	0.15378
C24	0.34095	-0.25375	-0.131644	-0.2239
H25	0.198003	0.27427	0.213608	0.24405
226	-0.37709	-0.22412	-0.203351	-0.18635
127	0.118074	0.24002	0.133359	0.20402
C28	-0.23963	-0.24903	-0.366897	-0.21583
H29	0.105848	0.23851	0.121031	0.20374
C30	-0.17956	0.21024	-0.258584	0.22792
231	-0.62352	0.15616	-0.09016	0.16325
C32	-0.34019	-0.20288	-0.263201	-0.16782
H33	0.15829	0.25759	0.154558	0.22198
C34	0.208713	-0.24031	0.074353	-0.20578
H35	0.147777	0.25651	0.157561	0.221
236	0.322857	0.21428	0.125576	0.24812
137	0.176487	0.24649	0.183568	0.21291
238	0.073646	-0.2246	-0.085895	-0.18702
H39	0.121259	0.24003	0.134879	0.20421
C40	0.088516	-0.24848	-0.162534	-0.21785
H41	0.173131	0.26405	0.190477	0.23191

The orbital energy decreases due to the interaction between the doubly occupied orbitals and the unoccupied orbital, which is a suitable way to interpret the molecular structure in the electronic point of view. Several other types of parameters, such as hybridization, directionality and partial charges, can also be analysed from NBO tool.

The possible intensive interaction among the whole system in title compound, there is an intermolecular hyperconjugative interaction of N3-C30 from Cl1 of n(Cl1) $\rightarrow \pi^*$ (N3-C30) which increases the electron density (0.36900 e) and weakens the respective bonds N3-C30 leading to stabilization of 14.45 kJ/mol. Also, there occurs predominant intermolecular hyper-conjugative interaction of C11-C12 from O2 of $\pi(02) \rightarrow \pi^*(C11-C12)$ which increases the electron density (0.32263 e) that weakens the respective bonds C11-C12 leading to stabilization of 32.71 kJ/mol. There occurs an intermolecular hyper-conjugative interaction of C17-C30 with the electron density (0.04824 e) from N3 of $\sigma(N3) \rightarrow \sigma^*(C17-$ C30) results in to weakening the respective bonds C17-C30 and leads to stabilization of 11.76 kJ/mol. These probable observed interactions occur as an increase in electron density in the C-C anti-bonding orbital that weakens the respective bonds. In addition another kind of hyper-conjugative interaction of N5-C22 from 04 of $\pi(04) \rightarrow \sigma^*(N5-C22)$ which increases the electron density (0.09490e) that weakens the respective bonds N5-C22 leading to stabilization of 26.76 kJ/mol and a hyper-conjugative interaction of 04-C22 with stabilization energy of 29.65 kJ/mol occurs from N5 of $\sigma(N5)$ $\rightarrow \sigma^*(04\text{-}C22)$ which increases the electron density (0.34442) e) that weakens the respective bonds O4-C22. Moreover, there is also intermolecular hyper-conjugative interaction of N5-C22

from N6 of $\sigma(N6) \rightarrow \sigma^*(N5-C22)$ which increases the electron density (0.09490 e) that weakens the respective bonds N5-C22 leading to stabilization of 3.5 kJ/mol. Also, there occurs an intermolecular hyper-conjugative interaction of 04-C22 from $\sigma(N21) \rightarrow \sigma^*(04-C22)$ which increases the electron density (0.34442 e) that weakens the respective bonds 04-C22 leading to stabilization of 26.6 kJ/mol. The successful approach of second-order perturbation theory to predict the hyper-conjugative interaction energy is adopted. Electron density delocalization between the occupied Lewis type (bond or lone pair) NBO orbital and formally unoccupied (anti bond or Rydberg) non-Lewis NBO orbital corresponds to a stabilizing donor-acceptor interaction.

The NBO analysis also describes the bonding in terms of the natural hybrid orbital which occupy a higher energy orbital n3Cl1 (-0.33084 a.u.) with considerable p-character (100.0%) and low occupation number (1.92327) and the other n1(Cl1) occupy a lower energy orbital (-0.93632 a.u.) with pcharacter (16.83%) and high occupation number (1.99365). The NBO analysis also describes the bonding in terms of the natural hybrid orbital n2(02), which occupy a higher energy orbital (-0.33302 a.u.) with considerable *p*-character (100.0%) and high occupation number (1.83506). The NBO analysis also describes the bonding in terms of the natural hybrid orbital n2(04), which occupy a higher energy orbital (-0.26529 a.u.) with considerable *p*-character (100.0%) and high occupation number (1.83581). n1N5 which occupy a higher energy orbital (-0.28207 a.u.) with considerable p-character (100.0%) and high occupation number (1.60231). n1N21 which occupy a higher energy orbital (-0.28672 a.u.)

 Table 10. Second order perturbation theory analysis of Fock matrix in NBO basis corresponding to the intra-molecular bonds of TMQusing B3LYP/6-311++G

 (2d,p) basis set.

Donor (i)	Type of bond orbital	ED/e Occupancy	Acceptor (j)	Type of bond orbital	ED/e Occupancy	Energy E(2) kcal/mol	E(i)-E(j)a.u. Energy difference	F(i,j)a.u. Polarized energy
N3-C30	σ	1.98627	N3-C31	σ*	0.02423	1.85	1.40	0.046
N3-C30	π	1.81489	C17-C30	σ*	0.04824	2.93	0.96	0.049
04-C22	σ	1.98927	N5-C22	σ*	0.09490	0.99	0.96	0.028
04-C22	π	1.98837	N5-N6	σ*	0.02298	0.93	1.21	0.030
N5-N6	σ	1.97933	N5-C23	σ*	0.03683	0.93	1.22	0.030
N5-C22	σ	1.98479	04-C22	σ*	0.34442	0.68	0.97	0.025
N6-C36	σ	1.98244	N5-C23	σ*	0.03683	3.77	1.28	0.062
C11-C12		1.97760	02-C7	σ*	0.00935	1.77	0.86	0.035
C11-C12		1.73203	C14-C15	σ*	0.02000	0.58	0.51	0.016
C11-C34		1.97116	02-C7	σ*	0.00935	4.14	0.81	0.052
C14-C15	σ	1.96937	C11-C12	σ*	0.02684	1.74	1.29	0.042
C15-C17		1.71676	N3-C30	π*	0.36900	25.19	0.26	0.074
C17-C18		1.97460	N3-C30	σ*	0.02398	2.98	1.24	0.054
C17-C30		1.97742	N3-C30	σ*	0.02398	3.06	1.31	0.057
N21-C36		1.98581	04-C22	σ*	0.34442	1.38	0.98	0.036
C23-C24		1.97099	N5-N6	σ*	0.02298	6.18	1.02	0.071
C23-C24		1.97250	N5-N6	σ*	0.02298	1.42	1.02	0.034
C31-C32		1.97425	N3-C30	σ*	0.02398	2.65	1.02	0.052
C32-C34		1.75559	C11-C12	π* σ*	0.32263	18.81	0.28	0.067
C38-C40		1.97611	N5-C23	σ* π*	0.03683	4.14	1.08	0.060
	π	1.67977	C26-C28	π* *	0.33949	18.74	0.29	0.066
P Cl1	σ	1.99365	N3-C30	σ* σ*	0.02398	0.62	1.51	0.027
LP 02	σ	1.96453	C11-C12	σ^*_*	0.02684	6.99	1.15	0.080
LP N3	σ	1.89208	C17-C30	σ*	0.04824	11.76	0.83	0.090
LP 04	σ	1.97846	N5-C22	σ*	0.09490	2.37	1.10	0.046
LP N5	σ	1.60231	04-C22	σ*	0.34442	29.65	0.42	0.101
	σ	1.94352	N5-N6	σ*	0.02298 0.34442	0.94 26.60	0.71 0.42	0.023 0.096
LP N21 Fable 11 .				σ*	ıls.	20.00		
Donor(i) σN3-C30	. NBO results sho	owing the format ED/e 1.98627	ion of Lewis and EDA% 59.54	l non-Lewis orbita EDB% 40.46	ıls. NBO 0.7716(sp ^{1.57})N	+	S% 38.84	P% 60.84
LP N21 Γable 11. Donor(i) σN3-C30 πN3-C30	. NBO results sho	owing the format ED/e 1.98627 1.81489	ion of Lewis and EDA% 59.54 56.34	l non-Lewis orbita EDB% 40.46 43.66	lls. NBO 0.7716(sp ^{1.57})N 0.7506 (sp ^{1.00})N	+	S% 38.84 0.00	P% 60.84 100.0
LP N21 Fable 11. Donor(i) 5N3-C30 πN3-C30 504-C22	. NBO results sho	owing the format ED/e 1.98627 1.81489 1.98927	ion of Lewis and EDA% 59.54 56.34 70.36	l non-Lewis orbita EDB% 40.46 43.66 29.64	lls. NBO 0.7716(sp ^{1.57})N 0.7506 (sp ^{1.00})N 0.8388 (sp ^{8.84})C	+ +)+	S% 38.84 0.00 10.12	P% 60.84 100.0 89.49
LP N21 Fable 11. Donor(i) 5N3-C30 τN3-C30 504-C22 τ04-C22	. NBO results sho	owing the format ED/e 1.98627 1.81489 1.98927 1.98837	ion of Lewis and EDA% 59.54 56.34 70.36 65.61	l non-Lewis orbitz EDB% 40.46 43.66 29.64 34.39	lls. NBO 0.7716(sp ^{1.57})N 0.7506 (sp ^{1.00})N 0.8388 (sp ^{8.84})C 0.8100 (sp ^{2.43})C	+ +)+	\$% 38.84 0.00 10.12 29.02	P% 60.84 100.0 89.49 70.50
<u>Fable 11.</u> <u>Donor(i)</u> 5N3-C30 τN3-C30 τ04-C22 τ04-C22 τ04-C22 5N5-N6	. NBO results sho	owing the format ED/e 1.98627 1.81489 1.98927 1.98837 1.97933	ion of Lewis and EDA% 59.54 56.34 70.36 65.61 55.18	I non-Lewis orbita EDB% 40.46 43.66 29.64 34.39 44.82	lls. NBO 0.7716(sp ^{1.57})N 0.7506 (sp ^{1.00})N 0.8388 (sp ^{8.84})C 0.8100 (sp ^{2.43})C 0.7428 (sp ^{2.66})N	+ +)+ +	\$% 38.84 0.00 10.12 29.02 27.30	P% 60.84 100.0 89.49 70.50 72.59
LP N21 Table 11. Donor(i) 5N3-C30 τN3-C30 τO4-C22 τO4-C22 5N5-N6 5N5-C22	NBO results sho	bwing the format ED/e 1.98627 1.81489 1.98927 1.98837 1.97933 1.98479	ion of Lewis and EDA% 59.54 56.34 70.36 65.61 55.18 63.20	I non-Lewis orbitz EDB% 40.46 43.66 29.64 34.39 44.82 36.80	NBO 0.7716(sp ^{1.57})N 0.7506 (sp ^{1.00})N 0.8388 (sp ^{8.84})C 0.8100 (sp ^{2.43})C 0.7428 (sp ^{2.65})N 0.7950 (sp ^{1.94})N	+ + + +	\$% 38.84 0.00 10.12 29.02 27.30 33.92	P% 60.84 100.0 89.49 70.50 72.59 65.96
LP N21 Table 11. Donor(i) 5N3-C30 τN3-C30 τ04-C22 τ04-C22 τN5-N6 5N5-C22 5N6-C36	. NBO results sho	owing the format ED/e 1.98627 1.81489 1.98927 1.98837 1.97933 1.98479 1.98244	ion of Lewis and EDA% 59.54 56.34 70.36 65.61 55.18 63.20 58.86	l non-Lewis orbita EDB% 40.46 43.66 29.64 34.39 44.82 36.80 41.14	Ils. NBO 0.7716(sp ^{1.57})N 0.7506 (sp ^{1.00})N 0.8388 (sp ^{8.84})C 0.8100 (sp ^{2.43})C 0.7428 (sp ^{2.66})N 0.7950 (sp ^{1.94})N 0.7672 (sp ^{1.61})N	+ +)+ + +	S% 38.84 0.00 10.12 29.02 27.30 33.92 38.08	P% 60.84 100.0 89.49 70.50 72.59 65.96 61.44
<u>Cable 11.</u> Cable 11. Donor(i) 5N3-C30 τN3-C30 τO4-C22 τO4-C22 τO4-C22 5N5-N6 5N5-C22 5N5-C22 5N6-C36 5τC11-C12	. NBO results sho	owing the format ED/e 1.98627 1.81489 1.98927 1.98837 1.97933 1.98479 1.98244 1.97760	ion of Lewis and EDA% 59.54 56.34 70.36 65.61 55.18 63.20 58.86 50.16	l non-Lewis orbita EDB% 40.46 43.66 29.64 34.39 44.82 36.80 41.14 49.84	Ils. NBO 0.7716(sp ^{1.57})N 0.7506 (sp ^{1.00})N 0.8388 (sp ^{8.84})C 0.8100 (sp ^{2.43})C 0.7428 (sp ^{2.66})N 0.7950 (sp ^{1.94})N 0.7672 (sp ^{1.61})N 0.7082 (sp ^{1.54})C	+ + + + + +	5% 38.84 0.00 10.12 29.02 27.30 33.92 38.08 39.35	P% 60.84 100.0 89.49 70.50 72.59 65.96 61.44 60.59
P N21 Cable 11. Donor(i) 5N3-C30 tN3-C30 t004-C22 t04-C22 t04-C22 t05-N6 5N5-N6 5N6-C36 5C11-C12 t C11-C12	. NBO results sho 2	owing the format ED/e 1.98627 1.81489 1.98927 1.98837 1.97933 1.98479 1.98244 1.97760 1.73203	ion of Lewis and EDA% 59.54 56.34 70.36 65.61 55.18 63.20 58.86 50.16 45.93	l non-Lewis orbita EDB% 40.46 43.66 29.64 34.39 44.82 36.80 41.14 49.84 54.07	Ils. NBO 0.7716(sp ^{1.57})N 0.7506 (sp ^{1.00})N 0.8388 (sp ^{8.84})C 0.8100 (sp ^{2.43})C 0.7428 (sp ^{2.66})N 0.7950 (sp ^{1.94})N 0.7672 (sp ^{1.54})C 0.7082 (sp ^{1.54})C 0.6777 (sp ^{1.00})C	+ +)+ + + + +	5% 38.84 0.00 10.12 29.02 27.30 33.92 38.08 39.35 0.00	P% 60.84 100.0 89.49 70.50 72.59 65.96 61.44 60.59 100.0
P N21 Table 11. Donor(i) xN3-C30 x04-C22 x04-C22 x05-C62 x05-C62 x06-C36 x06-C36 x01-C12 x01-C12 x01-C12	. NBO results sho 2 2	by wing the format ED/e 1.98627 1.81489 1.98927 1.98837 1.97933 1.98479 1.98244 1.97760 1.73203 1.97116	ion of Lewis and EDA% 59.54 56.34 70.36 65.61 55.18 63.20 58.86 50.16 45.93 50.72	I non-Lewis orbitz EDB% 40.46 43.66 29.64 34.39 44.82 36.80 41.14 49.84 54.07 49.28	NBO 0.7716 (sp ^{1.57})N 0.7506 (sp ^{1.00})N 0.8388 (sp ^{8.84})C 0.8100 (sp ^{2.43})C 0.7428 (sp ^{2.66})N 0.7950 (sp ^{1.94})N 0.7672 (sp ^{1.61})N 0.7672 (sp ^{1.54})C 0.6777 (sp ^{1.00})C 0.7122 (sp ^{1.80})C	+ + + + + + + + + +	5% 38.84 0.00 10.12 29.02 27.30 33.92 38.08 39.35 0.00 35.64	P% 60.84 100.0 89.49 70.50 72.59 65.96 61.44 60.59 100.0 64.29
P N21 Cable 11. Donor(i) IN3-C30 t04-C22 t04-C22 t04-C22 t05-N6 t05-C25 t06-C36 t01-C12 t11-C12 t11-C12 t11-C12 t11-C14	NBO results sho	by wing the format ED/e 1.98627 1.81489 1.98927 1.98837 1.9733 1.98479 1.98244 1.97760 1.73203 1.97116 1.96937	ion of Lewis and EDA% 59.54 56.34 70.36 65.61 55.18 63.20 58.86 50.16 45.93 50.72 51.49	I non-Lewis orbitz EDB% 40.46 43.66 29.64 34.39 44.82 36.80 41.14 49.84 54.07 49.28 48.51	NBO 0.7716 (sp ^{1.57})N 0.7506 (sp ^{1.00})N 0.8388 (sp ^{8.84})C 0.8100 (sp ^{2.43})C 0.7428 (sp ^{2.65})N 0.7950 (sp ^{1.34})N 0.7672 (sp ^{1.54})C 0.7672 (sp ^{1.54})C 0.6777 (sp ^{1.00})C 0.7122 (sp ^{1.80})C 0.7176 (sp ^{2.00})C	+ + + + + + + + + + +	\$% 38.84 0.00 10.12 29.02 27.30 33.92 38.08 39.35 0.00 35.64 33.30	P% 60.84 100.0 89.49 70.50 72.59 65.96 61.44 60.59 100.0 64.29 66.63
LP N21 Fable 11. Donor(i) π N3-C30 π N3-C30 π O4-C22 π N5-N6 π N5-C22 π N6-C36 π C11-C12 π C11-C134 π C11-C15 π C11-C17 π C11-C17 π C11-C17 π C11-C17	NBO results sho 2 2 4 5 7	owing the format ED/e 1.98627 1.81489 1.98927 1.98837 1.97933 1.98479 1.98244 1.97760 1.73203 1.97116 1.97137 1.96937 1.71676	ion of Lewis and EDA% 59.54 56.34 70.36 65.61 55.18 63.20 58.86 50.16 45.93 50.72 51.49 45.60	I non-Lewis orbita EDB% 40.46 43.66 29.64 34.39 44.82 36.80 41.14 49.84 54.07 49.28 48.51 54.40	NBO 0.7716 (sp ^{1.57})N 0.7506 (sp ^{1.00})N 0.8388 (sp ^{8.84})C 0.8100 (sp ^{2.43})C 0.7428 (sp ^{2.65})N 0.7428 (sp ^{2.65})N 0.7950 (sp ^{1.94})N 0.7672 (sp ^{1.61})N 0.7082 (sp ^{1.54})C 0.6777 (sp ^{1.00})C 0.7122 (sp ^{1.80})C 0.7176 (sp ^{2.00})C 0.6752 (sp ^{1.00})C	+ + + + + + + + + + + +	\$% 38.84 0.00 10.12 29.02 27.30 33.92 38.08 39.35 0.00 35.64 33.30 0.00	P% 60.84 100.0 89.49 70.50 72.59 65.96 61.44 60.59 100.0 64.29 66.63 100.0
P N21 Cable 11. Donor(i) JN3-C30 tN3-C30 tN3-C30 tod-C22 tod-C22 tod-C36 to1-C12 to1-C12 <t< td=""><td>NBO results sho</td><td>owing the format ED/e 1.98627 1.81489 1.98927 1.98837 1.97933 1.98479 1.98244 1.97760 1.73203 1.97116 1.96937 1.71676 1.97460</td><td>ion of Lewis and EDA% 59.54 56.34 70.36 65.61 55.18 63.20 58.86 50.16 45.93 50.72 51.49 45.60 50.77</td><td>I non-Lewis orbitz EDB% 40.46 43.66 29.64 34.39 44.82 36.80 41.14 49.84 54.07 49.28 48.51 54.40 49.23</td><td>IIS. NBO 0.7716(sp^{1.57})N 0.7506 (sp^{1.00})N 0.8388 (sp^{8.84})C 0.8100 (sp^{2.43})C 0.7428 (sp^{2.64})N 0.7950 (sp^{1.94})N 0.7672 (sp^{1.61})N 0.7082 (sp^{1.54})C 0.6777 (sp^{1.00})C 0.7122 (sp^{1.80})C 0.7126 (sp^{2.00})C 0.7125 (sp^{2.15})C</td><td>+ + + + + + + + + + + + + +</td><td>S% 38.84 0.00 10.12 29.02 27.30 33.92 38.08 39.35 0.00 35.64 33.30 0.00 31.72</td><td>P% 60.84 100.0 89.49 70.50 72.59 65.96 61.44 60.59 100.0 64.29 66.63 100.0 68.22</td></t<>	NBO results sho	owing the format ED/e 1.98627 1.81489 1.98927 1.98837 1.97933 1.98479 1.98244 1.97760 1.73203 1.97116 1.96937 1.71676 1.97460	ion of Lewis and EDA% 59.54 56.34 70.36 65.61 55.18 63.20 58.86 50.16 45.93 50.72 51.49 45.60 50.77	I non-Lewis orbitz EDB% 40.46 43.66 29.64 34.39 44.82 36.80 41.14 49.84 54.07 49.28 48.51 54.40 49.23	IIS. NBO 0.7716(sp ^{1.57})N 0.7506 (sp ^{1.00})N 0.8388 (sp ^{8.84})C 0.8100 (sp ^{2.43})C 0.7428 (sp ^{2.64})N 0.7950 (sp ^{1.94})N 0.7672 (sp ^{1.61})N 0.7082 (sp ^{1.54})C 0.6777 (sp ^{1.00})C 0.7122 (sp ^{1.80})C 0.7126 (sp ^{2.00})C 0.7125 (sp ^{2.15})C	+ + + + + + + + + + + + + +	S% 38.84 0.00 10.12 29.02 27.30 33.92 38.08 39.35 0.00 35.64 33.30 0.00 31.72	P% 60.84 100.0 89.49 70.50 72.59 65.96 61.44 60.59 100.0 64.29 66.63 100.0 68.22
<u>P N21</u> Fable 11. Donor(i) N3-C30 τ04-C22 τ04-C	NBO results sho	bwing the format ED/e 1.98627 1.98927 1.98937 1.97933 1.98479 1.98244 1.97760 1.73203 1.97116 1.96937 1.71676 1.97460 1.97742	ion of Lewis and EDA% 59.54 56.34 70.36 65.61 55.18 63.20 58.86 50.16 45.93 50.72 51.49 45.60 50.77 50.77	I non-Lewis orbitz EDB% 40.46 43.66 29.64 34.39 44.82 36.80 41.14 49.84 54.07 49.28 48.51 54.40 49.23	NBO 0.7716 (sp1.57)N 0.7506 (sp1.00)N 0.8388 (sp8.84)C 0.8100 (sp2.43)C 0.7428 (sp2.66)N 0.7950 (sp1.94)N 0.7672 (sp1.61)N 0.7082 (sp1.54)C 0.6777 (sp1.00)C 0.7122 (sp1.80)C 0.7125 (sp2.01)C 0.7125 (sp2.04)C 0.7125 (sp2.04)C	+ + + + + + + + + + + + + +	\$% 38.84 0.00 10.12 29.02 27.30 33.92 38.08 39.35 0.00 35.64 33.30 0.00 31.72 32.89	P% 60.84 100.0 89.49 70.50 72.59 65.96 61.44 60.59 100.0 64.29 66.63 100.0 68.22 67.03
P N21 Gable 11. Donor(j) JN3-C30 TN3-C30 TN3-C30 JO-C22 TO-C22	NBO results sho	by wing the format ED/e 1.98627 1.81489 1.98927 1.9837 1.97933 1.98479 1.98244 1.97760 1.73203 1.97116 1.96937 1.71676 1.97460 1.97742 1.98581	ion of Lewis and EDA% 59.54 56.34 70.36 65.61 55.18 63.20 58.86 50.16 45.93 50.72 51.49 45.60 50.77 50.77 63.53	I non-Lewis orbitz EDB% 40.46 43.66 29.64 34.39 44.82 36.80 41.14 49.84 54.07 49.28 48.51 54.40 49.23 49.23 36.47	NBO 0.7716 (sp1.57)N 0.7506 (sp1.00)N 0.8388 (sp8.84)C 0.8100 (sp2.43)C 0.7428 (sp2.66)N 0.7950 (sp1.94)N 0.7672 (sp1.61)N 0.7082 (sp1.54)C 0.6777 (sp1.00)C 0.7122 (sp1.80)C 0.7126 (sp2.00)C 0.7125 (sp2.10)C 0.7125 (sp2.10)C 0.7126 (sp2.00)C 0.7125 (sp2.01)C 0.7970 (sp1.96)N	+ + + + + + + + + +	5% 38.84 0.00 10.12 29.02 27.30 33.92 38.08 39.35 0.00 35.64 33.30 0.00 31.72 32.89 33.74	P% 60.84 100.0 89.49 70.50 72.59 65.96 61.44 60.59 100.0 64.29 66.63 100.0 68.22 67.03 66.14
P N21 Table 11. Donor(i) m3-C30 tN3-C30 to4-C22 to4-C15 to4	NBO results sho	by wing the format ED/e 1.98627 1.81489 1.98927 1.98837 1.97933 1.98479 1.98244 1.97760 1.73203 1.97116 1.96937 1.71676 1.97460 1.97742 1.98581 1.97099	ion of Lewis and EDA% 59.54 56.34 70.36 65.61 55.18 63.20 58.86 50.16 45.93 50.72 51.49 45.60 50.77 50.77 63.53 51.62	I non-Lewis orbitz EDB% 40.46 43.66 29.64 34.39 44.82 36.80 41.14 49.84 54.07 49.28 48.51 54.40 49.23 36.47 48.38	NBO 0.7716 (sp ^{1.57})N 0.7506 (sp ^{1.00})N 0.8388 (sp ^{8.84})C 0.8100 (sp ^{2.43})C 0.7428 (sp ^{2.65})N 0.7950 (sp ^{1.94})N 0.7672 (sp ^{1.61})N 0.7672 (sp ^{1.54})C 0.6777 (sp ^{1.00})C 0.7122 (sp ^{1.61})N 0.7122 (sp ^{1.61})C 0.7176 (sp ^{2.00})C 0.7125 (sp ^{2.15})C 0.7125 (sp ^{2.04})C 0.7970 (sp ^{1.96})N 0.7184 (sp ^{1.68})C	+ + + + + + + + + + + + + + + + +	S% 38.84 0.00 10.12 29.02 27.30 33.92 38.08 39.35 0.00 35.64 33.30 0.00 31.72 32.89 33.74 37.33	P% 60.84 100.0 89.49 70.50 72.59 65.96 61.44 60.59 100.0 64.29 66.63 100.0 68.22 67.03 66.14 62.62
P N21 Cable 11. Donor(j) xN3-C30 x04-C22 x05-N6 x05-N6 x05-C26 x06-C36 x011-C34 x014-C15 x014-C15 x014-C15 x014-C15 x014-C36 x014-C32 x014-C32 x014-C32 x014-C35 x012-C36 x023-C24 x023-C24 x023-C40	NBO results sho 2 2 4 5 5 6 4	owing the format ED/e 1.98627 1.81489 1.98927 1.98837 1.97933 1.98479 1.98244 1.97760 1.73203 1.97116 1.96937 1.71676 1.97460 1.97742 1.98581 1.97099 1.97250	ion of Lewis and EDA% 59.54 56.34 70.36 65.61 55.18 63.20 58.86 50.16 45.93 50.72 51.49 45.60 50.77 50.77 63.53 51.62 51.52	I non-Lewis orbit: EDB% 40.46 43.66 29.64 34.39 44.82 36.80 41.14 49.84 54.07 49.28 48.51 54.40 49.23 36.47 48.38 48.48	NBO 0.7716 (sp ^{1.57})N 0.7506 (sp ^{1.00})N 0.8388 (sp ^{8.84})C 0.8100 (sp ^{2.43})C 0.7428 (sp ^{2.65})N 0.7950 (sp ^{1.94})N 0.7672 (sp ^{1.61})N 0.7672 (sp ^{1.61})N 0.7672 (sp ^{1.61})N 0.7672 (sp ^{1.60})C 0.6777 (sp ^{1.00})C 0.7176 (sp ^{2.00})C 0.7125 (sp ^{2.15})C 0.7125 (sp ^{2.04})C 0.7970 (sp ^{1.96})N 0.7184 (sp ^{1.69})C 0.7178 (sp ^{1.71})C	+ + + + + + + + + + + + + + + + + + +	\$% 38.84 0.00 10.12 29.02 27.30 33.92 38.08 39.35 0.00 35.64 33.30 0.00 31.72 32.89 33.74 37.33 36.94	P% 60.84 100.0 89.49 70.50 72.59 65.96 61.44 60.59 100.0 64.29 66.63 100.0 68.22 67.03 66.14 62.62 63.00
<u>P N21</u> Fable 11. Donor(i) N3-C30 τN3-C30 τ04-C22 τ04-C	NBO results sho	owing the format ED/e 1.98627 1.81489 1.98927 1.98837 1.97933 1.98479 1.98244 1.97760 1.73203 1.97116 1.96937 1.71676 1.97460 1.97742 1.98581 1.97099 1.97250 1.97425	ion of Lewis and EDA% 59.54 56.34 70.36 65.61 55.18 63.20 58.86 50.16 45.93 50.72 51.49 45.60 50.77 50.77 50.77 63.53 51.62 51.52 51.17	I non-Lewis orbitz EDB% 40.46 43.66 29.64 34.39 44.82 36.80 41.14 49.84 54.07 49.28 48.51 54.40 49.23 49.23 36.47 48.38 48.48 48.83	IIS. NBO 0.7716(sp ^{1.57})N 0.7506 (sp ^{1.00})N 0.8388 (sp ^{8.49})C 0.8100 (sp ^{2.43})C 0.7428 (sp ^{2.64})N 0.7950 (sp ^{1.94})N 0.7672 (sp ^{1.61})N 0.7082 (sp ^{1.54})C 0.6777 (sp ^{1.00})C 0.7172 (sp ^{1.80})C 0.7172 (sp ^{1.80})C 0.7125 (sp ^{2.04})C 0.7125 (sp ^{2.04})C 0.7125 (sp ^{2.04})C 0.7125 (sp ^{2.04})C 0.7128 (sp ^{1.96})N 0.7178 (sp ^{1.71})C 0.7154 (sp ^{1.87})C	+ +	S% 38.84 0.00 10.12 29.02 27.30 33.92 38.08 39.35 0.00 35.64 33.30 0.00 31.72 32.89 33.74 37.33 36.94 34.88	P% 60.84 100.0 89.49 70.50 72.59 65.96 61.44 60.59 100.0 64.29 66.63 100.0 68.22 67.03 66.14 62.62 63.00 65.06
P N21 Cable 11. Donor(i) N3-C30 tN3-C30 t04-C22 t04-C23 t04-C3 t04-	NBO results sho	owing the format ED/e 1.98627 1.98927 1.98927 1.98937 1.97933 1.98479 1.98244 1.97760 1.73203 1.97116 1.96761 1.97460 1.97742 1.97551 1.97250 1.97250 1.97255 1.75559	ion of Lewis and EDA% 59.54 56.34 70.36 65.61 55.18 63.20 58.86 50.16 45.93 50.72 51.49 45.60 50.77 50.77 63.53 51.62 51.52 51.17 49.06	I non-Lewis orbitz EDB% 40.46 43.66 29.64 34.39 44.82 36.80 41.14 49.84 54.07 49.28 48.51 54.40 49.23 36.47 48.38 48.48 50.94	NBO 0.7716 (sp1.57)N 0.7506 (sp1.00)N 0.8388 (sp8.84)C 0.8100 (sp2.43)C 0.7428 (sp2.66)N 0.7950 (sp1.94)N 0.7672 (sp1.61)N 0.7082 (sp1.54)C 0.6777 (sp1.00)C 0.7122 (sp1.80)C 0.7125 (sp2.04)C 0.7125 (sp2.04)C 0.7125 (sp2.04)C 0.7128 (sp1.68)C 0.7128 (sp1.77)C 0.7124 (sp1.87)C 0.7125 (sp2.04)C	+ + + + + + + + + + + + + + + + +	\$% 38.84 0.00 10.12 29.02 27.30 33.92 38.08 39.35 0.00 35.64 33.30 0.00 31.72 32.89 33.74 37.33 36.94 34.88 0.00	P% 60.84 100.0 89.49 70.50 72.59 65.96 61.44 60.59 100.0 64.29 66.63 100.0 68.22 67.03 66.14 62.62 63.00 65.06 100.00
P N21 Table 11. Donor(i) N3-C30 tN3-C30 tN3-C30 to4-C22 to4	NBO results sho	by wing the format ED/e 1.98627 1.81489 1.98927 1.98937 1.97933 1.98479 1.98244 1.97760 1.73203 1.97116 1.96937 1.71676 1.97460 1.97742 1.97581 1.97099 1.97250 1.97425 1.75559 1.97611	ion of Lewis and EDA% 59.54 56.34 70.36 65.61 55.18 63.20 58.86 50.16 45.93 50.72 51.49 45.60 50.77 50.77 50.77 50.77 50.77 50.77 50.77 51.52 51.17 49.06 49.51	I non-Lewis orbitz EDB% 40.46 43.66 29.64 34.39 44.82 36.80 41.14 49.84 54.07 49.28 48.51 54.40 49.23 49.23 36.47 48.38 48.48 48.83 50.94 50.49	NBO 0.7716 (sp1.57)N 0.7506 (sp1.60)N 0.8388 (sp8.84)C 0.8100 (sp2.43)C 0.7428 (sp2.66)N 0.7950 (sp1.94)N 0.7672 (sp1.61)N 0.7672 (sp1.61)N 0.7672 (sp1.61)C 0.6777 (sp1.00)C 0.7122 (sp1.80)C 0.7125 (sp2.01)C 0.7125 (sp2.01)C 0.7125 (sp2.01)C 0.7184 (sp1.68)C 0.7154 (sp1.81)C 0.7004 (sp1.91)C 0.7036 (sp1.81)C	+ + + + + + + + + + + + + + + + +	S% 38.84 0.00 10.12 29.02 27.30 33.92 38.08 39.35 0.00 35.64 33.30 0.00 31.72 32.89 33.74 37.33 36.94 34.88 0.00 35.59	P% 60.84 100.0 89.49 70.50 72.59 65.96 61.44 60.59 100.0 64.29 66.63 100.0 68.22 67.03 66.14 62.62 63.00 65.06 100.00 64.29
P N21 Gable 11. Donor(i) JN3-C30 TN3-C30 TN3-C30 JO4-C22 TO4-C22 TO4-C22 TO4-C22 TO4-C22 TO5-N6 TO1-C12 TC11-C12 TC11-C14 TC11-C15 TC11-C16 TC17-C18 TC23-C24 TC32-C34 TC32-C34 TC32-C34 TC38-C40 TC38-C40	NBO results sho	by wing the format ED/e 1.98627 1.81489 1.98927 1.98837 1.97933 1.98479 1.98244 1.97760 1.73203 1.97116 1.96937 1.71676 1.97460 1.97742 1.97759 1.97250 1.97259 1.97259 1.97559 1.97611 1.67977	ion of Lewis and EDA% 59.54 56.34 70.36 65.61 55.18 63.20 58.86 50.16 45.93 50.72 51.49 45.60 50.77 50.77 63.53 51.62 51.52 51.17 49.06	I non-Lewis orbitz EDB% 40.46 43.66 29.64 34.39 44.82 36.80 41.14 49.84 54.07 49.28 48.51 54.40 49.23 36.47 48.38 48.48 50.94	NBO 0.7716 (sp1-57)N 0.7506 (sp1.00)N 0.8388 (sp8.84)C 0.8100 (sp2-43)C 0.7428 (sp2.65)N 0.7950 (sp1.94)N 0.7672 (sp1.61)N 0.7672 (sp1.61)N 0.7672 (sp1.61)N 0.7082 (sp1.54)C 0.6777 (sp1.00)C 0.7122 (sp2.04)C 0.7125 (sp2.04)C 0.7125 (sp2.04)C 0.7184 (sp1.68)C 0.7184 (sp1.87)C 0.7154 (sp1.87)C 0.7036 (sp1.810)C 0.7036 (sp1.810)C 0.7036 (sp1.810)C 0.7036 (sp1.810)C 0.7036 (sp1.810)C 0.7036 (sp1.810)C 0.7018 (sp1.00)C	+ + + + + + + + + + + + + + + + +	S% 38.84 0.00 10.12 29.02 27.30 33.92 38.08 39.35 0.00 35.64 33.30 0.00 31.72 32.89 33.74 37.33 36.94 34.88 0.00 35.59 0.00	P% 60.84 100.0 89.49 70.50 72.59 65.96 61.44 60.59 100.0 64.29 66.63 100.0 68.22 67.03 66.14 62.62 63.00 65.06 100.00 64.29 100.00
P N21 Table 11. Donor(1) rN3-C30 rN3-C30 r04-C22 r04-C23 r01-C18 r023-C24 r04-C32 r03-C32 r	NBO results sho 2 2 4 5 7 8 9 9 5 6 4 9 9 9	owing the format ED/e 1.98627 1.81489 1.98927 1.98837 1.97933 1.98479 1.98244 1.97760 1.73203 1.97116 1.96937 1.71676 1.97460 1.97742 1.98581 1.97099 1.97250 1.97425 1.97559 1.97611 1.67977 1.99365	ion of Lewis and EDA% 59.54 56.34 70.36 65.61 55.18 63.20 58.86 50.16 45.93 50.72 51.49 45.60 50.77 50.77 50.77 50.77 50.77 50.77 50.77 51.52 51.17 49.06 49.51	I non-Lewis orbitz EDB% 40.46 43.66 29.64 34.39 44.82 36.80 41.14 49.84 54.07 49.28 48.51 54.40 49.23 49.23 36.47 48.38 48.48 48.83 50.94 50.49	NBO 0.7716 (sp ^{1.57})N 0.7506 (sp ^{1.00})N 0.8388 (sp ^{8.84})C 0.8100 (sp ^{2.43})C 0.8100 (sp ^{2.43})C 0.7428 (sp ^{2.65})N 0.7950 (sp ^{1.94})N 0.7672 (sp ^{1.61})N 0.7672 (sp ^{1.61})N 0.7672 (sp ^{1.60})C 0.6777 (sp ^{1.00})C 0.7176 (sp ^{2.01})C 0.7125 (sp ^{2.15})C 0.7125 (sp ^{2.15})C 0.7125 (sp ^{2.15})C 0.7126 (sp ^{1.90})N 0.7184 (sp ^{1.69})C 0.7184 (sp ^{1.69})C 0.7184 (sp ^{1.69})C 0.7184 (sp ^{1.69})C 0.7004 (sp ^{1.00})C 0.7036 (sp ^{1.81})C 0.7018 (sp ^{1.00})C	+ + + + + + + + + + + + + + + + +	S% 38.84 0.00 10.12 29.02 27.30 33.92 38.08 39.35 0.00 35.64 33.30 0.00 31.72 32.89 33.74 37.33 36.94 34.88 0.00 35.59 0.00 83.16	P% 60.84 100.0 89.49 70.50 72.59 65.96 61.44 60.59 100.0 64.29 66.63 100.0 68.22 67.03 66.14 62.62 63.00 65.06 100.0 64.29 100.0 64.29 100.0 64.31 66.32 66.33 100.0 66.34 66.35 100.00 65.36 100.00 64.29 100.0 16.83
<u>P N21</u> Fable 11. Donor(i) N3-C30 τN3-C30 τ04-C22 τ04-C3 τ04-C4 τ04-C3 τ04-C4 τ04-C3 τ04-C4	NBO results sho	owing the format ED/e 1.98627 1.81489 1.98927 1.98937 1.97933 1.98479 1.98244 1.97760 1.73203 1.97116 1.96761 1.97742 1.97742 1.97559 1.97425 1.97559 1.97611 1.67977 1.99365 1.9696	ion of Lewis and EDA% 59.54 56.34 70.36 65.61 55.18 63.20 58.86 50.16 45.93 50.72 51.49 45.60 50.77 50.77 50.77 50.77 50.77 50.77 50.77 51.52 51.17 49.06 49.51	I non-Lewis orbitz EDB% 40.46 43.66 29.64 34.39 44.82 36.80 41.14 49.84 54.07 49.28 48.51 54.40 49.23 49.23 36.47 48.38 48.48 48.83 50.94 50.49	NBO 0.7716 (sp1.57)N 0.7506 (sp1.00)N 0.8388 (sp8.84)C 0.8100 (sp2.43)C 0.7428 (sp2.66)N 0.7950 (sp1.94)N 0.7052 (sp1.61)N 0.7082 (sp1.54)C 0.6777 (sp1.00)C 0.7122 (sp1.80)C 0.7125 (sp2.04)C 0.7125 (sp2.04)C 0.7125 (sp2.15)C 0.7128 (sp1.57)C 0.7178 (sp1.71)C 0.7178 (sp1.71)C 0.7004 (sp1.80)C 0.7036 (sp1.81)C 0.7018 (sp1.00)C sp2.00 0.7018 (sp1.00)C sp2.00	+ + + + + + + + + + + + + + + + +	\$% 38.84 0.00 10.12 29.02 27.30 33.92 38.08 39.35 0.00 35.64 33.30 0.00 31.72 32.89 33.74 37.33 36.94 34.88 0.00 35.59 0.00 83.16 0.52	P% 60.84 100.0 89.49 70.50 72.59 65.96 61.44 60.59 100.0 64.29 66.63 100.0 68.22 67.03 66.14 62.62 63.00 65.06 100.0 64.29 100.0 64.29 100.0 64.29 100.0 64.29 100.0 64.29 100.0 64.29 100.0 64.29 100.0 64.29 100.0 64.29 100.0 64.3 99.47
P N21 Table 11. Donor(i) N3-C30 tN3-C30 tN3-C30 to4-C22 to4-C32 to4	NBO results sho	owing the format ED/e 1.98627 1.98827 1.98927 1.98927 1.98244 1.97760 1.73203 1.97116 1.96760 1.71676 1.97460 1.97742 1.97559 1.97455 1.97559 1.97611 1.67977 1.99365 1.9666 1.92327	ion of Lewis and EDA% 59.54 56.34 70.36 65.61 55.18 63.20 58.86 50.16 45.93 50.72 51.49 45.60 50.77 50.77 50.77 50.77 50.77 50.77 50.77 51.52 51.17 49.06 49.51	I non-Lewis orbitz EDB% 40.46 43.66 29.64 34.39 44.82 36.80 41.14 49.84 54.07 49.28 48.51 54.40 49.23 49.23 36.47 48.38 48.48 48.83 50.94 50.49	NBO 0.7716 (sp1.57)N 0.7506 (sp1.00)N 0.8388 (sp8.84)C 0.8100 (sp2.43)C 0.7428 (sp2.66)N 0.7950 (sp1.94)N 0.7672 (sp1.61)N 0.7082 (sp1.54)C 0.6777 (sp1.00)C 0.7122 (sp1.80)C 0.7125 (sp2.00)C 0.7125 (sp2.01)C 0.7125 (sp2.01)C 0.7178 (sp1.71)C 0.7178 (sp1.71)C 0.7174 (sp1.87)C 0.7018 (sp1.80)C 0.7018 (sp1.00)C sp1.00 sp1.00	+ + + + + + + + + + + + + + + + +	S% 38.84 0.00 10.12 29.02 27.30 33.92 38.08 39.35 0.00 35.64 33.30 0.00 31.72 32.89 33.74 37.33 36.94 34.88 0.00 35.59 0.00 83.16 0.52 0.00	P% 60.84 100.0 89.49 70.50 72.59 65.96 61.44 60.59 100.0 64.29 66.63 100.0 68.22 67.03 66.14 62.62 63.00 65.06 100.00 64.29 100.00 64.29 100.00
P N21 Fable 11. Donor(i) N3-C30 TN3-C30 TN3-C30 TN3-C30 TO4-C22 TO4-C32 TO4-C32 TO4-C32 TO4-C32 TO3-C32 TO3-C38 TO4	NBO results sho	owing the format ED/e 1.98627 1.81489 1.98927 1.98937 1.97933 1.98479 1.98244 1.97760 1.73203 1.97116 1.96937 1.71676 1.97740 1.97742 1.97581 1.97099 1.97250 1.97425 1.75559 1.97611 1.67977 1.99655 1.96496 1.92327 1.96453	ion of Lewis and EDA% 59.54 56.34 70.36 65.61 55.18 63.20 58.86 50.16 45.93 50.72 51.49 45.60 50.77 50.77 50.77 50.77 50.77 50.77 50.77 51.52 51.17 49.06 49.51	I non-Lewis orbitz EDB% 40.46 43.66 29.64 34.39 44.82 36.80 41.14 49.84 54.07 49.28 48.51 54.40 49.23 49.23 36.47 48.38 48.48 48.83 50.94 50.49	NBO 0.7716 (sp1.57)N 0.7506 (sp1.00)N 0.8388 (sp8.84)C 0.8100 (sp2.43)C 0.7428 (sp2.65)N 0.7950 (sp1.94)N 0.7950 (sp1.94)N 0.7672 (sp1.61)N 0.7082 (sp1.54)C 0.6777 (sp1.00)C 0.7122 (sp1.61)N 0.7125 (sp2.15)C 0.7125 (sp2.16)C 0.7125 (sp2.16)C 0.7178 (sp1.71)C 0.7178 (sp1.71)C 0.7154 (sp1.87)C 0.7036 (sp1.00)C 0.7018 (sp1.00)C 0.7018 (sp1.00)C 0.7018 (sp1.00)C sp1.00 sp1.00 sp1.00 sp1.00	+ + + + + + + + + + + + + + + + +	S% 38.84 0.00 10.12 29.02 27.30 33.92 38.08 39.35 0.00 35.64 33.30 0.00 31.72 32.89 33.74 37.33 36.94 34.88 0.00 35.59 0.00 35.59 0.00 33.16 0.52 0.00 37.66	P% 60.84 100.0 89.49 70.50 72.59 65.96 61.44 60.59 100.0 64.29 66.63 100.0 68.22 67.03 66.14 62.62 63.00 65.96 100.00 64.29 100.00 64.29 100.00 64.29 100.00 64.29 100.00 64.29 100.00 62.20
P N21 Table 11. Donor(i) N3-C30 tN3-C30 t04-C22 t04-C22 t04-C22 t04-C22 t04-C22 t04-C22 t04-C22 t04-C12 t04-C12 t04-C12 t04-C12 t04-C12 t04-C12 t04-C12 t04-C23 t04-C23 t04-C23 t02 t03 t02 t03 t02 t04 t02 t04-C34 t02 t03 t02 t04 t02 t04 t02 t04 t02 t04 t02 t04 t02 t04 t02 t04 t02 t04 t02 t04 t02 t04 t02 t02 t02 t02 t02 t02 t02 t02	NBO results sho	owing the format ED/e 1.98627 1.81489 1.98927 1.98927 1.98337 1.97933 1.98479 1.98244 1.97760 1.73203 1.97116 1.96937 1.71676 1.97460 1.97742 1.97750 1.97742 1.97250 1.97259 1.97259 1.97259 1.97425 1.97611 1.67977 1.99365 1.96966 1.92327 1.96453 1.83506	ion of Lewis and EDA% 59.54 56.34 70.36 65.61 55.18 63.20 58.86 50.16 45.93 50.72 51.49 45.60 50.77 50.77 50.77 50.77 50.77 50.77 50.77 51.52 51.17 49.06 49.51	I non-Lewis orbitz EDB% 40.46 43.66 29.64 34.39 44.82 36.80 41.14 49.84 54.07 49.28 48.51 54.40 49.23 49.23 36.47 48.38 48.48 48.83 50.94 50.49	NBO 0.7716 (sp1.57)N 0.7506 (sp1.00)N 0.8388 (sp8.84)C 0.8100 (sp2.43)C 0.7428 (sp2.65)N 0.7950 (sp1.94)N 0.7950 (sp1.94)N 0.7672 (sp1.61)N 0.7082 (sp1.54)C 0.6777 (sp1.00)C 0.7122 (sp1.61)N 0.7125 (sp2.15)C 0.7125 (sp2.15)C 0.7125 (sp2.14)C 0.77176 (sp1.00)C 0.7125 (sp2.14)C 0.7126 (sp1.71)C 0.7178 (sp1.71)C 0.7154 (sp1.87)C 0.7036 (sp1.81)C 0.7018 (sp1.00)C sp1.00 sp1.00 sp1.00 sp1.00	+ + + + + + + + + + + + + + + + +	S% 38.84 0.00 10.12 29.02 27.30 33.92 38.08 39.35 0.00 35.64 33.30 0.00 31.72 32.89 33.74 37.33 36.94 34.88 0.00 35.59 0.00 35.59 0.00 37.66 0.00	P% 60.84 100.0 89.49 70.50 72.59 65.96 61.44 60.59 100.0 64.29 66.63 100.0 68.22 67.03 66.14 62.62 63.00 65.06 100.00 64.29 100.0 64.29 100.0 64.29 100.0 64.29 100.0 64.29 100.0 62.20 100.0
P N21 Fable 11. Donor(i) rN3-C30 rN3-C30 r04-C22 r03-C23 r02 r032-C24 r032-C34 r023-C40 r021 r022 r032-C40 r020	NBO results sho	owing the format ED/e 1.98627 1.81489 1.98927 1.98837 1.97933 1.98479 1.98244 1.97760 1.73203 1.97116 1.96937 1.71676 1.97460 1.97742 1.97425 1.97559 1.97425 1.97559 1.97425 1.97559 1.97425 1.97559 1.97611 1.67977 1.99365 1.99365 1.96696 1.9227 1.96453 1.83506 1.89208	ion of Lewis and EDA% 59.54 56.34 70.36 65.61 55.18 63.20 58.86 50.16 45.93 50.72 51.49 45.60 50.77 50.77 50.77 50.77 50.77 50.77 50.77 51.52 51.17 49.06 49.51	I non-Lewis orbitz EDB% 40.46 43.66 29.64 34.39 44.82 36.80 41.14 49.84 54.07 49.28 48.51 54.40 49.23 49.23 36.47 48.38 48.48 48.83 50.94 50.49	NBO 0.7716 (sp ^{1.57})N 0.7506 (sp ^{1.67})N 0.7506 (sp ^{1.67})N 0.8388 (sp ^{8.84})C 0.8100 (sp ^{2.43})C 0.7428 (sp ^{2.65})N 0.7950 (sp ^{1.94})N 0.7950 (sp ^{1.94})N 0.7672 (sp ^{1.61})N 0.7672 (sp ^{1.61})N 0.7672 (sp ^{1.61})C 0.7125 (sp ^{2.15})C 0.7125 (sp ^{2.16})C 0.7125 (sp ^{2.16})C 0.7125 (sp ^{2.16})C 0.7125 (sp ^{1.61})C 0.7126 (sp ^{1.61})C 0.7127 (sp ^{1.60})C 0.7128 (sp ^{1.61})C 0.7126 (sp ^{1.61})C 0.7127 (sp ^{1.61})C 0.7128 (sp ^{1.61})C 0.7184 (sp ^{1.63})C 0.7018 (sp ^{1.65})C sp ^{1.00} sp ^{1.00} sp ^{1.00} sp ^{1.00} sp ^{1.00}	+ + + + + + + + + + + + + + + + +	S% 38.84 0.00 10.12 29.02 27.30 33.92 38.08 39.35 0.00 35.64 33.30 0.00 31.72 32.89 33.74 37.33 36.94 34.88 0.00 35.59 0.00 83.16 0.52 0.00 37.66 0.00 26.40	P% 60.84 100.0 89.49 70.50 72.59 65.96 61.44 60.59 100.0 64.29 66.63 100.0 68.22 67.03 66.14 62.62 63.00 65.06 100.0 64.29 100.0 64.29 100.0 64.29 100.0 62.20 100.00 62.20 100.0 73.25
P N21 Fable 11. Donor(i) rN3-C30 rN3-C30 r04-C22 r04-C3 r04-C3 r023-C44 r038-C40 r04-C15 r023-C44 r038-C40 r04-C15 r022 r02	. NBO results sho 2 2 2 4 5 7 7 8 9 9 9 9 9	owing the format ED/e 1.98627 1.81489 1.98927 1.98937 1.97933 1.98479 1.98244 1.97760 1.73203 1.97116 1.96761 1.97742 1.97559 1.97460 1.97742 1.97559 1.97611 1.67977 1.99365 1.9696 1.92327 1.96453 1.83506 1.89208 1.97846	ion of Lewis and EDA% 59.54 56.34 70.36 65.61 55.18 63.20 58.86 50.16 45.93 50.72 51.49 45.60 50.77 50.77 50.77 50.77 50.77 50.77 50.77 51.52 51.17 49.06 49.51	I non-Lewis orbitz EDB% 40.46 43.66 29.64 34.39 44.82 36.80 41.14 49.84 54.07 49.28 48.51 54.40 49.23 49.23 36.47 48.38 48.48 48.83 50.94 50.49	NBO 0.7716 (sp1.57)N 0.7506 (sp1.00)N 0.8388 (sp8.84)C 0.8100 (sp2.43)C 0.7428 (sp2.66)N 0.7950 (sp1.94)N 0.7082 (sp1.61)N 0.7082 (sp1.54)C 0.6777 (sp1.00)C 0.7122 (sp1.80)C 0.7125 (sp2.04)C 0.7125 (sp2.04)C 0.7125 (sp2.04)C 0.7126 (sp1.86)C 0.7125 (sp1.96)N 0.7125 (sp2.04)C 0.7126 (sp1.96)N 0.7125 (sp2.04)C 0.7126 (sp1.97)C 0.7127 (sp1.97)C 0.7128 (sp1.96)N 0.7154 (sp1.87)C 0.7004 (sp1.90)C 0.7018 (sp1.90)C sp1.00 sp1.00 sp1.00 sp1.00 sp1.00 sp1.00 sp2.77 sp0.64	+ + + + + + + + + + + + + + + + +	S% 38.84 0.00 10.12 29.02 27.30 33.92 38.08 39.35 0.00 35.64 33.30 0.00 31.72 32.89 33.74 37.33 36.94 34.88 0.00 35.59 0.00 33.16 0.52 0.00 37.66 0.00 36.40 60.80	P% 60.84 100.0 89.49 70.50 72.59 65.96 61.44 60.59 100.0 64.29 66.63 100.0 68.22 67.03 66.14 62.62 63.00 65.06 100.00 64.29 100.00 64.29 100.00 64.29 100.00 62.20 100.00 62.20 100.00 62.20 100.01
P N21 Fable 11. Donor(i) N3-C30 tN3-C30 tN3-C30 tN3-C30 tN3-C30 tro4-C22 tro4	. NBO results sho 2 2 4 5 7 8 9 9 9	owing the format ED/e 1.98627 1.81489 1.98927 1.98837 1.97933 1.98479 1.98244 1.97760 1.73203 1.97116 1.96937 1.71676 1.97460 1.97740 1.97740 1.97559 1.97651 1.67977 1.99651 1.96965 1.92327 1.96453 1.83506 1.89208 1.97846 1.97846 1.97846 1.97846 1.93881	ion of Lewis and EDA% 59.54 56.34 70.36 65.61 55.18 63.20 58.86 50.16 45.93 50.72 51.49 45.60 50.77 50.77 50.77 50.77 50.77 50.77 50.77 51.52 51.17 49.06 49.51	I non-Lewis orbitz EDB% 40.46 43.66 29.64 34.39 44.82 36.80 41.14 49.84 54.07 49.28 48.51 54.40 49.23 49.23 36.47 48.38 48.48 48.83 50.94 50.49	NBO 0.7716 (sp1.57)N 0.7506 (sp1.00)N 0.8388 (sp8.84)C 0.8100 (sp2.43)C 0.7428 (sp2.66)N 0.7950 (sp1.94)N 0.7672 (sp1.61)N 0.7082 (sp1.54)C 0.6777 (sp1.00)C 0.7122 (sp1.80)C 0.7125 (sp2.00)C 0.7125 (sp2.01)C 0.7125 (sp2.10)C 0.7126 (sp1.96)N 0.7184 (sp1.68)C 0.7018 (sp1.71)C 0.7018 (sp1.81)C 0.7018 (sp1.00)C sp1.00 sp1.00 sp1.00 sp1.00 sp1.00 sp1.00 sp1.00 sp1.00 sp1.00	+ + + + + + + + + + + + + + + + +	S% 38.84 0.00 10.12 29.02 27.30 33.92 38.08 39.35 0.00 35.64 33.30 0.00 31.72 32.89 33.74 37.33 36.94 34.88 0.00 35.59 0.00 37.66 0.00 37.66 0.00 26.40 60.80 0.00	P% 60.84 100.0 89.49 70.50 72.59 65.96 61.44 60.59 100.0 64.29 66.63 100.0 68.22 67.03 66.14 62.62 63.00 65.06 100.00 64.29 100.00 64.29 100.00 62.20 100.00 62.20 100.00 62.20 100.00 62.20 100.00
LP N21 Fable 11. Donor(i) σN3-C30 πN3-C30 σO4-C22 σN5-N6 σN5-C22 σN6-C22 σN6-C36 σC4-C22 πC15-C17 σC11-C12 πC11-C12 πC11-C134 πC12-C14 πC12-C18 σC17-C18 σC23-C24 σC3-C24 σC	NBO results sho	owing the format ED/e 1.98627 1.81489 1.98927 1.98937 1.97933 1.98479 1.98244 1.97760 1.73203 1.97116 1.96937 1.71676 1.97740 1.97740 1.97742 1.97559 1.97611 1.67977 1.99653 1.96453 1.83506 1.89208 1.97846 1.83581 1.60231	ion of Lewis and EDA% 59.54 56.34 70.36 65.61 55.18 63.20 58.86 50.16 45.93 50.72 51.49 45.60 50.77 50.77 50.77 50.77 50.77 50.77 50.77 51.52 51.17 49.06 49.51	I non-Lewis orbitz EDB% 40.46 43.66 29.64 34.39 44.82 36.80 41.14 49.84 54.07 49.28 48.51 54.40 49.23 49.23 36.47 48.38 48.48 48.83 50.94 50.49	NBO 0.7716 (sp1.57)N 0.7506 (sp1.60)N 0.8388 (sp8.84)C 0.8100 (sp2.43)C 0.7950 (sp1.94)N 0.7950 (sp1.94)N 0.7672 (sp1.61)N 0.7082 (sp1.54)C 0.6777 (sp1.00)C 0.7122 (sp1.80)C 0.7125 (sp2.91)C 0.7125 (sp2.91)C 0.7125 (sp2.10)C 0.7126 (sp1.91)C 0.7178 (sp1.71)C 0.7184 (sp1.87)C 0.7018 (sp1.01)C 0.7018 (sp1.00)C sp1.00 sp1.00 sp1.65 sp1.00 sp1.00 sp1.00 sp1.00 sp1.00 sp1.00	+ + + + + + + + + + + + + + + + +	S% 38.84 0.00 10.12 29.02 27.30 33.92 38.08 39.35 0.00 35.64 33.30 0.00 31.72 32.89 33.74 37.33 36.94 34.88 0.00 35.59 0.00 37.66 0.00 37.66 0.00 26.40 60.80 0.00 0.00	P% 60.84 100.0 89.49 70.50 72.59 65.96 61.44 60.59 100.0 64.29 66.63 100.0 68.22 67.03 66.14 62.62 63.00 65.06 100.00 64.29 100.0 65.26 99.47 100.00 62.20 100.0 73.25 39.11 100.00 100.00
LP N21 Fable 11. Donor(i) JN3-C30 πN3-C30 πN3-C30 σ04-C22 σ01-C12 σ017-C30 σ023-C40 σ023-C42 σ023-C42 σ023-C44 σ038-C40 101C1 12C11 102 1202 10104 10204	NBO results sho	owing the format ED/e 1.98627 1.81489 1.98927 1.98837 1.97933 1.98479 1.98244 1.97760 1.73203 1.97116 1.96937 1.71676 1.97460 1.97740 1.97740 1.97559 1.97651 1.67977 1.99651 1.96965 1.92327 1.96453 1.83506 1.89208 1.97846 1.97846 1.97846 1.97846 1.93881	ion of Lewis and EDA% 59.54 56.34 70.36 65.61 55.18 63.20 58.86 50.16 45.93 50.72 51.49 45.60 50.77 50.77 50.77 50.77 50.77 50.77 50.77 51.52 51.17 49.06 49.51	I non-Lewis orbitz EDB% 40.46 43.66 29.64 34.39 44.82 36.80 41.14 49.84 54.07 49.28 48.51 54.40 49.23 49.23 36.47 48.38 48.48 48.83 50.94 50.49	NBO 0.7716 (sp1.57)N 0.7506 (sp1.00)N 0.8388 (sp8.84)C 0.8100 (sp2.43)C 0.7428 (sp2.66)N 0.7950 (sp1.94)N 0.7672 (sp1.61)N 0.7082 (sp1.54)C 0.6777 (sp1.00)C 0.7122 (sp1.80)C 0.7125 (sp2.00)C 0.7125 (sp2.01)C 0.7125 (sp2.10)C 0.7126 (sp1.96)N 0.7184 (sp1.68)C 0.7018 (sp1.71)C 0.7018 (sp1.81)C 0.7018 (sp1.00)C sp1.00	+ + + + + + + + + + + + + + + + +	S% 38.84 0.00 10.12 29.02 27.30 33.92 38.08 39.35 0.00 35.64 33.30 0.00 31.72 32.89 33.74 37.33 36.94 34.88 0.00 35.59 0.00 37.66 0.00 37.66 0.00 26.40 60.80 0.00	P% 60.84 100.0 89.49 70.50 72.59 65.96 61.44 60.59 100.0 64.29 66.63 100.0 68.22 67.03 66.14 62.62 63.00 65.06 100.00 64.29 100.00 64.29 100.00 62.20 100.00 62.20 100.00 62.20 100.00 62.20 100.00

with considerable p-character (100.0%) and high occupation number (1.61253). Thus, a very close to pure p-type lone pair orbital participates in the electron donation to the n(Cl1) \rightarrow $\pi^*(N3-C30)$, $\pi(02) \rightarrow \pi^*(C11-C12)$, $\sigma(N3) \rightarrow \sigma^*(C17-C30)$, $\pi(04) \rightarrow \sigma^*(N5-C22)$, $\sigma(N5) \rightarrow \sigma^*(04-C22)$, $\sigma(N6) \rightarrow \sigma^*(N5-C22)$, $\sigma(N21) \rightarrow \sigma^*(04-C22)$ interactions in the compound. The results are displayed in Table 11.

4. Conclusions

In the present study, the single crystal X-Ray and DFT analysis of TMQ is reported. It is interesting to note that the optimized geometrical (DFT) results are found in good conformity with the obtained single X-ray diffraction results (XRD). MEP predicts the most reactive component in the molecule. The Hirshfeld surfaces and fingerprint plots predictted that TMQ molecule is stabilized by various intermolecular contacts such as H····H, C···C, C···H/ H···C, N···H/H···N, O···H/H···O, Cl···H/H···Cl, C···Cl/Cl···C, C···N/N···C, C···O/O···C, and Cl···O/O···Cl interactions. A complete molecular picture, stability of the molecule arising from hyper-conjugative interaction, charge delocalization and bond length have been investigated by using Natural Bond Orbital (NBO) analysis. Both experimental and theoretical HOMO and LUMO energies

determine the charge transfer within the molecule and the difference between HOMO and LUMO energy has supported the chemical and bioactivity properties of TMQ. Mulliken atomic charge of the carbon atoms in the neighborhood of C22, C23 and C36 become more positive indicating the direction of delocalization and also showed that the natural atomic charges are more sensitive to the changes in the molecular structure than Mulliken's net charges.

Acknowledgements

Authors wish to thank the University Grants commission, New Delhi for providing financial assistants under UGC UPE FAR-I "Antitumor activity: An Integrated Approach" vide F. No. 14-3/2012 (NS/PE). The authors are grateful to University Instrumentation Centre (USIC), Scientific Karnataka University, Dharwad, for single X-ray diffractometer. Authors thank DST-PURSE Lab for single crystal X-ray diffractometer and other facilities, Karnatak Univeristy Dharwad and Mangalore University, Mangalore. Dr. Shilpa M. Somagond acknowledges the UGC, New Delhi for providing fellowship under project UPE FAR-I Program.

Supporting information S

CCDC-1828103 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/, or by emailing data request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44(0)1223-336033.

Disclosure statement 📭

Conflict of interests: The authors declare that they have no conflict of interest.

Author contributions: All authors contributed equally to this work.

Ethical approval: All ethical guidelines have been adhered.

Sample availability: Sample of the compound is available from the author.

Funding (S)

UGC UPE FAR-I "Antitumor activity: An Integrated Approach" vide F. No. 14-3/2012 (NS/PE), University Grants commission (UGC), New Delhi, India.

ORCID 匝

Shilpa Mallappa Somagond http://orcid.org/0000-0002-0481-3426 ManjunathNingappa Wari b http://orcid.org/0000-0003-0342-1284 Saba Kauser Jaweed Shaikh http://orcid.org/0000-0001-8839-9498 Sanjeev Ramchandra Inamdar http://orcid.org/0000-0003-3398-4897 Madan Kumar Shankar http://orcid.org/0000-0002-7944-1081 Dasappa Jagadeesh Prasad http://orcid.org/0000-0003-1333-028X Ravindra Ramappa Kamble http://orcid.org/0000-0002-0384-655X

References

[1]. Rastelli, E. J.; Truong, N. T.; Coltart, D. M. Org. Lett. 2016, 18, 5588-5591.

- Kim, S. H.; Kaplan, J. A.; Sun, Y.; Shieh, A.; Sun, H. L.; Croce, C. M.; [2]. Parquette, J. R. Chem. Eur. J. 2015, 21, 101-105.
- [3]. Forkuo, A. D.; Ansah, C.; Boadu, K. M.; Boampong, J. N.; Ameyaw, E. O.; Gyan, B. A.; Ofori, M. F. Malar. J. 2016, 15, 1-12.
- [4]. Gaurav, A.; Singh, R. Med. Chem. Res. 2014, 23, 5008-5030.
- [5]. Lee, H. W.; Lee, H. S.; Park, J. H.; Cheong, J. J.; Kwon, H. B.; Kim, K. O.; Song, H. H. J. Appl. Biol. Chem. 2015, 58, 1-3 [6].
- Wise, R.; Andrews, J. M.; Edwards, L. J. Antimicrob. Agents. Chemother. 1983, 23, 559-564 [7]. Brown, C. E.; Mc Nulty, J.; Bordon, C.; Yolken, R.; Jones-Brando, L. Org.
- Biomol. Chem. 2016, 14, 5951-5955. [8].
- Musiol, R.; Serda, M.; Hensel-Bielowka, S.; Polanski, J. Curr. Med. Chem. 2010, 17, 1960-1973. [9]. Luo, Z. G.; Zeng, C. C.; Wang, F.; He, H. Q.; Wang, C. X.; Du, H. G.; Hu, L.
- M. Chem. Res. Chin. Univ. 2009, 25, 841-845. [10].
- Liu, H.; Dong, Y.; Zhang, B.; Liu, F.; Tan, C.; Tan, Y.; Jiang, Y. Sensors Sens. Actuator B-Chem. 2016, 234, 616-624.
- Prodi, L.; Bargossi, C.; Montalti, M.; Zaccheroni, N.; Su, N.; Bradshaw, J. [11]. S.; Izatt, R. M.; Savage, P. B. J. Am. Chem. Soc. 2000, 122, 6769-6770.
- [12]. El Ashry, E. S. H.; Awad, L. F.; Soliman, S. M.; Moaty, M. N. A. A.; Ghabbour, H. A.; Barakat, A. J. Mol. Struct. 2017, 1146, 432-440.
- [13]. Almasirad, A.; Tabatabai, S. A.; Faizi, M.; Kebriaeezadeh, A.; Mehrabi, N.; Dalvandi, A.; Shafiee, A. Bioorg. Med. Chem. Lett. 2004, 14, 6057-6059
- [14]. El Akri, K.; Bougrin, K.; Balzarini, J.; Faraj, A.; Benhida, R. Bioorg. Med. Chem. Lett. 2007. 17. 6656-6659
- Karthikeyan, M. S.; Holla, B. S.; Kumari, N. S. Eur. J. Med. Chem. 2008, [15]. 43. 309-314.
- Somagond, S. M.; Kamble R. R.; Kattimani, P. P.; Shaikh, S. J.; Dixit, S. [16]. R.; Joshi, S. D.; Devarajegowda, H. C. Chemistry Select 2018, 3, 2004-2016.
- [17]. Yang, F.; Zhang, X. L.; Sun, K.; Xiong, M. J.; Xia, P. F.; Cao, Z. J. Synth. Met. 2008, 158, 988-992.
- Maiti, A.; Svizhenko, A.; Anantram, M. P. Phys. Rev. Lett. 2002, 88, [18]. 1268051-1268054
- [19]. Zhou, D.; Ma, D.; Wang, Y.; Xianchun Liu; Xinhe Bao; Chem. Phys. Lett. 2003, 373, 46-51.
- [20]. Leconte, J.; Markovits, A.; Skalli, M. K.; Minot, C.; Belmajdoub, A. Surf. Sci. 2002. 497. 194-204. Wang, J.; Liu, C.; Fang, Z.; Liu, Y.; Han, Z.; J. Phys. Chem. B 2004, 108, [21].
- 1653-1659. Koch, W.; Holthausen, M. C. A.; Chemists Guide to Density Functional [22].
- Theory, Wiley-VCH, Weinheim, New York, Chichester, 2000. Parr, R. G.; Yang, W. T.; Density-Functional Theory of Atoms and [23].
- Molecules, Oxford University Press, New York, 1989. [24].
- Szafran, M.; Komasa, A.; Adamska, E. B. J. Mol. Struct. Theochem. 2007, 827, 101-107.
- [25]. Rigaku, Crystal Clear SM Expert 2. 0 r15. Software for data collection and processing. Rigaku Corporation, Tokyo, Japan. 2011.
- [26]. Sheldrick, G. M. Acta. Cryst. A 2008, 64, 112-122.
- [27]. Spek, A. L. Acta. Cryst. A 1990, 46, C34.
- Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edging-ton, P. R.; McCabe, P.; [28]. Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van deStreek, J.; Wood, P. A. J. Appl. Crystallog. 2008, 41, 466-470.
- [29] McKinnon, J. J.; Spackman, M. A.; Mitchell, A. S.; J. Acta. Crystallogr. B 2004, 60, 627-668.
- [30]. Spackman, M. A.; Jayatilaka, D. Cryst. Engg. Comm. 2009, 11, 19-32.
- [31].
- Spackman, M. A.; McKinnon, J. J. Cryst. Eng. Comm. 2002, 4, 378-392. Madan, K. S.; Manjunath, B. C.; Lingaraju, G. S.; Abdoh, M. M. M.; [32]. Sadashiva, M. P.; Lokanath, N. K. Crystal. Struct. Theor. Appl. 2013, 3, 124-131.
- [33]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Gaussian 09, Revision B. 01, Wallingford CT, 2010.
- [34]. Hartley, D.; Kidd, H. (Eds.), The Agrochemicals Handbook, Royal Society of Chemistry, Unwin Brothers Ltd., Old Woking Surrey, United Kingdom, 1983.
- Gerhartz, W.; Ullmann's Encyclopedia of Industrial Chemistry, 5th ed., [35]. VCH Publishers, Deerfield Beach FL, 1985.
- Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F.; NBO [36]. Version 3. 1, Gaussian Inc., Pittsburgh, PA, 2000-2003.
- [37]. Dennington, R.; Keith T.; Millam J.; GaussView, Version 5, Semichem Inc., Shawnee Mission KS, 2009.

294

- [38]. Mckinnon, J. J.; Mitchell, A. S.; Spackman, M. A. Chem. Eur. J. 1998, 4, 2136-2144.
- [39]. Spackman, M. A.; Jayatilaka, D. Cryst. Eng. Comm. 2009, 11, 249-253.
- [40]. Hirshfeld, F. L. Theor. Chim. Acta. 1977, 44, 129-138.
- [41]. Spackman, M. A.; Byrom P. G. Chem. Phys. Lett. 1997, 267, 215-220.
- [42]. Rohl, A. L.; Moret, M.; Kaminsky, W.; Claborn, K.; McKinnon, J. J.; Kahr, B. Cryst. Growth Des. 2008, 8, 4517-4525.
- [43]. Wolff S. K.; Grimwood D. J.; McKinnon J. J.; Turner M. J.; Jayatilaka D.; Spackman M. A. Crystal Explorer, the University of Western Australia, Australia, 2012.
- [44]. Skovsen, I.; Christensen, M.; Clausen, H. F.; Overgaard, J.; Stiewe, C.; De gupta, T.; Mueller, E.; Spackman, M. A.; Iversen, B. B. *Inorg. Chem.* 2010, 49, 9343-9349.
- [45]. Xavier, R. J.; Dinesh, P. Spectrochim. Acta A 2014, 118, 999-1011.
- [46]. Scrocco, E.; Tomasi, J. Adv. Quant. Chem. **1978**, *103*, 115-193.
- [47]. Luque, F. J.; Lopez, J. M.; Orozco, M. Theor. Chem. Acc. 2000, 103, 343-345.
- [48]. Politzer, P.; Murray, J. S.; in: D. L. Beveridge; R. Lavery (Eds.), Theoretical Biochemistry and Molecular Biophysics: A

Comprehensive Survey, Protein, Adenine Press, Schenectady, New York, 2, 1991.

- [49]. Scrocco, E.; Tomasi, J. Curr. Chem. 1973, 7, 95-170.
- [17] Berockumrak, N.; Pansay, S.; Namuangruk, S.; Kaewin, T.; Jungsuttiwong S.; Sudyoadsuk; T.; Promarak V. *Eur. J. Org. Chem.* 2013, 29, 6619-6623.
- [51]. Kotchapadist, P.; Prachumrak, N.; Sunonnam, T.; Namuangruk, S.; Sudyoadsuk, T.; Keawin, T.; Jungsuttiwong, S.; Promarak, V. Eur. J. Org. Chem. 2015, 3, 496-505.
- [52]. Deshapande, N.; Belavagi N. S.; Sunagar M. G.; Gaonkar S.; Pujar G. H.; Wari M. N.; Inamdar S. R.; Khazi I. A. M. *RSC Adv.* **2015**, *5*, 86685-86696.
- [53]. Mulliken, R. S. J. Chem. Phys. **1955**, 23, 1833-1840.
- [54]. Kose, E.; Atac, A.; Bardak, F. J. Mol. Struct. 2018, 1163, 147-160.
 [55]. Benzon, K. B.; Varghese, H. T.; Yohannan-Panicker, C.; Pradhan, K.;
- [55]. Benzon, K. B.; Varghese, H. T.; Yohannan-Panicker, C.; Pradhan, K.; Bipransh, K. T.; Ashis, K. N.; Van-Alsenoy, C. Spectrochim. Acta A 2015, 146, 307-322.
- [56]. Weinhold, F.; Eric, D. Glendening, NBO 6. 0 Program Manual, University of Wisconsin, Madison, Wisconsin 53706, 2013.

EX NC Copyright © 2019 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).