Stereochemistry of tropane alkaloid of convolvine and their derivatives

Kambarali Kuchkarovich Turgunov (i) 1,2,*, Dilfuza Kadirova (i) 1, Rasul Okmanov (©) 1, Salima Fazilovna Aripova (${ }^{1}$ 1 and Bakhodir Tashkhodjaev (1 1

${ }^{1}$ Institute of Chemistry of Plant Substances, Tashkent, 100170, Uzbekistan
kk_turgunov@rambler.ru (K.K.T.), kadirova_dilfuza@inbox.ru (D.K.), raxul@mail.ru (R.Y.O.), salima_aripova@mail.ru (S.F.A.), tashkhodjaev@rambler.ru (B.T.
${ }^{2}$ Natural and Mathematical Sciences, Turin Polytechnic University in Tashkent, Tashkent, 1000095, Uzbekistan

* Corresponding author at: Institute of Chemistry of Plant Substances, Tashkent, 100170, Uzbekistan.

Tel: +998.71.1206475 Fax: +998.71.1206475 e-mail: kk_turgunov@rambler.ru (K.K. Turgunov).

RESEARCH ARTICLE

10.5155/eurjchem.10.4.376-380.1909

Received: 27 June 2019
Received in revised form: 13 October 2019
Accepted: 17 October 2019
Published online: 31 December 2019
Printed: 31 December 2019

Abstract

Structures of alkaloid convolvine (1) isolated from Convolvulus subhirsutus and its derivatives-convolamine(N-methylconvolvine) (2) and hydrochloride of N-benzylconvolvine (3) have been determined by single crystal X-ray diffraction technique. Compounds were crystallized in monoclinic space groups having four molecules in unit cell. All compounds contain a bicyclic ring system of tropane, where piperidine rings in all case adopt chair conformation. Hydrogen atom and methyl- and benzyl-substituents located in nitrogen atom of studied compounds occupy equatorial positions. The substituent of tropane core- the veratroyloxy group containing in all compound molecules is an α-axial oriented relative to the tropane core. In crystal structures of compound 1 and 2, the molecules are located in the distance of van der Waals interactions. The H -bond between the anion Cl and the proton of the N atom is observed in the crystal of N -benzylconvolvine hydrochloride ($\mathrm{Cl} \cdots \mathrm{N} 3.337 \AA$, $\mathrm{Cl} \cdots \mathrm{H} 2.42 \AA$ and $\mathrm{Cl}-\mathrm{H}-\mathrm{N} 175^{\circ}$).

KEYWORDS

Convolvine
Convolamine
Tropane alkaloids
N -Benzylconvolvine
X-ray crystallography
Convolvulus subhirsutus
Cite this: Eur. J. Chem. 2019, 10(4), 376-380 Journal website: www.eurjchem.com

1. Introduction

It is known that some tropane alkaloids (atropine, scopolamine) have a quinolytic effect and are used in medicine as drugs [1]. In order to search for physiologically active substances among alkaloids of this class, modification is carried out on the basis of available substances. So plants of the Convolvulus genus are a source of convolvine alkaloids, which can be produced on an industrial scale. Based on this alkaloid, we previously synthesized a number of derivatives [2]. Convolamine (2) was obtained by methylation of convolvine (1) and N -benzylconvolvine (3) was obtained by reaction of convolvine with benzyl chloride (Scheme 1). Biological studies on some cultures of cancer cells have established a high anticancer activity of benzylconvolvine, superior to the activity of anticancer drugs used in medicine [3].

The issue of obtaining convolvine derivatives is based on natural compound and it is dependent on the structure of the starting natural product and the reactant. These factors govern not only the derivation of new products, but also chemical property of product molecule, manifestation of biological activity by the formation of intra- and inter-molecular $\mathrm{H}-$
bonds, as well as the stereochemistry of the veratroyloxy group. In this connection, the stereochemical behavior of the nitrogen atom and substituent in derivatives is of interest. To this end, for the consideration of structural issues, a X-ray analysis on single crystals of the obtained derivatives was performed.

$\mathrm{R}=\mathrm{H}(\mathbf{1}), \mathrm{R}=\mathrm{CH}_{3}(\mathbf{2}), \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ (3)
Scheme 1

Table 1. Crystal data and details of the structure refinement for compounds 1-3.

Parameters	Compound 1	Compound 2	Compound 3
Empirical formula	$\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{4}$	$\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{4}$	$\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{NO}_{4} \cdot \mathrm{Cl}$
Formula weight	291.34	305.36	417.91
Temperature (K)	293	293	293
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	Cc	$\mathrm{P} 21 / n$	P2 $1^{1 / c}$
a, (Å)	10.2405(7)	8.8351(5)	15.4528(4)
b, (A)	20.429 (2)	19.6231(11)	9.0258(2)
c, (Å)	7.1993(7)	9.2514(5)	16.5962(5)
β (${ }^{\circ}$)	94.587(7)	91.977(5)	111.121(3)
Volume ($\AA^{\text {a }}$)	1501.3(2)	1603.0(2)	2159.2(1)
Z	4	4	4
$\rho_{\text {calc }}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	1.289	1.265	1.286
$\mu\left(\mathrm{mm}^{-1}\right)$	0.76	0.73	1.80
F(000)	624	656	888
Crystal size (mm^{3})	$0.60 \times 0.45 \times 0.40$	$0.55 \times 0.45 \times 0.25$	$0.25 \times 0.30 \times 0.40$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$	$\mathrm{CuK} \alpha(\lambda=1.54184)$	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection (${ }^{\circ}$)	9.6 to 152.6	9.0 to 152.6	10.8 to 176.4
Index ranges	$-9 \leq h \leq 12$	$-10 \leq h \leq 10$	$-17 \leq h \leq 20$
	$-22 \leq k \leq 25$	$-17 \leq k \leq 24$	$-11 \leq k \leq 8$
	$-9 \leq 1 \leq 8$	$-11 \leq 1 \leq 11$	$-19 \leq 1 \leq 18$
Reflections collected	4762	6255	8728
Independent reflections	2197 [$\mathrm{R}_{\text {int }}=0.045$]	3228 [$\left.\mathrm{R}_{\text {int }}=0.033\right]$	4317 [$\left.\mathrm{R}_{\text {int }}=0.033\right]$
Data/restraints/parameters	2197/2/193	3228/0/199	4317/0/269
Goodness-of-fit on F^{2}	1.067	0.996	1.022
Final R indexes $[\mathrm{I} \geq 2 \sigma$ (I$)$]	$\mathrm{R}_{1}=0.061, \mathrm{wR}_{2}=0.135$	$\mathrm{R}_{1}=0.051, \mathrm{wR}_{2}=0.119$	$\mathrm{R}_{1}=0.050, \mathrm{wR}_{2}=0.133$
Final R indexes [all data]	$\mathrm{R}_{1}=0.105, \mathrm{wR}_{2}=0.167$	$\mathrm{R}_{1}=0.078, \mathrm{wR}_{2}=0.141$	$\mathrm{R}_{1}=0.070, \mathrm{wR}_{2}=0.146$
$\underline{\text { Largest diff. peak/hole (e. } .^{\circ}{ }^{-3} \text {) }}$	0.19/-0.15	0.16/-0.20	0.31/-0.22

2. Experimental

2.1. Materials and apparatuses

Convolvine (1) was isolated from Convolvulus subhirsutus. Reagents and solvents were purchased from commercial suppliers and used without further purifications. Single crystal X-ray diffraction (XRD) data was collected by using $\mathrm{CuK} \alpha$ radiation $(\lambda=1.54184 \AA)$ on a CCD Xcalibur Ruby diffractometer (Oxford Diffraction) at a room temperature. Data reduction including multi-scan absorption correction was done using CrysAlisPRO [4].

2.2. X-ray crystal structure determination of compounds 1-3

Structures were solved by direct methods within the SHELXS-97 program [5] and refined with SHELXL-2014/7 refinement program [6]. All non-hydrogen atoms were refined by the least squares method $\left(F^{2}\right)$ in the full-matrix anisotropic approximation. Hydrogen atoms at carbon atoms were positioned geometrically and refined according to a riding model with fixed isotropic displacement parameters $U_{\text {iso }}=$ $n U_{\text {eq }}$, where $n=1.5$ for methyl groups and 1.2 for the others, (U_{eq} is the equivalent isotropic parameter of displacement of the corresponding carbon atoms). The hydrogen atoms of the NH group are found from difference syntheses of electron density and refined isotropically.

2.3. Preparation of convolvine and its derivatives

Isolation of convolvine (1) was performed according to the method [7]. The air-dried aerial part of C. subhirsutus (3 kg) was moistened with ammonia solution (10\%), placed in a percolator, and after 2 h treated with CHCl_{3} (six times). The combined CHCl_{3} extracts were condensed to a volume of 2 L and worked up with $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution (10\%) to extract exhaustively the alkaloids. The combined acidic solutions were washed twice with a small quantity of CHCl_{3} and made basic with ammonia solution (25\%). The alkaloids were extracted with CHCl_{3} to afford total bases (10.7 g). Total bases (10.7 g) were dissolved in $\mathrm{CHCl}_{3}(2 \mathrm{~L})$ and worked up with KOH solution ($4 \%, 4 \times 100 \mathrm{~mL}$). The alkaline extracts were acidified with $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution (20\%), cooled, and made basic with
ammonia solution (25\%). Alkaloids were extracted exhaustively with CHCl_{3}. The CHCl_{3} solution was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was distilled off to produce phenolic alkaloids (2.5 g). After work up with base, the CHCl_{3} solution was washed with distilled water and worked up successively with citrate-phosphate buffer at $\mathrm{pH}=6.8$ and 5.6 to extract completely the alkaloids. The buffer extracts were made basic with cooling using conc. $\mathrm{NH}_{4} \mathrm{OH}$ solution. Alkaloids were extracted with CHCl_{3} to afford bases from the fractions with $\mathrm{pH}=6.8$ (5.5 g , convolvine) and 5.6 (2.2 g , convolamine with an impurity of convolvine).

A mixture of 0.1 g of convolvine alkaloid, 1 mL of methyl iodide and 0.4 g of potassium iodide in 30 mL of dry acetone was heated in a water bath for 1 hour. When the cooled filtrate was concentrated, a crystalline precipitate (2) was formed with M.p.: 114-115 ${ }^{\circ}$ (acetone) in the amount of 0.11 g and not giving melting point depression with a convolamine sample.

Synthesis of N-benzylconvolvine (3) was carried out according to the method [2]. A mixture of convolvine (0.15 g) and benzylchloride (0.1 mL) was left at room temperature for 2 d . After this time the product was separated by treatment with acetone and purified over a column of $\mathrm{Al}_{2} \mathrm{O}_{3}$ to afford crystals ($0.15 \mathrm{~g}, 78.9 \%$) with M.p.: $88-89^{\circ} \mathrm{C}$.

3. Results and discussion

The molecular structures of convolvine $\mathbf{1}$ and its derivatives 2 and 3 are shown in Figure 1. Crystallographic data are presented in Table 1. The tropane alkaloid and derivatives are crystallized in the Cc space groups (containing glade plane) and $\mathrm{P} 2_{1} / n, \mathrm{P} 2_{1} / c$ (with elements of the center of symmetry and glade plane), respectively. Consequently, the crystals contain both enantiomers of the molecules of the alkaloid $\mathbf{1}$ and its derivatives $\mathbf{2}$ and 3.

XRD analysis result allows to set the relative configuration of the center C3. The substituent the veratroyloxy group in position C3 has an α-axial orientation relative to the tropane core. The orientation and location of the substituents of the N and C3 atoms in compounds 1, 2 and $\mathbf{3}$ coincides with those observed in convolinine [8] and o-benzoyltropine hydrochloride [9]. In molecules 1-3, the veratroyloxy group is planar with an accuracy of $\pm 0.040, \pm 0.039$ and $\pm 0.036 \AA$, respectively, and the benzyl group at N 1 in 3 is $\pm 0.008 \AA$.

Atom-Atom	Bond length (Å)	Atom-Atom	Bond length (Å)	Atom-Atom	Bond length (Å)
01-C16	1.348 (8)	N1-C5	1.468 (10)	C6-C7	1.539 (11)
01-C3	1.465 (7)	N1-H1A	0.85 (8)	C1'-C6'	1.379 (9)
02-C16	1.205 (7)	C1-C2	1.517 (10)	C1'-C2'	1.398 (8)
03-C4'	1.364 (7)	C1-C7	1.539 (9)	C1'-C16	1.486 (8)
03-C17	1.427 (8)	C2-C3	1.513 (9)	C2'-C3'	1.378 (8)
04-C3'	1.361 (7)	C3-C4	1.521 (10)	C3'-C4'	1.413 (8)
04-C18	1.424 (8)	C4-C5	1.534 (10)	C4'-C5'	1.383 (8)
N1-C1	1.466 (10)	C5-C6	1.545 (10)	C5'-C6'	1.379 (9)
Atom-Atom-Atom	Bond angles (${ }^{\text {) }}$	Atom-Atom-Atom	Bond angles (${ }^{\circ}$)	Atom-Atom-Atom	Bond angles (${ }^{\text {) }}$
C16-01-C3	117.4 (5)	N1-C5-C4	106.6 (6)	04-C3'-C4'	114.6 (5)
C4'-03-C17	117.7 (5)	N1-C5-C6	106.3 (6)	C2'-C3'-C4'	120.1 (5)
C3'-04-C18	116.8 (5)	C4-C5-C6	112.4 (6)	03-C4'-C5'	126.0 (5)
C1-N1-C5	100.9 (5)	C7-C6-C5	102.7 (6)	03-C4'-C3'	115.5 (5)
N1-C1-C2	106.8 (6)	C6-C7-C1	104.5 (6)	C5'-C4'-C3'	118.5 (5)
N1-C1-C7	105.7 (6)	C6'-C1'-C2'	120.5 (6)	C6'-C5'-C4'	121.8 (6)
C2-C1-C7	112.7 (6)	C6'-C1'-C16	117.8 (5)	C5'-C6'-C1'	119.3 (6)
C3-C2-C1	113.4 (6)	C2'-C1'-C16	121.7 (5)	02-C16-01	122.9 (6)
01-C3-C2	109.2 (5)	C3'-C2'-C1'	119.8 (6)	02-C16-C1'	124.5 (6)
01-C3-C4	106.9 (5)	04-C3'-C2'	125.3 (6)	01-C16-C1'	112.6 (5)

(1)

(2)

(3)

Figure 1. The molecular structures of compounds 1-3.

The veratroyloxy group is distorted from the plane of symmetry of the tropane core, which is characterized by the torsion angle H3-C3-01-C1', whose values for compound 1-3 are 33,29 and 33°, respectively. It should be noted that the carbonyl group in these compounds and analogues known in the literature [8-12] is always syn-directed relative to the β -
axially located hydrogen atom at C3. But the methoxyl group in the ortho position of the C3' veratroyloxy fragment in these compounds is located differently relative to the tropine core (Figure 1), which indicates a free rotation around the C16-C1' bond forming different rotamers.

Atom-Atom	Bond length (\AA)	Atom-Atom	Bond length (\AA)	Atom-Atom	Bond length (\AA)
01-C16	1.340 (3)	N1-C5	1.469 (3)	C6-C7	1.536 (3)
01-C3	1.468 (3)	N1-C1	1.474 (3)	C1'-C6'	1.381 (3)
02-C16	1.208 (3)	C1-C2	1.530 (3)	C1'-C2'	1.403 (3)
03-C4'	1.357 (2)	C1-C7	1.547 (3)	C1'-C16	1.478 (3)
03-C17	1.426 (3)	C2-C3	1.516 (3)	C2'-C3'	1.370 (3)
04-C3'	1.366 (2)	C3-C4	1.517 (3)	C3'-C4'	1.412 (3)
04-C18	1.419 (3)	C4-C5	1.524 (3)	C4'-C5'	1.384 (3)
N1-C19	1.466 (3)	C5-C6	1.545 (3)	C5'-C6'	1.386 (3)
Atom-Atom-Atom	Bond angles (${ }^{\circ}$)	Atom-Atom-Atom	Bond angles (${ }^{\circ}$)	Atom-Atom-Atom	Bond angles (${ }^{\circ}$)
C16-01-C3	117.03 (17)	01-C3-C4	107.46 (19)	04-C3'-C2'	124.95 (18)
C4'-03-C17	117.67 (18)	C3-C4-C5	113.36 (19)	04-C3'-C4'	115.34 (17)
C3'-04-C18	116.52 (17)	N1-C5-C4	107.22 (19)	C2'-C3'-C4'	119.71 (18)
C19-N1-C5	112.2 (2)	N1-C5-C6	105.72 (18)	03-C4'-C5'	125.61 (18)
C19-N1-C1	111.92 (18)	C4-C5-C6	112.61 (19)	03-C4'-C3'	114.90 (18)
C5-N1-C1	100.67 (17)	C7-C6-C5	103.54 (19)	C5'-C4'-C3'	119.49 (18)
N1-C1-C2	107.47 (18)	C6-C7-C1	103.76 (18)	C4'-C5'-C6'	120.33 (19)
N1-C1-C7	105.22 (19)	C6'-C1'-C2'	119.40 (19)	C1'-C6'-C5'	120.4 (2)
C2-C1-C7	112.9 (2)	C6'-C1'-C16	123.69 (19)	02-C16-01	123.1 (2)
C3-C2-C1	113.02 (19)	C2'-C1'-C16	116.87 (18)	02-C16-C1'	124.3 (2)
01-C3-C2	109.29 (19)	C3'-C2'-C1'	120.62 (19)	01-C16-C1'	112.59 (18)

Table 4. Selected bond lengths and bond angles of molecule 3.

Atom-Atom	Bond length (Å)	Atom-Atom	Bond length (\AA)	Atom-Atom	Bond length (\AA)
01-C16	1.306 (2)	N1-H1	0.92 (3)	C3'-C4'	1.478 (3)
01-C3	1.426 (2)	C1-C2	1.606 (3)	C4'-C5'	1.320 (3)
02-C16	1.270 (3)	C2-C3	1.526 (3)	C5'-C6'	1.358 (3)
03-C4'	1.322 (3)	C3-C4	1.467 (3)	C19-C20	1.396 (3)
03-C17	1.511 (3)	C1-C7	1.584 (3)	C20-C25	1.391 (3)
04-C3'	1.295 (2)	C6-C7	1.522 (3)	C20-C21	1.422 (4)
04-C18	1.490 (3)	C1'-C2'	1.341 (3)	C21-C22	1.300 (4)
N1-C1	1.422 (2)	C1'-C6'	1.443 (3)	C22-C23	1.375 (5)
N1-C5	1.507 (3)	C1'-C16	1.460 (3)	C23-C24	1.428 (5)
N1-C19	1.550 (2)	C2'-C3'	1.344 (3)	C24-C25	1.277 (4)
Atom-Atom-Atom	Bond angles (${ }^{\circ}$)	Atom-Atom-Atom	Bond angles (${ }^{\circ}$)	Atom-Atom-Atom	Bond angles (${ }^{\circ}$)
C16-01-C3	110.32 (17)	C4-C3-C2	112.88 (17)	03-C4'-C3'	119.99 (19)
C4'-03-C17	121.10 (19)	C3-C4-C5	113.89 (18)	C4'-C5'-C6'	115.0 (2)
C3'-04-C18	118.22 (18)	N1-C5-C6	102.29 (17)	C5'-C6'-C1'	124.22 (19)
C1-N1-C5	103.74 (15)	N1-C5-C4	104.55 (16)	02-C16-01	126.0 (2)
C1-N1-C19	108.16 (16)	C6-C5-C4	121.10 (16)	02-C16-C1'	128.48 (18)
C5-N1-C19	112.08 (15)	C7-C6-C5	102.05 (17)	01-C16-C1'	105.46 (18)
C1-N1-H1	107.2 (15)	C6-C7-C1	106.92 (17)	C20-C19-N1	109.10 (18)
C5-N1-H1	109.4 (16)	C2'-C1'-C16	111.9 (2)	C25-C20-C19	116.3 (2)
C19-N1-H1	115.4 (15)	C6'-C1'-C16	126.77 (18)	C25-C20-C21	124.2 (2)
N1-C1-C7	99.06 (16)	C1'-C2'-C3'	114.6 (2)	C19-C20-C21	119.4 (2)
N1-C1-C2	105.04 (17)	04-C3'-C2'	119.9 (2)	C22-C21-C20	118.6 (3)
C7-C1-C2	119.44 (17)	04-C3'-C4'	116.3 (2)	C21-C22-C23	116.1 (3)
C3-C2-C1	114.75 (17)	C2'-C3'-C4'	123.85 (18)	C22-C23-C24	125.7 (3)
01-C3-C2	111.96 (18)	C5'-C4'-03	119.1 (2)	C25-C24-C23	117.8 (3)
01-C3-C4	99.66 (18)	C5'-C4'-C3'	120.9 (2)	C24-C25-C20	117.6 (3)

Table 5. Intra- and inter-molecular interactions in the crystals 1-3.

D-H...A	d(D-H), \AA	d(H...A), \AA	d(D...A), \AA	\angle (DHA), ${ }^{\circ}$	Symmetry
Compound 1					
C17-H17a... 02	0.96	2.47	3.405(9)	164	$1+x, y, z$
Compound 2					
C18-H18c... 02	0.96	2.53	3.268(3)	134	1-x, 1-y, 2-z
Compound 3					
N1-H...Cl1	0.93(3)	2.42(3)	3.337(2)	174(2)	-
C2-H2a...Cl1	0.97	2.76	3.499(2)	133	-
C4-H4b...Cl1	0.97	2.82	3.552(3)	133	-
C7-H7a... 04	0.97	2.20	3.106(3)	155	$-x,-y,-z$
C19-H19b...Cl1	0.97	2.64	3.577(2)	162	1-x, -1-y, -z

Bond length in the molecules 1-3 closely comparable with only small variations around the N1 nitrogen atom. N1-C1 (1.466(10) Å), N1-C5 (1.468(10) Å) bonds in molecule 1 and N1-C1 (1.466(10) \AA), N1-C5 (1.468(10) \AA) and N1-C19 1.466(3) Å bonds in molecule 2 are almost the same. In case molecule 3 with protonation of N 1 atom those bond lengths equals to $1.422(2), 1.507(3), 1.550(2) \AA$, respectively (Tables 2-4).

In crystal structures 1 and 2, the molecules are located in the distance of van der Waals interactions. However, the crystal structure indicates that the molecules in the crystals are associated by intermolecular weak C-H...O interactions (Table 5). Crystal 3 is the hydrochloride salt. The H-bond
between the anion Cl and the proton of the N atom is observed in the crystal, the H -bond parameters are the following: Cl1 $\cdots \mathrm{N} 13.337(2) \AA \AA, \mathrm{Cl} 1 \cdots \mathrm{H} 2.42(3) \AA$, Cl1 $\cdots \mathrm{HN} 1$ 174(2) ${ }^{\circ}$. A weak H -bond of $\mathrm{C} 7-\mathrm{H} \cdots 04$ type is observed, and also $\pi-\pi$ interactions between the aromatic sites of the veratroyloxy group of molecules transformed by the center of symmetry.

4. Conclusion

Crystal structures of convolvine alkaloid and its two derivatives were deduced by single crystal XRD analysis. Piperidine rings in compounds adopt chair conformation. Hydrogen atom and methyl- and benzyl-substituents located
in nitrogen atom of 1-3 occupy equatorial positions. The veratroyloxy group containing in all compound molecules is an α-axial oriented relative to the tropane core. Free rotation of dimethoxyphenyl- group around the $\mathrm{C} 16-\mathrm{C} 1$ ' bond leads different rotamers in crystals of compound 1-3.

Acknowledgements

The project is supported by the Academy of Sciences of the Republic of Uzbekistan, (Grant no: VA-FA-F-6-010).

Supporting information ${ }^{(S)}$

CCDC 1935317 (1), CCDC 1935318 (2) and CCDC 1935324 (3) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/, or by e-mailing data request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44(0)1223-336033.

Disclosure statement DS

Conflict of interests: The authors declare that they have no conflict of interest.
Author contributions: All authors contributed equally to this work.
Ethical approval: All ethical guidelines have been adhered.
Sample availability: Samples of the compounds are available from the author.

ORCID (iD

Kambarali Kuchkarovich Turgunov
(D) http://orcid.org/0000-0001-5741-6347
\section*{Dilfuza Kadirova}
(D) http://orcid.org/0000-0001-6488-0738
Rasul Yangiberdiyevich Okmanov
(D) http://orcid.org/0000-0003-2154-0746
Salima Fazilovna Aripova
(D) http://orcid.org/0000-0001-6416-7756
Bakhodir Tashkhodjaev
(D) http://orcid.org/0000-0003-3027-9893

References

[1]. Mashkovskiy, M. D. Lekarstvennie sredstva, Medicine, Tashkent, 1984. Part 1, pp. 239, [in Russian].
[2]. Gapparov, A. M.; Okhunov, I. I.; Aripova, S. F.; Nabiev, A.; Khuzhaev, V. U. Chem. Nat. Compd. 2011, 47, 608-611.
[3]. Xashimova, Z. S.; Aripova, S. F.; Seomashko, N. E.; Terenteva, E. O.; Ohunov, I. I.; Kadirova, D. B.; Azimova, Sh. S. Patent RUz, No IAP 04965; «Sredstvo, proyavlyayushee izbiratelnuyu sitotoksicheskuyu aktivnost po otnosheniyu k kletkam raka gortani» (in Russian).
[4]. Oxford Diffraction, CrysAlis PRO. Version 1.171.37.34. Oxford Diffraction Ltd., Yarnton, Oxfordshire, England.
[5]. Sheldrick, G. M. Acta Cryst. A 2008, 64, 112-122.
[6]. Sheldrick, G. M. Acta Cryst. C 2015, 71, 3-8.
[7]. Gapparov, A. M.; Razzakov, N. A.; Aripova, S. F. Chem. Nat. Compd. 2007, 43, 291-292.
[8]. Gapparov, A. M.; Aripova, S. F.; Tashkhodzhaev, B.; Levkovich, M. G.; Aripov, O. Chem. Nat. Compd. 2010, 46, 590-592.
[9]. Chananont, P.; Hamor, T.A. J. Chem. Res. 1978, 10, 414-415.
[10]. Hamor, T.A. J. Chem. Soc., Perkin Trans. 2 1976, 1359-1363.
[11]. Dalpiaz, A.; Ferretti, V.; Gilli, P.; Bertolasi, V. Acta Cryst. B 1996, 52, 509-518.
[12]. Zhu, N.; Reynolds, M.; Klein, C. L.; Trudell, M. Acta Cryst. C 1994, 50, 2067-2069. (European Journal of Chemistry).

