Modeling of cation diffusion in bifunctional polymers based on cis-tetraphenylcalix[4]resorcinarene

Heinrich Altshuler* and Olga Altshuler

*Corresponding author: Kemerovo Division of Institute of Solid State Chemistry and Mechanochemistry Siberian Branch of Russian Academy of Sciences, Kemerovo, RU-650099, Russia

1. Introduction

The synthesis of cis-tetraphenylcalix[4]resorcinarene [1] is of great importance for chemistry of novel functional materials [2]. Due to it's molecular structure (great hydrophobic cavity and the upper hydrophilic rim including eight hydroxyl groups) cis-tetraphenylcalix[4]resorcinarene accounts for unique physical and chemical properties. For realizing its properties cis-tetraphenylcalix[4]resorcinarene was immobilized into the phase of network polymers. New network functional polymers were synthesized by immobilization of calix[4]arenes on cross-linked polystyrene [3] and by catalytic resol polycondensation of cis-tetraphenylcalix[4]resorcinarene derivatives with formaldehyde [4-7]. It was shown that immobilized cis-tetraphenylcalix[4]resorcinarenes are nanoreactors for catalytic hydrogenation processes [8], solid polyelectrolytes [9], cation exchangers [4,10,11] and biometrics, the latter making it possible to consider the processes occurring in biological polymer systems [12,13] at the molecular level. The structure of an elementary unit (Figure 1) of network polymers received by polycondensation of cis-tetraphenylcalix[4]resorcinarene with formaldehyde is given in [6].

As was previously reported in [5], monofunctional polymer 1, includes only weakly acidic phenol -OH groups. Bifunctional polymer 2 contains strongly acidic -SO3H groups which dissociate with the formation of free protons over a wide pH range (0-14), and weakly acidic phenol OH groups. The thermodynamics of ion exchange in polymers 1 and 2 based on cis-tetraphenylcalix[4]resorcinarene was investigated in [14,15]. The purpose of the present work is to determine the limiting stage of ion exchange kinetics and to give a mathematical description of cation flux in network polymers 1 and 2 based on cis-tetraphenylcalix[4]resorcinarene.

2. Experimental

2.1. Synthesis

Polymers 1 was produced by resol polycondensation of cis-tetraphenylcalix[4]resorcinarene with formaldehyde as spherical granules of an adjustable size [4,5]. Polymer 2 was produced by sulfonation of polymer 1 according to the procedure [7]. The total dynamic ion-exchange capacities (in equiv. per 1 kg of the polymer in the H form dried at 105 °C of the polymers) were 3.90 and 5.65, respectively. The content of acidic -SO3H groups in polymer 1 was 2.25 equiv. per 1 kg of the dry H form.

2.2. Kinetic studies

For kinetic studies, the selection of spherical granules and the determination of their sizes were performed using the IMTs 100×50, A microscope. Polymer granule size distribution corresponded to a normal (Gaussian) distribution. The particle radius calculated as an arithmetic average of the size of 1000
spherical granules was \((0.96\pm0.50) \times 10^{-4} \text{ m} \) for polymer 1 and \((1.02\pm0.53) \times 10^{-4} \text{ m} \) for polymer 2.

The kinetics of ion exchange was studied by the dynamic thin-layer method \([16]\) at 298 K by sorption from an infinite volume of electrolyte solutions with concentrations of 0.01, 0.03, 0.05, and 0.1 mol/dm\(^3\).

2.3. Calculation details

Molecular structure of the repeating unit of polymer 2 was optimized in terms of enthalpy of formation by the semiempirical PM6 method within the MOPAC 2009 program on Intel (R) Core(TM)2 Duo T7300 processor.

3. Results and discussion

The ion exchange process (I) takes place in monofunctional polymer 1:

\[
\text{L-OH} + \text{Cat}^+ + \text{OH}^- \xleftrightarrow{} \text{L-O-Cat}^+ + \text{H}_2\text{O} \quad (I)
\]

where \(\text{L} \) - a fragment of elementary unit of polymer based on cis-tetraphenylcalix[4]resorcinarene; \(\text{Cat}^- \) - Li\(^+\), Na\(^+\), Ag\(^+\), N\((\text{CH}_3)_3\)\(\cdot\)Cl\(^-\).

The following ion exchange processes take place in bifunctional polymer 2: with participation of phenol OH groups

\[
\text{L-OH} + \text{Cat}^+ + \text{OH}^- \xleftrightarrow{} \text{L-O-Cat}^+ + \text{H}_2\text{O} \quad (I)
\]

with participation of sulfonic acid groups

\[
\text{L-OH} + \text{SO}_3\text{H}^- + \text{Cat}^+ \xleftrightarrow{} \text{L-O-Cat}^+ + \text{H}^+ \quad (II)
\]

with participation both sulfonic and phenol OH groups

\[
\text{L-OH} + \text{SO}_3\text{Cat}^- + \text{Cat}^+ + \text{OH}^- \xleftrightarrow{} \text{L-O-Cat}^+ + \text{H}_2\text{O} \quad (III)
\]

In bifunctional polymer 2 it is possible to obtain phenolate \(\text{L-O-Cat}^- \) as a result of process (I) and as a sum of processes (II) and (III). To choose the optimal method it is necessary to compare the rates and mechanisms of processes (I)-(III).

The experimental kinetic dependences of the transformation degree \((F)\) on time \((t)\) for processes (I)-(III) are resulted in Figure 2. The transformation degree was calculated as \(F=M_t/M_0\) where \(M_t\) - the amount of cations sorbed at time \(t\); \(M_0\) - equilibrium ion exchange capacity. As seen from Figure 2, ion exchange \(\text{H}^+-\text{Cat}^+\) with participation of sulfonic acid groups of polymer 2 has the highest rate (Figure 2, (II)), a sorption process of cations \(\text{Cat}^+\) from alkaline solutions with participation phenol OH groups of polymer 1 has the lowest rate (Figure 2, (I)).

Rectilinearity of dependences of the transformation degree from \(t^{1/2}\) at \(t \leq 0.5\) (factors of linear correlation exceed 0.99) and passage of lines through the origin (Figure 2) according to the criteria \([19]\) testify the fact that the interaction of polymers based on cis-tetraphenylcalix[4]resorcinarene with aqueous solutions of electrolytes is controlled by diffusion of ions in the polymers. Thus, a "particle-diffusion control" \([20]\) of ion exchange kinetics takes place.

The "particle-diffusion control" of ion exchange kinetics is described \([19]\) by fundamental diffusion equation \((1)\) in the case of constant diffusion coefficient and spherical symmetry \([21]\)

\[
\frac{\partial C}{\partial t} = D \left(\frac{\partial^2 C}{\partial r^2} + \frac{2}{r} \frac{\partial C}{\partial r} \right)
\]

Where \(D \) - diffusion coefficient of the species; \(C \) - current concentration of the species in a polymer; \(r \) - radius-vector. Let us consider the solution of equation \((1)\) for processes (I)-(III).

![Figure 2. Experimental kinetic dependences of processes (I), (II), (III) of sorption of metal cations by polymers based on cis-tetraphenylcalix[4]resorcinarene from aqueous solutions: 1- NaCl, 2- NaOH, 3- LiCl, 4- LiOH, 5- AgNO3, 6- (CH3)4NOH. (I) - Cat+ sorption from alkaline solutions with participation of phenol OH groups of polymer 1; (II) - H+-Cat+ ion exchange with participation of sulfonic acid groups of bifunctional polymer 2 in terms of the data \([17]\); (III) - H+-Cat+ ion exchange with participation both sulfonic acid and phenol OH groups of bifunctional polymer 2 in terms of \([18]\).](image)

3.2. Solution of the diffusion equation for cation exchange process (I) in polymer 1 with participation of phenol OH groups

As was shown \([20]\) the rates of ion exchange processes with participation of weakly acidic ion exchangers are controlled either by interdiffusion of \(H^+\) ions and sorbed \(\text{Cat}^+\) cations or by diffusion of \(OH^-\) anions in a polymer. In this case the rate of the process (I) is controlled by diffusion of \(OH^-\) anions in a polymer 1. Equation \((2)\) presented in \([20]\)

\[
F = 1 - \left\{ \sin \left[\frac{1}{3} \arcsin \left(1 - 12 \frac{D_{OH}^w C_{OH}^{\infty}}{C_r r_0^2} t \right) \right] \right\} \times \frac{1}{2}
\]

describes our experimental data on ion-exchange rates in polymer 1 \((\text{Figure 2, (I)})\) in the studied range of concentrations. Here \(D_{OH}^w\) - diffusion coefficient of \(OH^-\) anions in polymers, \(C_{OH}^{\infty}\) - concentration of \(OH^-\) anions on the surface of a spherical particle of a polymer, \(C_r\) - total concentration of fixed ionogenic groups (ionized and not ionized hydroxyl groups) in a polymer.

3.3. Solution of the diffusion equation for a cation exchange process (II) in polymer 2 with participation of sulfonic acid groups

The expression \([22]\)

\[
M_t = \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{1}{n^2} \left(-D_{\text{Cat}^+} n^2 \pi^2 t / r_0^2 \right)
\]

describes our experimental data on ion-exchange rates in polymer 2 (Figure 2, (II)), for a sorption process of cations \(\text{Cat}^+\) from alkaline solutions with participation phenol OH groups of polymer 2 in terms of \([17]\).
for the transformation degree of ion exchanger describes the experimental data in all the studied ranges of concentrations for exchange of protons from SO₄⁻H⁺ groups of network polymer 2 by metal cations from solution (Figure 2, (II)). Here, Dₓ - effective diffusion coefficient in polymer, r₀ - average radius of spherical particle of polymer. Values of effective diffusion coefficient of cations in sulfonated polymer based on cistetraphenylethynyl[4]resorcinarene, calculated with probability 0.9 by equation (3), are in the (1.9 ± 2.1)·10⁻¹¹ m²/s interval.

3.4. Solution of the diffusion equation for a cation exchange process (III) in polymer 2 with participation both sulfonic acid and phenol OH groups

Before the beginning of process (III) bifunctional polymer 2 already contains Cat⁺ whose concentration is equal to that of SO₄²⁻ groups. In process (III) the ion exchange of protons of phenol OH groups by Cat⁺ takes place. The rate of process (III) with participation of polymer 2 is controlled by H⁺ and Cat⁺ interdiffusion in a spherical particle of a polymer.

3.4.1. Effective diffusion coefficient

According to diffusion mechanism of process (III) for constant diffusion coefficient Dₓ of free protons, the flux equation

\[J_{\text{cat}} = -D_x \nabla C_{\text{cat}} \]

(4)
is obtained [20]. Here,

\[D_x = \frac{K_a}{K_w + K_a} D_n, \]

(5)
at \(C_{\text{cat}} \rightarrow 0 \) \((K_w -\) dissociation constant of phenol OH groups in a polymer).

Since swelling and hydration values of studied polymer 2 upon conversion (III) remain constant (30 mol H₂O per 1 equiv. of total capacity of polymer), it can be to assumed that the effective diffusion coefficient in polymer \(D_x \) in equation (4) is constant. Let us calculate its value. Potentiometric titration of sulfonated calixarencontaining polymers [6] gives the value \(K_w = 10^{4.5} \) mol/m³. Thus, at \(D_n = 10^{-11} \) m²/s [22], \(C_n = 1·10^{-11} \) mol/m³, the effective diffusion coefficient \(D_x \) calculated by equation (5), is equal to \(10^{-17} \) m²/s.

3.4.2. Spherical layer model for a particle of polymer 2

We assume that the spherical particle of polymer 2 should consist of a set of spherical layers. SO₄⁻Cat⁺ groups are located on the outer surface of each spherical layer while phenol OH groups nearest to them are on its inner surface (Figure 3). The surface \(r = a \) is maintained at \(C_0 \), and \(r = b \) at \(C_0 \) and the region \(a \leq r \leq b \) is initially at \(C_0 \). The diffusion flux of Cat⁺ through a spherical layer passes the distance between \(SO_4^- \)Cat⁺ and phenol OH groups (Figure 3).

![Figure 3](https://example.com/figure3.png)
Figure 3. The diffusion flux of Cat⁺ through a spherical layer in bifunctional polymer 2.

3.4.3. Solution of equation (1) for steady state

For steady state equation (1) is transformed into (6)

\[\frac{d}{dr} \left(r^2 \frac{dQ}{dr} \right) = 0, \]

(6)
in which the general solution is

\[Q = \frac{1}{4} D_x \left(\frac{\partial C}{\partial r} \right)_{r=r_0} dt = D_x \frac{ab(C_1 - C_0)}{(b-a)\pi}. \]

(9)
The quantity of diffusing species \(Q \), which passes through the spherical wall within time \(t \), is given by

\[Q = 4\pi a^2 Q = 4\pi D_x t \frac{ab(C_1 - C_0)}{(b-a)\pi}. \]

(10)

3.4.4. Solution of equation (1) for non-steady state

For non-steady state the solution of diffusion equation (1) can be obtained by Laplace transforms or a method of separation of variables [21] in case diffusion coefficient is constant. It results in function \(Q(t, r_0) \), after its integration [21] the total amount of Cat⁺, which accumulates in the spherical layer after time \(t \) is \(M_t \)

\[M_t = \frac{4\pi}{3} (b-a) \left[\frac{a^2 + ab}{2} C_0 + \left(\frac{b^2 + ab}{2} \right) C_1 - \left(\frac{a^2 + ab + b^2}{2} \right) C_0 - \frac{6}{\pi} \sum_{k=1}^{\infty} \left[\frac{a^2 C_0 - (a^2 + b^2) C_1 + b^2 C_0 - 2abcd \eta \pi}{a^2 + b^2} \right] \times \frac{\exp[-D_x n^2 \pi^2 t/(b-a)^2]}{n^2} \right] \]

(11)

When \(C_0 = 0, C_1 = 0, C_2 = C_1 \),

\[M_t = \frac{4\pi}{3} (b-a) \left[\frac{b^2 + ab}{2} C_1 - \frac{6}{\pi} \sum_{k=1}^{\infty} \left[b^2 C_1 - 2abcd \eta \pi \left(\frac{C_2}{2} \right) \right] \times \frac{\exp[-D_x n^2 \pi^2 t/(b-a)^2]}{n^2} \right] \]

(12)

\[M_t = C_1 \frac{4\pi}{3} (b^2 - a^2) \]

(13)

The transformation degree in time \(t \) is

\[F = \frac{M_t}{M_0} = \frac{\left[\frac{b^2 + ab}{2} \right] - \frac{6}{\pi} \sum_{k=1}^{\infty} \left[\frac{b^2 - ab \cos \eta \pi}{a^2 + b^2} \exp[-D_x n^2 \pi^2 t/(b-a)^2] \right]}{a^2 + ab + b^2}. \]

(14)
Equation (14) is transformed into equation (2) if $a = 0$; $b = r_0$.

The dependencies of the transformation degree from $(12)/(b-a)^{1/2}$ are shown in Figure 4 for different values of b/a. The top curve corresponds to solid sphere $(a = 0)$, bottom - to plane sheet $(r >> (b - a))$. In the $0 \leq F \leq 0.5$ range the experimental values correspond to the chosen model at small values of b/a. According to equation (14), the rates of process (III) do not depend on the concentration of a solution, and concentration of polymer (C_0, ρ_0), probably, neither on the form nor of the size of a spherical particle of polymer. Actually, experimental values $P(C/\rho)$ for H^+/Li^+ and H^+/Na^+ exchange at various solution concentrations are described by the same functional dependence (Figure 2, (III)).

3.5. Nanoreactor effect

According to equation (4), at constant diffusion coefficient, the diffusion flux depends only on concentration gradient. In monofunctional polymer 1 the value of the concentration gradient is determined by the change in the concentration of a diffusing component at a macroscopic distance from the outer surface of the ion exchanger particle to its center. In bifunctional polymer 2 the cation diffusion flux passes the distance between SO$_3$H and phenol OH groups (Figure 5), it being equal to, approximately, the size of cis-tetraphenylcalix[4]resorcinarene molecule and considerably less than the dimension of the ion exchanger particle. In the repeating unit of polymer 2 the calculated distance is several nanometers. This results in considerable increase in process (III) rate. At the same time the rate of process (III) should be less than that of process (II), which provides for the delivery of cations from a solution to sulfonic acid groups of polymer 2. Half-transformation periods of time $(t \approx 0.5)$, calculated from the experimental data (Figure 2), are equal to $16 s$ for process (II), $9500 s$ for process (I), $50 s$ for process (III) respectively. Comparing the rates of ion exchange processes with participation of weakly dissociating ionogenic groups for mono- and bifunctional polymers, we find out the nanoreactor effect that consists in hundredfold increase in ion exchange rate. The cup of bifunctional cis-tetraphenylcalix[4]resorcin arene, which contains as strongly acidic SOH groups and weakly acidic phenol OH groups (Figure 5), immobilized in the network polymer phase acts as nanoreactor.

4. Conclusion

Modeling of cation diffusion in bifunctional polymers based on cis-tetraphenylcalix[4]resorcinarene gives the solution for the fundamental differential equation of cation diffusion in bifunctional ion exchangers. The proposed mathematical model explains the nanoreactor effect in bifunctional polymers based on cis-tetraphenylcalix[4]resorcinarene. It predicts considerable improvement of the kinetic characteristics of cation exchangers containing weakly dissociating ionogenic groups when strong acidic functional groups are introduced into these cation exchangers. This effect holds good for both bifunctional polymers based on cis-tetraphenylcalix[4]resorcinarene and other bifunctional cation exchangers (for example Amberlite IRA-100 type) for producing ion-exchange membranes and selective sorbents. High mobility of protons in the investigated systems substantially affects the activity of catalyst in redox processes with participation of hydrogen.

References