European Journal of Chemistry

Journal homepage: www.eurjchem.com

Synthesis and antifungal activity of some new pyrido[2,3-d]pyrimidines

Fatin Ismail Hanafy
Department of Chemistry, Faculty of Education, Ain Shams University, Roxy, Cairo, EG-11711, Egypt

Corresponding author at: Department of Chemistry, Faculty of Education, Ain Shams University, Roxy, Cairo, EG-11711, Egypt. Tel.: +2025088247; fax: +2025088247. E-mail address: hsseleem@yahoo.com (F.I. Hanafy).

ARTICLE INFORMATION

Received: 03 March 2010
Received in revised form: 21 July 2010
Accepted: 25 July 2010
Online: 31 March 2011

KEYWORDS

Pyrido[2,3- d]pyrimidine

Fusion
Condensation
Active methyl group
Oxidative cyclization
Antifungal activity

Abstract

Some new pyrido[2,3- d]pyrimidine derivatives (3a-c) were synthesized from 2-amino-5-cyano-6-methoxy-4-(4-methoxyphenyl)pyridine-3-carboxamide. 7-methoxy-5-(4-methoxy phenyl)-4-oxo-2-phenyl-3,4-dihydropyrido[2,3-d]pyrimidine-6-carbonitrile (3b) and 7-met-hoxy-5-(4-methoxyphenyl)-4-oxo-3,4-dihydropyrido[2,3-d]pyrimidine-6-carbonitrile (3c) are used in synthesizing 7a,b, then 8a,b. 7-methoxy-5-(4-methoxyphenyl)-2-methyl-4-oxo-3,4dihydropyrido $[2,3-d]$ pyrimidine-6-carbonitrile (3a) and 4-hydrazinyl-7-methoxy-5-(4-methoxyphenyl)pyrido[2,3-d]pyrimidine-6-carbonitrile (8b) were condensed with different carbonyl compounds to produce compounds 4, 5, 6 and 9, 10, 11, 12. 3-Methoxy-1-(4-methoxyphenyl)-6-phenyl-7-hydropyridino[2,3-d]1,2,3,4-tetrazolo[1,5-e]pyrimidine-2-carbonitrile (13) was synthesized from 8a or $\mathbf{7 a}$. Condensation of $\mathbf{8 b}$ with acetophenone to yield 14, which on further reaction gave 15 then 16. 4-Hydrazinyl-7-methoxy-5-(4-methoxyphenyl)-2-phenylpyrido[2,3- d] pyrimidine-6-carbonitrile (8a) also condensed with 4amino antipyrine giving 17 then 18. Structures of these compounds have been deduced upon the basis of elemental analysis and spectral data. Significant antifungal activities were observed for some of the synthesized compounds.

1. Introduction

Pyrido[2,3-d]pyrimidine and few of its derivatives display potentially useful biological activities [1,2]. They show dihydrofolate reductase inhibition and antitumor [3-5] as well as diuretic properties [6]. Moreover, some of these compounds possess antimicrobial [7,8], antibacterial [9,10], and cytotoxic activities [11,12]. Therefore, a few new pyrido[2,3d]pyrimidine derivatives condensed with 1,2,4-triazole, pyrazole, tetrazole and 1,2,4-triazine rings were synthesized. These new prepared compounds were tested for their antifungal activities.

2. Experimental

2.1. Instrumentation

Melting points were determined on a digital Stuart SMP3 and are uncorrected. Infrared spectra were measured on Perkin-Elmer 293 spectrophotometer (γ in cm^{-1}), using KBr disks. ${ }^{1} \mathrm{H}$ NMR spectra were measured on Gemini-200 spectrometer (200 MHz), using DMSO- d_{6} as a solvent and TMS ($\delta, 0.0 \mathrm{ppm}$) as internal standard. The mass spectra were recorded on gas chromatographic GCMSqp 1000-ex Shimadzu instrument or HP-MS 5988 mass spectrometer by direct inlet operating at 70 eV . Elemental microanalyses were performed on Perkin Elmer CHN-2400 analyzer or C, H, N manual in micro-analysis center at Cairo University.

2.2. 2-Amino-5-cyano-6-methoxy-4-(4-methoxyphenyl) pyridine-3-carboxamide (2)

To 100 mL of an alcoholic solution of KOH (5\%), 0.01 mole of compound 1 was added and the reaction mixture was refluxed for 30 min . After cooling, the reaction mixture was diluted with water and the formed solid was filtered off, washed with water and recrystallized from DMF to give 2 as yellow crystals (Scheme 1). Yield: 82%. M.p.: $250{ }^{\circ} \mathrm{C} . \mathrm{IR}(\mathrm{KBr}$, $v_{\text {max }} \mathrm{cm}^{-1}$): 3380 (amide NH_{2}), 1720 ($\mathrm{C}=0$ amide), 1604 ($\mathrm{C}=\mathrm{C}$ aromatic), $2230(\mathrm{C} \equiv \mathrm{N}) .{ }^{1} \mathrm{H}$ NMR (DMSO, $\delta \mathrm{ppm}$): 2.80-3.02 $\left(6 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{3}\right) ; 6.88(4 \mathrm{H}, \mathrm{d}, \mathrm{Ar}-\mathrm{H}) ; 10.03\left(4 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right) . \mathrm{MS}(\mathrm{m} / \mathrm{z}$, \%): $298\left(\mathrm{M}^{+}, 72.22\right), 191$ (88.89), 147 (100), 121 (61.11), 107(61.11), 76 (55.56), 44 (83.33), 32 (55.56), 26 (61.11). Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{3}$ (298): C, 60.40; H, 4.98; N, 18.79. Found: C, 60.32; H, 4.90; N, 18.53.

a) $\mathrm{R}_{1}=\mathrm{CH}_{3}, \mathrm{X}=-\mathrm{OCOCH}_{3}$
(3c)

Scheme 1
2.3. 7-Methoxy-5-(4-methoxyphenyl)-2-substituted-4-oxo-3-
hydrpyridino[2,3-d] pyrimidine-6-carbonitrile (3a-c)

A mixture of $2(0.01$ mole) and acetic anhydride, benzoyl chloride or triethyl orthoformate (0.01 mole) was fused at 150 ${ }^{\circ} \mathrm{C}$ for 2 hours. After cooling, the formed solid was washed with ethanol and recrystallized from the proper solvent; 3a from ethanol and 3b,c, from DMF (Scheme 1).

7-methoxy-5-(4-methoxyphenyl)-2-methyl-4-oxo-3,4-dihydro pyrido [2,3-d]pyrimidine-6-carbonitrile (3a): Reddish brown crystals. Yield: 73%. M.p.: $270{ }^{\circ} \mathrm{C}$. IR ($\mathrm{KBr}, v_{\text {max }}, \mathrm{cm}^{-1}$): 3050 (C-H aromatic), 2980 ($\mathrm{C}-\mathrm{H}$ aliphatic), 1650 ($\mathrm{C}=0$), 1604 ($\mathrm{C}=\mathrm{C}$ aromatic), $2240(\mathrm{C} \equiv \mathrm{N}) .{ }^{1} \mathrm{H}$ NMR (DMSO, $\delta \mathrm{ppm}$): 1.8 ($3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 2.73-3.01\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.72(4 \mathrm{H}, \mathrm{d}, \mathrm{Ar}-\mathrm{H}), 11.50(1 \mathrm{H}, \mathrm{br}$, NH). Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{3}$ (322): C, 63.35; H, 4.35; $\mathrm{N}, 17.39$. Found: C, 63.05; H, 4.29; $\mathrm{N}, 17.41$.

7-methoxy-5-(4-methoxyphenyl)-4-oxo-2-phenyl-3,4-dihydro pyrido [2,3-d]pyrimidine-6-carbonitrile (3b): Yellow crystals. Yield: 58\%. M.p.: $285{ }^{\circ} \mathrm{C}$. IR ($\mathrm{KBr}, v_{\text {max, }} \mathrm{cm}^{-1}$): 3020 (C-H aromatic), 2920 ($\mathrm{C}-\mathrm{H}$ aliphatic), 1690 (C=O), 1590 (C=C aromatic), $2230\left(\mathrm{C} \equiv \mathrm{N}\right.$). ${ }^{1} \mathrm{H}$ NMR (DMSO, $\delta \mathrm{ppm}$): 2.90-3.03 ($6 \mathrm{H}, \mathrm{s}, \mathrm{OCH} 3$), 6.93-7.85 ($9 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$), 11.20 ($1 \mathrm{H}, \mathrm{br}, \mathrm{NH}$). Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3}$ (384): C, 68.74; $\mathrm{H}, 4.17$; N, 14.58. Found: C, 68.69; H, 4.02; N, 14.53.

7-methoxy-5-(4-methoxyphenyl)-4-oxo-3,4-dihydropyrido[2,3-d] pyrimidine-6-carbonitrile (3c): Yellow crystals. Yield: 65\%. M.p.: $292{ }^{\circ} \mathrm{C}$. IR ($\mathrm{KBr}, \mathrm{v}_{\text {max }} \mathrm{cm}^{-1}$): 3040 (C-H aromatic), 2950 (C-H aliphatic), 1650 ($\mathrm{C}=0$), 1600 ($\mathrm{C}=\mathrm{C}$ aromatic), $2210\left(\mathrm{C} \equiv \mathrm{N}\right.$). ${ }^{1} \mathrm{H}$ NMR (DMSO, $\delta \mathrm{ppm}$): 2.75-3.05 ($6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$), 7.05-7.73 ($5 \mathrm{H}, \mathrm{m}$, Ar-H), 10.80 ($1 \mathrm{H}, \mathrm{br}, \mathrm{NH}$). MS (m/z, \%): 322 ($\mathrm{M}^{+}, 46.0$), 215 (66.5), 107 (100), 108 (39.3), 80 (62.3), 76 (76.5), 65 (26.2), 32 (20.8), 15 (35.1). Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{3}$ (308): $\mathrm{C}, 62.34 ; \mathrm{H}$, 3.90 ; N, 18.18. Found: C, $62.25 ; H, 3.82 ; ~ N, 18.09$.

2.4. 2-((1E)-2-phenylvinyl)-7-methoxy-5-(4-methoxyphenyl)-4-oxo-3-hydro pyridino[2,3-d]pyrimidine-6-carbonitrile (4)

A mixture of 3a (0.01 mole) and benzaldehyde (0.012 mole) in ethanol (30 mL) was refluxed for one hour. After cooling, the solid obtained was filtered off and recrystallized from ethanol to give 4 as yellow crystals (Scheme 2). Yield: 55%. M.p.: $230{ }^{\circ} \mathrm{C}$. IR ($\mathrm{KBr}, \mathrm{v}_{\max } \mathrm{cm}^{-1}$): 3044 (C-H aromatic), 2978 (C-H aliphatic), 1690 (C=0), 1632 (C=C), $2240(\mathrm{C} \equiv \mathrm{N}) .{ }^{1} \mathrm{H}$ NMR (DMSO, $\delta \mathrm{ppm}$): 2.73-3.10 ($6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$), $3.5(2 \mathrm{H}, \mathrm{d}$, $\mathrm{CH}=\mathrm{CH}-\mathrm{Ph}), 7.2(9 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 12.05(1 \mathrm{H}, \mathrm{br}, \mathrm{NH})$. Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3}$ (410): C, 70.24; H, 4.39; N,13.66. Found: C, 70.19; H, 4.32; N, 13.58.

Scheme 2

2.5. 2-Methoxy-4-(4-methoxyphenyl)-7,9-dimethyl-5-oxo-6-hydropyridino[2,3-d] pyridino[1,2-a]pyrimidine-3carbonitrile (5)

A mixture of 3a (0.01 mole) and the corresponding β dicarbonyl derivative; acetyl acetone, (0.012 mole) in ethanol $(30 \mathrm{~mL})$ was refluxed for one hour. After cooling, the solid obtained was filtered off and recrystallized from ethanol to give 5 as yellow crystals (Scheme 2). Yield: 65\%. M.p.: $290{ }^{\circ} \mathrm{C}$. IR
($\mathrm{KBr}, \nu_{\text {max }} \mathrm{cm}^{-1}$): 3035 (C-H aromatic), 2950 (C-H aliphatic), 1710 ($\mathrm{C}=0$), 1645 ($\mathrm{C}=\mathrm{C}$), $2237(\mathrm{C} \equiv \mathrm{N}) .{ }^{1}{ }^{\mathrm{H}}$ NMR ($\mathrm{DMSO}, \delta \mathrm{ppm}$): $2.03\left(6 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right), 2.7-3.0\left(6 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{3}\right), 6.8(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}, \mathrm{H}-8$, $\mathrm{H}-10)$. MS (m/z, \%): 386 ($\mathrm{M}^{+}, 11.8$), 278 (30.5), 250 (42.5), 171 (100), 115 (32.6), 107 (30.9), 79 (13.8), 30 (17.1), 26 (15.8). Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3}$ (386): C, 68.39; H, 4.66; N, 14.51. Found: C, 68.41; H, 4.52; N, 14.60.
2.6. 2-Methoxy-4-(4-methoxyphenyl)-8-methyl-5,7-dioxo-6-hydropyridino[2,3-d]3-pyridino[1,2-a]pyrimidine-3carbonitrile (6)

A mixture of 3a (0.01 mole) and ethyl pyruvate (0.012 mole) in ethanol (30 mL) was refluxed for one hour. After cooling, the solid obtained was filtered off and recrystallized from ethanol to give $\mathbf{6}$ as pale brown crystals (Scheme 2). Yield: 65%. M.p.: $275{ }^{\circ} \mathrm{C}$. IR ($\mathrm{KBr}, v_{\text {max }}, \mathrm{cm}^{-1}$): 2980 (aliphatic C-H), 1720 ($\mathrm{C}=0$), 1604 ($\mathrm{C}=\mathrm{C}$ aromatic), $2230\left(\mathrm{C} \equiv \mathrm{N}\right.$). ${ }^{1 \mathrm{H}} \mathrm{NMR}$ (DMSO, $\delta \mathrm{ppm}$): 2.03-3.20 ($9 \mathrm{H}, \mathrm{d},-\mathrm{CH}_{3},-\mathrm{OCH}_{3}$), 7.3 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$, H-9). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{4}$ (374): C, 64.17; H, 3.74; N, 14.97. Found: C, 64.09 ; H, 3.69; N, 15.03.

2.7. 4-Chloro-7-methoxy-5-(4-methoxyphenyl)-2-substituted pyridino[2,3-d]pyrimidine-6-carbonitrile (7a,b)

A mixture of $\mathbf{3 b}$ or $\mathbf{3 c}(5 \mathrm{~g})$ and $\mathrm{POCl}_{3}(25 \mathrm{~mL})$ was refluxed for 3 hours. The reaction mixture was cooled and poured on 200 g ice water. The formed solid was filtered off, washed with water and recrystallized from ethanol to give $\mathbf{7 a}$ and $\mathbf{7 b}$ as yellow crystals (Scheme 3).

4-chloro-7-methoxy-5-(4-methoxyphenyl)-2-phenylpyrido [2,3-d]pyrimidine-6-carbonitrile (7a): Yield: 70%. M.p.: $185{ }^{\circ} \mathrm{C}$. IR (KBr, $v_{\max } \mathrm{cm}^{-1}$): 3020 (aromatic C-H), 2980 (aliphatic C-H), 1604 ($\mathrm{C}=\mathrm{C}$ aromatic), $2230\left(\mathrm{C} \equiv \mathrm{N}\right.$). ${ }^{1} \mathrm{H}$ NMR (DMSO, $\delta \mathrm{ppm}$): 2.3-3.1 ($6 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{3}$), $6.80-7.20(9 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$. Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Cl}(402.5): \mathrm{C}, 65.59 ; \mathrm{H}, 3.73 ; \mathrm{N}, 13.91 ; \mathrm{Cl}, 8.82$. Found: C, 65.62; H, 3.70; N, 13.89; Cl, 8.70.

4-chloro-7-methoxy-5-(4-methoxyphenyl)pyrido[2,3-d] pyrimidine-6-carbonitrile ($\mathbf{7 b}$): Yield: 75%. M.p.: $172{ }^{\circ}{ }^{\circ}$ C. IR (KBr, $v_{\text {max }}, \mathrm{cm}^{-1}$): 3040 (aromatic C-H), 2950 (aliphatic C-H), $1600\left(\mathrm{C}=\mathrm{C}\right.$ aromatic), $2210(\mathrm{C} \equiv \mathrm{N}) .{ }^{1} \mathrm{H}$ NMR (DMSO, $\delta \mathrm{ppm}$): 2.8-3.5 ($6 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{3}$), 7.20-7.77 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$). Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Cl}$ (326.5): C, $58.81 ; \mathrm{H}, 3.37 ; \mathrm{N}, 17.15 ; \mathrm{Cl}, 10.87$. Found: C, 59.03; H, 3.40; N, 17.18; Cl, 10.90.

2.8. 4-Hydrazino-7-methoxy-5-(4-methoxyphenyl)-2substituted pyridino[2,3-d] pyrimidine-6-carbonitrile (8a,b)

A mixture of $\mathbf{7 a}$ or $\mathbf{7 b}$ (0.01 mole) and hydrazine hydrate (98%; 0.05 mole) in 50 mL ethanol was refluxed for 3 hours. After cooling, the formed solid was filtered off and recrystallized from the proper solvent to give 8a (ethanol) and $\mathbf{8 b}$ (DMF) as colorless crystals (Scheme 3).

4-Hydrazinyl-7-methoxy-5-(4-methoxyphenyl)-2-phenylpyrido [2,3-d]pyrimidine-6-carbonitrile (8a): Yield: 55\%. M.p.: $220{ }^{\circ} \mathrm{C}$. IR $\left(\mathrm{KBr}, v_{\max }, \mathrm{cm}^{-1}\right.$): 3020 (aromatic C-H), 2980 (aliphatic C-H), 1604 (C=C aromatic), 2230 ($\mathrm{C} \equiv \mathrm{N}$). ${ }^{1} \mathrm{H}$ NMR (DMSO, $\delta \mathrm{ppm}$): 2.3-2.9 ($6 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{3}$), 7.3 (9H, m, Ar-H), 11.9 (3H, br, NH-NH2). Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{O}_{2}$ (398): C, 66.33; H, 4.52; N, 21.11. Found: C, 66.36; H, 4.50; N, 21.20.

4-Hydrazinyl-7-methoxy-5-(4-methoxyphenyl)pyrido[2,3-d] pyrimidine-6-carbonitrile (8b): Yield: 63%. M.p.: $235^{\circ} \mathrm{C}$. IR (KBr,

$V_{\text {max, }} \mathrm{cm}^{-1}$): 3030 (aromatic C-H), 2910 (aliphatic C-H), 1580 ($\mathrm{C}=\mathrm{C}$ aromatic), $2230\left(\mathrm{C} \equiv \mathrm{N}\right.$). ${ }^{1} \mathrm{H}$ NMR (DMSO, $\delta \mathrm{ppm}$): 2.7-3.1 ($6 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{3}$), 7.05-7.63 (5H, m, Ar-H), 11.7 (3H, br, NH-NH2). Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{6} \mathrm{O}_{2}$ (322): C, 59.63; H, 4.35; N, 26.09, Found: C, 59.59; H, 4.33; N, 26.12.

2.9. 4-[((1E)-1-aza-2-phenylvinyl)amino]-7-methoxy-5-(4-methoxyphenyl)-2-phenyl pyridino[2,3-d]pyrimidine-6carbonitrile (9)

A mixture of 8a (0.01 mole) and the benzaldehyde (0.012 mole) in acetic acid (20%; 30 mL) was refluxed for one hour. The solid formed was filtered off and recrystallized from the ethanol to give 9 as pale yellow crystals (Scheme 4). Yield: 85\%. M.p.: $235{ }^{\circ} \mathrm{C}$. IR (KBr, $v_{\max } \mathrm{cm}^{-1}$): $3480(\mathrm{NH}), 3020$ (aromatic C-H), 2980 (aliphatic C-H), $2230(\mathrm{C} \equiv \mathrm{N}$), 1660 (δ NH), 1610-1590 ($\mathrm{C}=\mathrm{C}$ and $\mathrm{C}=\mathrm{N}$). ${ }^{1} \mathrm{H}$ NMR (DMSO, $\delta \mathrm{ppm}$): 2.3$2.8\left(6 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{3}\right), 6.8-8.0(15 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}, \mathrm{CH}=\mathrm{N}), 11.9$ (1H, br, NH). Anal. Calcd. for $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{O}_{2}$ (486): C, $71.60 ; \mathrm{H}, 4.53$; N , 17.28. Found: C, 71.62; H, 4.60; N, 17.33.
2.10. 3-methoxy-1-(4-Methoxyphenyl)-6,8-diphenyl-7-hydropyridino[2,3-d]1,2,4-triazolo[4,5e] pyrimidine-2carbonitrile (10)

Compound 9, was cyclized by oxidation with FeCl_{3} on refluxing in ethanol for 6 hours. The formed solid was filtered off and recrystallized from ethanol to give 10 as colorless crystals (Scheme 4). Yield: 65%. M.p.: $290^{\circ} \mathrm{C}$. IR (KBr, $v_{\text {max }} \mathrm{cm}^{-}$ ${ }^{1}$): 3030 (aromatic C-H), 2970 (aliphatic C-H), 1600 (C=C and $\mathrm{C}=\mathrm{N}$), $2220(\mathrm{C} \equiv \mathrm{N}) .{ }^{1} \mathrm{H}$ NMR (DMSO, $\delta \mathrm{ppm}$): 2.3-2.9 ($6 \mathrm{H}, \mathrm{s},-$ $\left.\mathrm{OCH}_{3}\right), 6.8-8.1(14 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) . \mathrm{MS}(\mathrm{m} / \mathrm{z}, \%): 484\left(\mathrm{M}^{+}, 54.51\right)$, 377 (33.4), 270 (23.26), 116 (75.97), 107 (100), 77 (52.27), 32 (64.43). Anal. Calcd. for $\mathrm{C}_{29} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}_{2}$ (486): C, 71.90; H, 4.13; N, 17.36. Found: C, 71.87 ; H, 4.20; N, 17.40.

2.11. 4-(3,5-dimethylpyrazolyl)-7-methoxy-5-(4-methoxy phenyl)-2-phenylpyridino [2,3d] pyrimidine-6-carbonitrile (11)

A mixture of 8a (0.01 mole) and β-dicarbonyl derivative; acetyl acetone (0.012 mole) in ethanol (30 mL) was refluxed for 5 hours. After cooling, the reaction mixture was poured onto cold water and the solid obtained was filtered off and recrystallized from ethanol to give 11 as colorless crystals (Scheme 4). Yield: 55%. M.p.: $190^{\circ} \mathrm{C}$. IR (KBr, $v_{\max } \mathrm{cm}^{-1}$): 3030 (aromatic C-H), 2970 (aliphatic C-H), 1595 (C=C and C=N), $2220(\mathrm{C} \equiv \mathrm{N}) .{ }^{1} \mathrm{H}$ NMR (DMSO, $\delta \mathrm{ppm}$): $2.3\left(6 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right), 3.02$ ($6 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{3}$), 7.8-8.01 ($10 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}, \mathrm{H}-4[$ pyrzolo-]). MS (m/z, \%): 462 ($\left.{ }^{+}, 62.50\right), 376$ (68.75), 238 (75.00), 131 (62.50), 129 (62.50), 107 (62.50), 95 (52.30), 76 (100), 32 (75.00). Anal.

Calcd. for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{O}_{2}$ (462): C, 70.13; H, 4.76; $\mathrm{N}, 18.18$, Found: C, 70.10; H, 4.52; N, 18.60.
2.12. Ethyl 1-[7-amino-6-cyano-5-(4-methoxyphenyl)-2-phenylpyridino[3,2-e] pyrimidin-4-yl]-3-methyl-5-oxo-2-pyrazoline-4-carboxylate (12)

A mixture of $\mathbf{8 a}$ (0.01 mole) and ethyl cyanoacetate (0.01 mole) in acetic anhydride (20 mL) was refluxed for 3 hours. After cooling, the reaction mixture was poured onto cold water and the solid obtained was filtered off and recrystallized from ethanol to give 12 as a colorless crystals (Scheme 4). Yield: 55%. M.p.: $240{ }^{\circ} \mathrm{C}$. IR ($\mathrm{KBr}, v_{\text {max }} \mathrm{cm}^{-1}$): 2980 (aliphatic C-H), 1740 ($\mathrm{C}=0$), 1604 ($\mathrm{C}=\mathrm{C}$ and $\mathrm{C}=\mathrm{N}$), 2230 ($\mathrm{C} \equiv \mathrm{N}$). ${ }^{1} \mathrm{H}$ NMR (DMSO, $\delta \mathrm{ppm}): 2.1\left(3 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right), 2.7\left(3 \mathrm{H}, \mathrm{t},-\mathrm{CH}_{3}\right.$ of the ester), $3.8\left(6 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{3}\right), 4.2\left(2 \mathrm{H}, \mathrm{q},-\mathrm{CH}_{2}\right.$ of the ester), 7.4-8.0 (9H, m, Ar-H). MS (m/z, \%): 536 (M+, 45.83), 367 (41.67), 238 (45.83), 168 (41.67), 140 (41.67), 131 (62.50), 129 (45.83), 107 (87.52), 95 (100), 76 (45.83), 45 (70.83), 28 (87.50). Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{O}_{5}$ (536): C, 64.93; H, 4.78; N, 15.67. Found: C, 65.02; H, 4.80; N, 15.70.

2.13. 3-Methoxy-1-(4-methoxyphenyl)-6-phenyl-7-hydro pyridino[2,3-d]1,2,3,4-tetrazolo[1,5-e]pyrimidine-2carbonitrile (13)

A solution of $\mathbf{8 a}(0.01$ mole) in acetic acid (5 mL) and water $(1 \mathrm{~mL})$ was treated with a solution of $\mathrm{NaNO}_{2}(0.015 \mathrm{~mole})$ in water $(2 \mathrm{~mL})$ at $0-5{ }^{\circ} \mathrm{C}$. The solid obtained upon diluting the reaction mixture with 10 mL of water was filtered off and recrystallized from ethanol to give 13 as yellow crystals (Scheme 4). Yield: 65%. M.p.: $235{ }^{\circ} \mathrm{C}$. This compound was also synthesized by refluxing of a mixture of 7 (0.01 mole) in DMF $(30 \mathrm{~mL})$ and sodium azide (0.01 mole) in water (2 mL) for 3 hours, then the reaction mixture was cooled, poured onto cold water and the resulting solid was filtered off (Scheme 4). IR ($\mathrm{KBr}, v_{\text {max }} \mathrm{cm}^{-1}$): 2960 (aliphatic $\mathrm{C}-\mathrm{H}$), 1600 ($\mathrm{C}=\mathrm{C}$ and $\mathrm{C}=\mathrm{N}$), $2230(\mathrm{C} \equiv \mathrm{N}) .{ }^{1} \mathrm{H}$ NMR (DMSO, $\delta \mathrm{ppm}$): $3.19\left(6 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{3}\right), 6.9-$ 7.5 (9H, m, Ar-H). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{~N}_{7} \mathrm{O}_{2}$ (409): C, 64.55; H, 3.67; N, 23.96. Found: C, 64.49; H, 3.71; N, 23.89.

2.14. 4-[((1E)-1-Aza-2-phenyl prop-1-enyl)amino]-7-
 methoxy-5-(4-methoxy phenyl) pyridino[2,3-d]pyrimidine-6carbonitrile (14)

An equimolar mixture of $\mathbf{8 b}$ and acetophenone in ethanol was refluxed for 15 minutes. After cooling, the resulting solid was recrystallized from ethanol to give 14 as colorless crystals (Scheme 5). Yield: 70\%. M.p.: $210{ }^{\circ} \mathrm{C}$. IR (KBr, $v_{\max } \mathrm{cm}^{-1}$): 32603120 (NH), 3050 (aromatic C-H), 2990 (aliphatic C-H), 16301600 ($\mathrm{C}=\mathrm{C}$ and $\mathrm{C}=\mathrm{N}$), 2220 ($\mathrm{C} \equiv \mathrm{N}$). ${ }^{1} \mathrm{H}$ NMR (DMSO, $\delta \mathrm{ppm}$):
2.6-3.0 ($9 \mathrm{H}, \mathrm{d},-\mathrm{CH}_{3},-\mathrm{OCH}_{3}$), 7.1-8.0 ($10 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}, \mathrm{H}-2$), 12.09 (1H, br, NH). Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}_{2}$ (424): C, 67.92; H, 4.72; N, 19.18, Found: C, 67.90; H, 4.30; N, 19.72.

Scheme 5
2.15. 4-[2-(1-cyano-1-phenylethyl)hydrazino]-7-methoxy-5-(4-methoxyphenyl) pyridino [2,3-d]pyrimidine-6carbonitrile (15)

A mixture of 14 (0.01 mole) and KCN (0.01 mole, in 10 mL water) in glacial acetic acid (50 mL) and ethanol (10 mL) was refluxed for 2 hours. After cooling and diluting with cold water, the resulting solid was filtered off and recrystallized from ethanol to give 15 as colorless crystals (Scheme 5). Yield: 50\%. M.p.: $221{ }^{\circ} \mathrm{C}$. IR (KBr, $v_{\max } \mathrm{cm}^{-1}$): 3260-3130 (NH), 3010 (aromatic C-H), 2950 (aliphatic C-H), 1630-1580 (C=C and $\mathrm{C}=\mathrm{N}$), $2260(\mathrm{C} \equiv \mathrm{N}) .{ }^{1} \mathrm{H}$ NMR (DMSO, $\delta \mathrm{ppm}$): 2.9 ($3 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}$), $3.1\left(6 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{3}\right), 7.3-7.9(10 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}, \mathrm{H}-2), 11.9$ ($2 \mathrm{H}, \mathrm{br}, \mathrm{NH}-$ NH). Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{~N}_{7} \mathrm{O}_{2}$ (451): C, 66.52; H, 4.56; N, 21.73. Found: C, $66.55 ; H, 4.61$; N, 21.70 .
2.16. 3-Methoxy-1-(4-methoxyphenyl)-9-methyl-8-oxo-9-phenyl-7-hydro-10H-pyridino[2,3-d]1,2,4-triazino[4,3-e]pyrimidine-2-carbonitrile (16)

Compound 15 (2 g) was refluxed in concentrated HCl (50%; 5 mL) for 4 hours. After cooling and diluting with water, the resulting solid was filtered off washed with water and recrystallized from ethanol to give 16 as colorless crystals (Scheme 5). Yield: 30%. M.p.: $>300{ }^{\circ} \mathrm{C}$. IR ($\mathrm{KBr}, v_{\max }, \mathrm{cm}^{-1}$): 3250-3100 (NH), 3010 (aromatic C-H), 2950 (aliphatic C-H), 1640-1600 ($\mathrm{C}=\mathrm{C}$ and $\mathrm{C}=\mathrm{N}$), 1700 ($\mathrm{C}=\mathrm{O}$) 2240 ($\mathrm{C} \equiv \mathrm{N}$). ${ }^{1} \mathrm{H}$ NMR (DMSO, $\delta \mathrm{ppm}): 1.3\left(3 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right), 2.9\left(6 \mathrm{H}, \mathrm{m},-\mathrm{OCH}_{3}\right), 7.8(10 \mathrm{H}$, m, Ar-H, H-6), 10.3 (1H, s, NH). Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}_{3}$ (452): C, 66.37; H, 4.42; N, 18.58. Found: C, 66.42; H, 4.30; N, 19.06.

2.17. 4-\{[(4-Amino-2,3-dimethyl-1-phenyl](3-pyrazolin-5-ylidene))azamethyl]amino)-7-methoxy-5-(4-methoxy phenyl)pyridino[2,3-d]pyrimidine-6-carbonitrile (17)

A mixture of $\mathbf{8 b}$ (0.01 mole) and 4 -aminoantipyrine (0.01 mole) in absolute ethanol (50 mL) and few drops of acetic acid was refluxed for one hour. The reaction mixture was then
cooled, filtered off and recrystallized from ethanol to give 17 as pale yellow crystals (Scheme 5). Yield: 40%. M.p.: $135{ }^{\circ} \mathrm{C}$. IR (KBr, $v_{\text {max }} \mathrm{cm}^{-1}$): 3400-3200(NH), 3020 (aromatic C-H), 2910 (aliphatic C-H), 1640-1600 (C=C and C=N), 1700 (C=O), 2220 (C $\equiv \mathrm{N}$). ${ }^{1} \mathrm{H}$ NMR (DMSO, $\delta \mathrm{ppm}$): 1.8-2.9 $\left(12 \mathrm{H}, \mathrm{br},-\mathrm{CH}_{3},-\mathrm{OCH}_{3}\right)$, $7.3(10 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}, \mathrm{H}-2), 10.3-11.02\left(3 \mathrm{H}, \mathrm{br}, \mathrm{NH}, \mathrm{NH}_{2}\right)$. Anal. Calcd. for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~N}_{9} \mathrm{O}_{2}$ (507): C, 63.91; H, 4.93; N, 24.85. Found: C, 64.09; H, 5.07; N, 24.78.

2.18. 7-Methoxy-5-(4-methoxyphenyl)-4-(2,3,5-trimethyl-1-phenyl(3-pyrzolino[4,5-e]1,2,4-triazin-6-yl))pyridino[2,3-d]pyrimidine-6-carbonitrile (18)

Compound 17 (0.01 mole) in glacial acetic acid (50 mL) and fused sodium acetate (10 g), was refluxed for 6 hours. After cooling and diluting with water, the formed solid was filtered off and recrystallized from ethanol to give 18 as yellow crystals (Scheme 5). Yield: 50%. M.p.: $260^{\circ} \mathrm{C}$. IR (KBr, $v_{\text {max }} \mathrm{cm}^{-1}$): 3030 (aromatic C-H), 2960 (aliphatic C-H), 1650-1630 (C=C and $\mathrm{C}=\mathrm{N}$), $2220(\mathrm{C} \equiv \mathrm{N}) .{ }^{1} \mathrm{H}$ NMR (DMSO, $\delta \mathrm{ppm}$): 1.8-2.1 ($9 \mathrm{H}, \mathrm{s}$, $\left.-\mathrm{CH}_{3}\right), 3.02\left(6 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{3}\right), 6.7-7.2(10 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}, \mathrm{H}-2) . \mathrm{MS}(\mathrm{m} / \mathrm{z}$, \%): $531\left(\mathrm{M}^{+}, 30.30\right), 291$ (33.33), 240 (84.85), 184 (100), 158 (63.64), 127 (30.30), 107 (51.52), 76 (57.58), 31 (48.48), 26 (72.73). Anal. Calcd. for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~N}_{9} \mathrm{O}_{2}$ (531): C, 65.54 ; $\mathrm{H}, 4.71$; N , 23.73. Found: C, $65.50 ; H, 4.69 ;$ N, 23.67.

3. Results and discussion

3.1. Synthesis

The synthesis of heterocyclic systems containing pyrido[2,3-d]pyrimidine moiety has gained much attention due to high biological activity possessed by these compunds [1-12]. 2-amino-6-methoxy-4-(4-methoxyphenyl)pyridine-3,5-dicarbonitrile (1) was prepared [13]. Hydrolysis of $\mathbf{1}$ using alcoholic solution of KOH (5\%) gave the amide derivative 2, which on condensation with acetic anhydride, benzoyl chloride or triethyl orthoformate [14] yielded the pyrido[2,3-d]pyrimidine derivatives 3a-c, respectively (Scheme 1).

Due to the high reactivity of the methyl group in position-2, compound $\mathbf{3 a}$ underwent condensation reactions with aromatic aldehydes such as benzaldehyde, to give $2-((1 E)-2-$ phenylvinyl)-7-methoxy-5-(4-methoxyphenyl)-4-oxo-3-hydro pyridino[2,3- d]pyrimidine-6-carbonitrile (4). Also, a condensation reaction with β-diketones, as acetyl acetone, gave 2 -methoxy-4-(4-methoxyphenyl)-7,9-dimethyl-5-oxo-6-hydro pyridino $[2,3-d$]pyridino [1,2-a]pyrimidine-3-carbonitrile (5). Also, 3a was condensed with ethyl pyruvate to give 2-methoxy-4-(4-methoxyphenyl)-8-methyl-5,7-dioxo-6-hydropyridino
[2,3-d]3-pyridino[1,2-a]pyrimidine-3-carbonitrile (6), (Scheme 2).

7-Methoxy-5-(4-methoxyphenyl)-2-phenyl-4-oxo-3-hydro pyridino[2,3-d] pyrimidine-6-carbonitrile (3b) and 7-methoxy-5-(4-methoxyphenyl)-4-oxo-3-hydrpyridino[2,3-d] pyrimidine6 -carbonitrile (3c), were refluxed with POCl_{3} to give 4 -chloro-7-methoxy-5-(4-methoxyphenyl)-2-substituted pyridino[2,3-d]pyrimidine-6-carbonitrile (7a,b), respectively, which on reaction with hydrazine hydrate yielded the hydrazinoderivatives 8a,b, respectively (Scheme 3).

Treatment of 4-hydrazino-7-methoxy-5-(4-methoxy phenyl)-2-phenylpyridino[2,3- d] pyrimidne-6-carbonitrile (8a) with benzaldehyde, gave 4 -[((1E)-1-aza-2-phenylvinyl)amino]-7-methoxy-5-(4-methoxyphenyl)-2-phenylpyridino[2,3-d] pyri-midine-6-carbonitrile (9), which on oxidative cyclization using FeCl_{3}, yielded the fused pyridino[2,3-d]1,2,4-triazolo[4,5e] pyrimidine, 10. β-Dicarbonyl reagents such as acetyl acetone, reacted with 8a to give 4-(3,5-dimethyl pyrazolyl)-7-methoxy-5-(4-methoxyphenyl)-2-phenyl pyridine [2,3-d]pyrimidine-6carbonitrile (11), [15]. Moreover, 8a on refluxing with a mixture of acetic anhydride and ethyl cyanoacetate afforded ethyl-1-[7-amino-6-cyano-5-(4-methoxyphenyl)-2-phenylpyri-
dino[3,2-e]pyrimidin-4-yl]-3-methyl-5-oxo-2-pyra-zoline-4carboxylate (12) [15]. Reaction of 8a with nitrous acid and the reaction of 7a with sodium azide in DMF yielded 3-methoxy-1-(4-methoxyphenyl)-6-phenyl-7-hydro-pyridino $[2,3-d] 1,2,3,4$ -tetrazolo[1,5-e]pyrimidine-2-carbonitrile (13) [16,17] (Scheme 4).

Compound 8b was condensed with acetophenone in glacial acetic acid to give the hydrazone 14 which underwent addition of HCN in acetic acid-ethanol mixture, giving the cyano hydrazone 15. Further, acidic hydrolysis of 15 by refluxing in concentrated HCl , led to the formation of 3-methoxy-1-(4-methoxyphenyl)-9-methyl-8-oxo-9-phenyl-7-hydro-10H-pyri-dino[2,3-d]1,2,4-triazino[4,3-e]pyrimidine-2-carbonitrile (16) [18]. Also, 8b, was condensed with 4 -aminoantipyrine in absolute ethanol in presence of few drops of acetic acid to give 4-\{[(4-amino-2,3-dimethyl-1-phenyl](3-pyrazolin-5-ylidene)) azamethyl]amino)-7-methoxy-5-(4-methoxyphenyl)pyridine [2,3-d]pyrimidine-6-carbonitrile (17), which on refluxing with glacial acetic acid-fused sodium acetate, via acylation followed by cyclo-condensation, produced 7-methoxy-5-(4-methoxy phenyl)-4-(2,3,5-trimethyl-1-phenyl(3-pyrazolino[4,5-e]1,2,4-triazin-6-yl))pyridino[2,3-d]pyrimidine-6-carbonitrile (18), (Scheme 5).

3.2. Biological screening

A few newly synthesized compounds were screened for their antifungal activities against three types of fungi, Alternaria alternata, Aspergillus niger, and Aspergillus flavipes, using the disk diffusion method [19-21]. The tested compounds were dissolved in DMF, which was used as a control to get 1 $\mathrm{mg} / \mathrm{mL}$ solution. The inhibition zones of microbial growth surrounding the filter paper disc (2.5 mm) were measured in millimeters at the end of an incubation period at $30{ }^{\circ} \mathrm{C}$ for 3 days. Activity of each compound was compared with that of flucanazole as the standard. The investigation of fungicidal screening data revealed that all the tested compounds showed variable activities towards the investigated fungi used, indicating that the compounds are biologically active due to the presence of different heterocycles and functional groups. Compounds 3a, 13 and 18 showed very high activities, whereas compounds 6,10 and 17 showed high activity against them. On the other hand, compounds $\mathbf{3 b}$ and $7 \mathbf{a}$ showed moderate activities against Alternaria alternata and Aspergillus niger, while compound $\mathbf{1 1}$ showed low activity against Alternaria alternata and Aspergillus niger and moderate activity against Aspergillus flavipes (Table 1).

Table 1. Antifungal activities data of some of the prepared compounds.

Compound	Diameter of inhibition zone (mm)*		
	Alternaria alternata	Aspergillus niger	Aspergillus flavipes
	++++	++++	++++
$\mathbf{3 b}$	++	++	+
$\mathbf{5}$	+	++	++
$\mathbf{6}$	+++	+++	+++
$\mathbf{7 a}$	++	++	++
$\mathbf{1 0}$	+++	+++	+++
$\mathbf{1 1}$	+	+	++
$\mathbf{1 3}$	++++	++++	++++
$\mathbf{1 6}$	+++	++	++
$\mathbf{1 7}$	+++	+++	+++
$\mathbf{1 8}$	++++	++++	++++
Fluconazole	++++	++++	++++
VVry high activity $=++++$ inhibition			

*Very high activity $=++++$ (inhibition zone $>30 \mathrm{~mm}$), High activity $=+++$ (inhibition zone $21-30 \mathrm{~mm}$), Moderate activity $=++$ (inhibition zone 11-20 mm), Low activity $=+$ (inhibition zone 1-10 mm).

References

[1]. Burova, O. A.; Bystrykova, I. D.; Smirnova, N. M.; Safonova, T. S. Chem. Heterocyc. Comp. 1991, 27, 394-398.
[2]. Rahman, L. K. A.; Chhabra, S. R. Med. Res. Rev. 1988, 8, 95-155.
[3]. Gangjee, A.; Vasudevan, A.; Queener, F.; Kisliuk, R.J. Med. Chem. 1996, 39, 1438-1446.
[4]. Zink, M.; Lanig, H.; Troschutz, R. Eur. J. Med. Chem. 2004, 39, 1079 1088.
[5]. Cordeu, L.; Cubedo, E.; Bandres, E.; Rebollo, A.; Saenz, X.; Chozas, H.; Dominguez, M.; Echeverria, M.; Mendivil, B.; Sanmartin, C.; Palop, J.; Font, M.; Foncillas, J. Bioorg. Med. Chem. 2007, 15, 1659-1669.
[6]. Monge, A.; Martinez, V.; San Martin, C.; Simon, M. A. Spanish Patent ES 1994 2,056,742. [Chem. Abstr. 1995, 122, 105912q].
[7]. Parmar, K.; Suthar, B.; Suthar, A.; Maheta, A. J. Heterocycl. Chem. 2009, 46, 975-679.
[8]. Koeckkritz, P.; Ruhmann, C.; Fieblinger, D.; Schroeder, C.; Joksch, B.; Heider, B.; Weiher, B. Liebscher J. Ger. Offen. DE 4,117,802 [Chem. Abstr. 1993, 118, 191550s].
[9]. Narayana, B.; Ram Rao, A.; Shanthan Rao, P. Eur. J. Med. Chem. 2009, 44, 1369-1376.
[10]. Kanth, S.; Reddy, G.; Kishore, K.; Shanthan Rao, P.; Narsaiah, B.; Murthy, U. Eur. J. Med. Chem. 2006, 41, 1011-1016.
[11]. El-Subbagh, H. I.; Abuzaid, S. M.; Mahran, M. A.; Badria, F. A.; Al-Obaid, A. M. J. Med. Chem. 2000, 43, 2915-2921.
[12]. Ashalatha, B. V.; Narayana, B.; Vijaya Raj, K. K.; Suchetha Kumari, N. Eur. J. Med. Chem. 2007, 42, 719-728.
[13]. Seada, M.; El-Behairy, M. A.; Jahine, H.; Hanafy, F. Orient. J. Chem. 1989, 5, 273-280.
[14]. Chan, J.; Gustin, D.; Divirgilio, E. S.; Guram, A.; Faul, M. M. Synthesis 2007, 23, 3678-3682.
[15]. Seada, M.; Abdel-Rahman, R. M.; El-Behairy, M.; Hanafy, F. Asian J. Chem. 1992, 4, 604-614.
[16]. Okafor, C. O. J. Org. Chem. 1973, 38, 4386-4390.
[17]. Dehuri, S. N.; Pradhan, P. C.; Nayak, A. J. Indian Chem. Soc. 1983, 60, 475-481.
[18]. Seada, M.; Abdel-Rahman, R. M.; Hanafy, F. J. Indian Chem. Soc. 1992, 69, 882-884.
[19]. Khan, K. M.; Saify, Z. S.; Zeesha, A. K.; Ahmed, M.; Saeed, M.; Schick, M.; Bkohlbau, H. J.; Voelter, W. Arzneim-Forsch. 2000, 50, 915-922.
[20]. Rahman, A. U.; Choudhary, M. I.; Thomsen, W. J. "Bioassay Techniques for drug development, 16 the Netherlands": Harwood Academic Publishers 2001.
[21]. Jorgensen, J. H.; Crawford, S. A.; Mc Elmeel, M. L.; Fiebelkorn, K. R. J. Clin. Microbiol. 2004, 42, 1800-1802.

