
Mahmoud Abdallah Mohameda, Eman Kamal Ahmad Abdelallb, Yasser Hassan Zakia and Abdou Osman Abdelhamidc,*

*Department of Textile, Faculty of Industrial Education, Beni-Suef University, Beni-Suef-62514, Egypt
bDepartment of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef-62514, Egypt
Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef-62514, Egypt

cDepartment of Chemistry, Faculty of Science, Cairo University, Giza-12613, Egypt

*Corresponding author at: Department of Chemistry, Faculty of Science, Cairo University, Giza-12613, Egypt. Tel: +202.35676573; fax: +202.35727556. E-mail address: abdelhamid45@gmail.com (A.O. Abdelhamid).

ARTICLE INFORMATION
Received: 18 May 2011
Received in revised form: 07 June 2011
Accepted: 16 June 2011
Online: 31 December 2011

KEYWORDS
Pyridines
Thieno[2,3-b]pyridine
Pyrazolo[1,5-a]pyrimidine
Triaezolo[1,5-a]pyrimidine
Pyrimido[1,2-a]benzimidazole
Piperidine acetate

1. Introduction
Pyridine derivatives are widely applied in medicine and agriculture, for example, used as anticancer [1], anti-hypertension [2] and antifungal [3], pesticides [4], herbicides [4], plant growth reagents [4] etc. Several thieno[2,3-b]pyridine derivatives are known to possess antibacterial [5], antihypertensive [6] and gonadotropin releasing hormone antagonizing [7,8] activity. Pyridothienopyrimidine derivatives have found applications as analgesics, antipyretics [9] and anti-inflammatory [10]. Moreover, some pyridothienotriazines are known to exhibit antianaphylactic [11] and antiallergic activity [12]. In view of these facts and as a continuation of our previous work [13,14-19], we report herein the synthesis of new compounds bearing both pyridine, thienopyrimidinylpyrazolo[1,5-a]pyrimidine, [1,2,4]triazolo[1,5-a]pyrimidine and pyrimido[1,2-a]benzimidazole with the objective of obtaining new biologically active compounds.

2. Experimental
2.1. Instrumentation
All melting points were determined on an electrothermal apparatus and are uncorrected. IR spectra were recorded (KBr discs) on a Shimadzu FT-IR 8201 PC spectrophotometer. 1H and 13C NMR spectra were recorded in CDCl3 and (CD3)2SO solutions on a Varian Gemini 300 MHz spectrometer and chemical shifts are expressed as 8 ppm using TMS as an internal reference. Mass spectra were recorded on a GC-MS QP 1000 EX Shimadzu. Elemental analyses were carried out at the Microanalytical Center of Cairo University. X-ray single crystals analysis was obtained from the National Research Centre-Dokki, Cairo, Egypt.

2.2. Synthesis of sodium salt of 3-hydroxy-1-(pyridin-2-yl)prop-2-en-1-one (2) and sodium salt of 3-hydroxy-1-(pyridin-3-yl)prop-2-en-1-one (15)

In a three-necked flask (250 mL) sodium methoxide (0.054 g, 10 mmol) and ether (20 mL) were poured over through separating funnel the appropriate of 2-acetylpyridine (1) or 3-acetylpyridine (1.2 g, 10 mmol) with ethyl formate (0.74 g, 10 mmol) with efficient stirring. The solid product was collected and used directly in the reactions.

2.3. Synthesis of 2-(2-(3-cyano-6-(pyridin-2-yl)pyridin-2-yl)disulfanyl)-6-(pyridin-2-yl)pyridin-3-carbonitrile (3), 1,2-dihydro-2-oxo-6-(pyridin-3-yl)pyridin-3-carbonitrile (16), 2-mercapto-6-(pyridin-3-yl)pyridine-3-carbonitrile (17), pyrazolo[1,5-a]pyrimidines (9, 12, 23, 24), [1,2,4]triazolo[1,5-a]pyrimidines (13, 25) and hydropyrimidino[1,2-a]benzimidazoles (14, 26)

Method A: A solution of the appropriate of 2 or 6, (10 mmol), the appropriate cyanacietamide, cythioacietamide, 3-amino-4-phenylpyrazole, 3-amino-4-cyanopyrazole, 3-amino-1,2,4-triazole, 2-aminobenzimidazole (10 mmol) and
piperidine acetate (1 mL) in water (3 mL) was refluxed for 10 min. Acetic acid (15 mL) was added to the hot solution. The solid product was filtered off and recrystallized from the proper solvent to give products 3, 9, 12-14, 16, 17 and 23-26 (Scheme 1-4).

Method B: An equimolar amount of 3-dimethylamino-1-pyrindin-2-ylpropane (11) (5 mmol), the appropriate 3-amino-4-phenylpyrazole, 3-amino-4-cyanopyrazole, 3-amino-1,2,4-triazole, 2-aminothiazolidimidine, and ammonium acetate (5 mmol) in acetic acid (10 mL) was heated under reflux for 4 hrs. The resulting solid was collected and recrystallized from the proper solvent to give products 9, 13 and 14.

Method C: An equimolar amount of N,N-dimethyl-N’-(4-phenyl-1H-pyrrol-5-yl)formamide (10) and an appropriate 2-acetylpyridine or 3-acetylpyridine (5 mmol) in ethanol (10 mL) was heated under reflux for 3 hrs. The resulting solid was collected and recrystallized from the proper solvent to give products 9 and 23, respectively.

2-(3-cyano-6-(3-pyridyl)pyridin-2-yl)disulfanylidene)-6-(pyridin-2-yl)carbazole-3-carbonitrile (3): Pale yellow crystals from ethanol. Yield: 73%. M.p.: > 300 °C. FT-IR (KBr, cm⁻¹): 3054 (CH, aromatic), 2219 (CN). 1H NMR (300 MHz, CDCl₃, δ, ppm): 7.44 (t, 2H), 7.48 (t, 2H), 8.05 (d, 2H), 8.45 (d, 4H), 8.66 (d, 2H). MS (m/z, %): 425 (0.6, M+1), 424 (1.7, M), 215 (6.0), 214 (16.5), 213 (100, 0.5), 212 (25.7), 169 (33.5). Anal. calcd. for C₁₉H₁₉N₄ (297): C, 65.95; H, 3.67; N, 31.38. Found: C, 65.2; H, 3.27; N, 31.82%

3-Phenyl-5-(pyridin-2-yl)pyrazolof[1,5-alpyrimidine (9): Yellow crystals from EtOH. Yield: 70%. M.p.: 220-222 °C. FT-IR (KBr, cm⁻¹): 3043 (CH, aromatic), 1633 (C=N). 1H NMR (300 MHz, CDCl₃, δ, ppm): 691 (d, 2H), 727 (d, 1H), 7.55-7.75 (m, 5H), 8.15 (d, 1H), 8.72 (d, 1H), 8.92 (d, 2H). MS (m/z, %): 273 (1.0, M+1), 223 (10), 222 (15), 195 (10), 146 (15), 117 (26), 70 (100). Anal. calcd. for C₁₉H₁₉N₄ (245): C, 62.25; H, 2.85; N, 19.80; S, 15.11. Found: C, 62.32, H, 2.72; N, 19.70; S, 15.21.

5-(Pyridin-2-yl)carbazole[1,5-alpyrimidine-3-carbonitrile (12): Yellow crystals from EtOH. Yield: 76%. M.p.: 215-217 °C. FT-IR (KBr, cm⁻¹): 3043 (CH, aromatic), 2219 (CN), 1623 (C=N). 1H NMR (300 MHz, CDCl₃, δ, ppm): 7.18 (t, 1H), 7.77 (d, 1H), 7.92 (t, 1H), 8.41 (d, 1H), 8.72 (d, 1H), 9.23 (s, 1H), 9.84 (d, 1H). Anal. calcd. for C₂₀H₁₉N₄ (321): C, 65.15, H, 3.19, N, 31.66. Found: C, 65.25, H, 3.27; N, 31.78%

5-(Pyridin-2-yl)-[1,2,4]triazolo[1,5-alpyrimidine (13): Light brown crystals from EtOH. Yield: 76%. M.p.: 225-227 °C. FT-IR (KBr, cm⁻¹): 3043 (CH, aromatic), 1618 (C=N). 1H NMR (300 MHz, CDCl₃, δ, ppm): 7.29 (t, 1H), 7.41 (d, 1H), 7.95 (t, 1H), 8.41 (d, 1H), 8.66 (d, 2H), 8.92 (d, 1H), 9.12 (d, 1H). MS (m/z, %): 427 (100, M+1), 214 (16.5), 169 (49.2%), 79 (10%), 78 (33.5%). Anal. calcd. for C₂₀H₁₉N₄ (245): C, 62.25; H, 2.85; N, 19.80; S, 15.11. Found: C, 62.32, H, 2.72; N, 19.70; S, 15.21.

2-(3-Pyridyl)-4a-hydroxypropimidinol,1,2-albenzimidazole (26): Yellow crystals from EtOH. Yield: 76%. M.p.: 300-303 °C. FT-IR (KBr, cm⁻¹): 3043 (CH, aromatic), 1626 (C=N). 1H NMR (300 MHz, CDCl₃, δ, ppm): 7.27 (t, 1H), 7.40 (d, 1H), 7.55 (s, 1H), 8.41 (s, 1H), 8.66-875 (m, 1H), 9.12 (d, 1H), 9.27 (s, 1H). Anal. calcd. for C₂₁H₁₇N₅O (351): C, 61.89; H, 3.58, N, 35.11. Found: C, 61.89; H, 3.58, N, 35.11.

Pale yellow crystals from Dioxane. Yield: 85%. M.p.: 277-280 °C. FT-IR (KBr, cm⁻¹): 3280, 3204 (NH₂), 3077 (CH, Aromatic), 1715 (C=O), 1617 (C=N).
Scheme 2

Scheme 3

4H NMR (300 MHz, DMSO-d$_6$, δ ppm): 1.27 (t, 3H, CH$_2$CH$_3$), 4.23 (q, 2H, CH$_2$CH$_3$), 6.82 (s, br, 2H, NH$_2$), 7.30 (t, 1H), 7.96 (d, 1H), 8.02 (t, 1H), 8.19 (d, 1H), 8.66 (d, 1H), 8.87 (d, 1H). Anal. calcd. for C$_{15}$H$_{13}$N$_3$O$_2$S (299.35): C, 60.18; H, 4.38; N, 14.04; S, 10.71. Found: C, 60.00; H, 4.45; N, 14.17; S, 10.94%.

3-Amino-6-(pyridin-3-yl)thieno[2,3-b]pyridine-2-carboxylate (18): Colorless crystals from Dioxane. Yield: 85%. M.p.: 270-272°C. FT-IR (KBr, cm$^{-1}$): 3360, 3180 (NH$_2$), 3043 (CH, aromatic), 1715 (CO), 1622 (C=N). 1H NMR (300 MHz, DMSO-d$_6$, δ ppm): 1.27 (t, 3H, CH$_2$CH$_3$), 4.23 (q, 2H, CH$_2$CH$_3$), 6.82 (s, br, 2H, NH$_2$), 7.30 (t, 1H), 7.96 (d, 1H), 8.02 (t, 1H), 8.19 (d, 1H), 8.66 (d, 1H), 8.87 (d, 1H). Anal. calcd. for C$_{15}$H$_{13}$N$_3$O$_2$S (299.35): C, 60.18; H, 4.38; N, 14.04; S, 10.71. Found: C, 60.00; H, 4.45; N, 14.17; S, 10.94%.

3-Amino-6-(pyridin-3-yl)thieno[2,3-b]pyridine-2-carbonitrile (20): Colorless crystals from dioxane. Yield: 71%. M.p.: 280-282°C. FT-IR (KBr, cm$^{-1}$): 3320, 3180 (NH$_2$), 3043 (CH, aromatic), 2148 (CN), 1623 (C=N). 1H NMR (300 MHz, DMSO-d$_6$, δ ppm): 6.92 (s, br, 2H, NH$_2$), 7.31 (t, 1H), 7.78 (d, 1H), 8.21 (d, 1H), 8.82 (d, 1H), 8.96 (d, 1H), 9.23 (d, 1H). Anal. calcd. for C$_{13}$H$_8$N$_4$S (252.30): C, 61.89; H, 3.95; N, 12.68; S, 12.93. Found: C, 61.89; H, 3.95; N, 12.68; S, 12.93%.

2-(Methylthio)-6-(pyridin-3-yl)pyridine-3-carbonitrile (21): Colorless crystals from dioxane. Yield: 71%. M.p.: 280-282°C. FT-IR (KBr, cm$^{-1}$): 3053 (CH, aromatic), 2210 (CN), 1627 (C=N). 1H NMR (300 MHz, DMSO-d$_6$, δ ppm): 2.45 (s, 3H, SCH$_3$), 7.43 (t, 1H), 7.53 (t, 1H), 7.91 (d, 1H), 8.38 (d, 1H), 8.74 (d, 1H), 9.31 (d, 1H). Anal. calcd. for C$_{12}$H$_9$N$_3$S (227.28): C, 63.41; H, 3.99; N, 18.49; S, 14.11. Found: C, 63.31; H, 4.12; N, 18.35; S, 14.00%.
512 Mohamed et al. / European Journal of Chemistry 2 (4) (2011) 509-513

2.5. 6-(Pyridin-3-yl)-1H-pyrazolo[3,4-b]pyridin-3-amine (22)

A mixture of compound 12 (2.27 g, 10 mmole) and hydrazine hydrate (4 ml, 99 %) in absolute ethanol (20 mL) for 2 hrs was heated under reflux. The reaction mixture was cooled, and the resulting solid was collected and washed with ethanol/water and recrystallized from water to give 13. Colorless crystals from water. Yield: 77%. M.p.: 105-106 °C. FT-IR (KBr, cm⁻¹): 3043 (CH, Aromatic), 3350, 2316, 2189 (NH, NH₂), 1627 (C=N). ¹H NMR (300 MHz, DMSO-d₆, δ, ppm): 6.52 (s, br., 3H, NH and NH₂), 7.26 (t, 1H), 7.35 (d, 1H), 8.45 (d, 1H), 8.64 (d, 1H), 8.87 (d, 1H), 9.63 (d, 1H). Anal. calcd. for C₁₁H₉N₅ (211.22): C, 62.55; H, 4.29; N, 33.16. Found: C, 62.35; H, 4.12; N, 33.32%.

3. Results and discussion

2-Acetylpyridine reacted with ethyl formate in dry ether containing sodium methoxide to give sodium salt of 3-hydroxy-1-(pyridin-2-yl)prop-2-en-1-one (2). Structure 2 was confirmed by chemical transformation. Thus, treatment of cyanoacetamide with 2 in piperidinium acetate gave 2-(6-(3-cyano-6-(pyridin-2-yl)dibenzyl)pyridin-2-yl)dibenzyl)pyridin-3-carbonitrile (3) based on elemental analysis and spectral data. ¹H NMR spectrum showed signals at δ = 7.44 (t), 7.48 (m), 8.05 (d), 8.45 (d), 8.66 (d) as ratio 1: 1: 1: 2: 1. IR spectrum revealed band at 3054 (CH, aromatic). 2119 (CN) group and its mass spectrum showed peak at m/z = 425 (0.6, M+1), 424 (1.7%, M), 215 (6.0%), 214 (16.5%), 213 (100%, 0.5), 212 (25.7%), 169 (49.2%), 79 (10%), 78 (33.5%) and X-ray single crystal showed in Figure 1.

Compound 3 reacted with ethyl chloroacetate in N,N-dimethylformamide in presence of potassium hydroxides to give ethyl 3-amino-6-(2-phenyl-1H-pyrazolo-5-yl)formamide (10) with 2-acetylpyridine gave product identical in all aspects (M.p., mixed m.p. and spectra) with 9. More evidence on the formation of 9 was carried out by boiling of N,N-dimethyl-N’-(4-phenyl-1H-pyrazol-5-yl)formamidine (10) with 2-acetylpyridine gave product identical in all aspects (M.p., mixed m.p. and spectra) with 9.

Figure 1. Molecular structure of 2-(2-(3-cyano-6-(pyridin-2-yl)pyridin-2-yl)dibenzyl)pyridin-3-carbonitrile (3) showing the atom numbering scheme. Thermal ellipsoids are drawn at the 50% probability level.
Analogously, compound 2 reacted with the appropriate 3-amino-4-cyanoypyrazole, 3-aminotriazole or 2-aminobenzimidazole gave 5-(pyridin-2-yl)pyrazolo[1,5-a]pyrimidine-3-carboxylic acid (12), 5-(pyridin-2-yl)-1,2,4-triazolo[1,5-a]pyrimidine (13) and 2-(2-pyridyl)-4-azidoximino[1,2-a]benzimidazole (14), respectively (Scheme 4).

Meanwhile, sodium salt of 3-hydroxy-1-(pyridin-3-yl)prop-2-en-1-one (15), which prepared from 3-acetylpyridine and ethyl formate in sodium methoxide solution, reacted with each of cyanoacetamide and cyanothioacetamide to give and 1,2-dihydro-2-oxo-6-(pyridin-3-yl)pyridine-3-carbonitrile (16) and 2-mercapto-6-(pyridin-3-yl)pyridine-3-carbonitrile (17), respectively (Scheme 4).

Compounds 16 and 17 were confirmed by elemental analysis, spectral data and chemical transformation. Thus, H NMR spectrum of 17 showed δ = 5.92 (s, 1H, SH), 7.01-7.08 (d, 2H) ppm. Its IR spectrum revealed bands at 2217 (CN group).

On the other hand, treatment of 17 with each of ethyl chloroacetate, α-bromo acetonaphone, chloroacetonitrile or iodomethane afforded ethyl 3-amino-6-(pyridin-3-yl)thieno[2,3-b]pyridine-2-carboxylate (18), (3-amino-6-(pyridin-3-yl)thieno[2,3-b]pyridin-2-yl)(phenyl)methane (19), 3-amino-6-(pyridin-3-yl)thieno[2,3-b]pyridine-2-carbonitrile (20) and 2-(methylthio)-6-(pyridin-3-yl)pyridine-3-carbonitrile (21), respectively. Compound 21 could be proved via the evolution of methanethiol when treated with hydrazine hydrate, forming the sulfur free 6-(pyridin-3-yl)-1H-pyrazolo[3,4-b]pyridin-3-amine (22).

Finally, treatment of 15 with appropriate 3-amino-4-phenylpyrazole, 3-amino-4-cyanoypyrazole, 3-amino-1,3,4-triazole or 2-aminobenzimidazole in piperidinium acetate yielded 3-phenyl-5-(pyridin-3-yl)pyrazolo[1,5-a]pyrimidine (23), 5-(pyridin-3-yl)pyrazolo[1,5-a]pyrimidine-3-carbonitrile (24), 5-(pyridin-3-yl)-1,2,4-triazolo[1,5-a]pyrimidine (25), and 2-(3-pyridyl)-4-azidoximino[1,2-a]benzimidazole (26), respectively (Scheme 5).

4. Conclusion

The present study demonstrates the synthesis of 3-amino-6-[2-pyridyl]thieno[2,3-b]pyridine derivatives were synthesized via reaction of pyridine-2-thione. Also, pyrazolo[1,5-a]pyrimidine, [1,2,4]triazolo[1,5-a]pyrimidine and pyrimido[1,2-a]benzimidazole were synthesized by reaction of sodium salt of 3-hydroxy-1-(pyridin-3-yl)prop-2-en-1-one or sodium salt of 3-hydroxy-1-(pyridin-3-yl)prop-2-en-1-one with different heterocyclic amines in piperidinium acetate.

Supplementary material

CCDC-828284 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by e-mailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44(0)1223-336033.