

European Journal of Chemistry

Journal homepage: www.eurjchem.com

Regioselective synthesis of some functionalized 3,4'-*bis*-(pyrazolyl)ketones and chemoselectivity in their reaction with hydrazine hydrate

Hamdi Mahmoud Hassaneen * and Ahmad Sami Shawali

Department of Chemistry, Faculty of Science, University of Cairo, Giza, 12613, Egypt

*Corresponding author at: Department of Chemistry, Faculty of Science, University of Cairo, Giza, 12613, Egypt. Tel.: +202.35676571; fax: +202.35676571. E-mail address: <u>hamdi 251@yahoo.com</u> (H. M. Hassaneen).

ARTICLE INFORMATION

Received: 16 January 2013 Received in revised form: 02 February 2013 Accepted: 03 February 2013 Online: 30 June 2013

KEYWORDS

Enaminones Enamino esters Regioselectivity Chemoselectivity Hydrazonoyl halides Pyrazolo[3,4-d]pyridazines

1. Introduction

A literature survey reveals that hydrazonoyl halides are useful versatile precursors for synthesis of numerous heterocyclic compounds. Their chemistry has attracted the interest of many research groups all over the world. At present, there are several review articles by Shawali et al. covering their reactions and applications [1-9]. Also, literature reports indicate that many pyrazole derivatives found use in various pharmaceutical, agrochemical and many other applications [10-17]. In the light of these facts and in conjunction with our ongoing studies of the chemistry of hydrazonoyl halides, it was thought interesting to study the 1,3-dipolar cycloaddition of the nitrilimines derived from hydrazonoyl halides to the enamino ester, namely (E)-ethyl 3-(dipropylamino)-acrylate $\mathbf{1}$, which has not been reported hitherto. Our objectives after such a study are on one hand to explore the utility of the resulting pyrazole cycloadducts (4a-k, 5a-d), expected from the target reaction (Scheme 1) in synthesis of new functionalized 3,4'bis(pyrazolyl)ketones 9 and 10 (Scheme 2 and 3) and on the other hand to explore the site selectivity in hydrazinolysis of the latter heterocyclic compounds 9.

2. Experimental

2.1. Instrumentation

All melting points were determined on an electrothermal Gallenkamp apparatus and are uncorrected. Solvents were generally distilled and dried prior their use. The IR spectra were measured on a Pye-Unicam SP300 instrument in potassium bromide discs. The ¹H and ¹³C NMR spectra were recorded on a Varian Mercury VXR-300 spectrometer (300 MHz for ¹H NMR and 75 MHz for ¹³C NMR) and the chemical shifts were related to that of the solvent DMSO-*d*₆. The mass

ABSTRACT

A new enamino ester, (*E*)-ethyl 3-(dipropylamino)acrylate, was prepared and used for synthesis of various pyrazole derivatives, 4a-k and 5a-d. Other new enaminone, (*E*)-ethyl 3-(3-(dimethylamino)acryloyl)-1-(4-nitrophenyl)-1*H*-pyrazole-4-carboxylate (8), was also prepared from compound 4a and utilized as precursor for synthesis of different functionalized 3,4-*bis*-pyrazolyl ketones 9a-c, 10a-c. The site selectivity in hydrazinolysis of the latter was studied. The structures of the products namely pyrazolo[3,4-*d*]pyridazine derivatives 11(13) were confirmed by spectral and elemental analyses and by alternate unambiguous synthesis.

spectra were recorded on a GCMS-Q1000-EX Shimadzu and GCMS 5988-A HP spectrometers, the ionizing voltage was 70 eV. Elemental analyses of the products were carried out at the Microanalytical Center of Cairo University, Giza, Egypt. Hydrazonoyl halides were prepared following literature procedures [18-24]. DMF-DMA, dipropylamine and ethyl propiolate were purchased from Merck Company.

2.2. Synthesis

2.2.1. Preparation of (E)-ethyl 3-(dipropylamino)acrylate (1)

To a solution of ethyl propiolate (9.8 g, 0.1 mol) in methanol (50 mL) was added a solution of dipropylamine (10.1 g, 0.1 mol) in methanol (50 mL) dropwise over a period of 30 min while being stirred. The reaction mixture was stirred for further 1 h and then the solvent was distilled under reduced pressure. The enamino ester, **1**, was obtained as oil (Scheme 1). Color: Pale yellow. Yield: 90%. FT-IR (KBr, cm⁻¹): 1686 v(C=O), 1608 v(C=C). ¹H NMR (300 MHz, CDCl₃, δ , ppm): 0.79 (t, *J* = 7 Hz, 6H, (CH₃CH₂CH₂)₂N), 1.15 (t, *J* = 8 Hz, 3H, CH₃CH₂CH₂)₂N), 4.02 (q, *J* = 7 Hz, 2H, CH₃CH₂O), 4.42 (d, *J* = 13.2 Hz, 1H, =CH-CO), 7.36 (d, *J* = 13.2 Hz, 1H, =CH-N(CH₂CH₂)₂). ¹³C NMR (75 MHz, CDCl₃, δ , ppm): 11.1, 14.6, 50.3, 58.6, 63.3, 126.1, 151.7, 169.8. Anal. calcd. for C₁₁H₂₁NO₂: C, 66.29; H, 10.62; N, 7.03. Found: C, 66.10; H, 10.42; N, 6.82%.

2.2.2. Synthesis of ethyl 1-aryl-3-substituted-1H-pyrazole-4carboxylates (4a-k, 5a-d)

General procedure: To an equimolar mixture (5 mmol each) of the (*E*)-ethyl 3-(dipropylamino)acrylate, $\mathbf{1}$, and the appropriate hydrazonoyl halide $\mathbf{2(3)}$ in dioxane (50 mL) was

European Journal of Chemistry ISSN 2153-2249 (Print) / ISSN 2153-2257 (Online) © 2013 EURJCHEM DOI:10.5155/eurjchem.4.2.102-109.723

Scheme 1

added triethylamine (1.0 g, 10 mmol) and the reaction mixture was refluxed for 4 h, then the solvent was distilled under reduced pressure. To the residue left, ethanol was added and the solid produced was collected and crystallized from the appropriate solvent to give the corresponding pyrazole derivative. The compounds prepared together with their physical constants are given below (Scheme 1).

Ethyl 3-acetyl-1-(4-nitrophenyl)-1H-pyrazole-4-carboxylate (4a): Color: Golden yellow crystals. Yield: 78% (EtOH). M.p.: 160-162 °C. FT-IR (KBr, cm⁻¹): 3120 v(CH), 1735, 1697 v(C=O). ¹H NMR (300 MHz, CDCl₃, δ , ppm): 1.36 (t, J = 7.2 Hz, 3H, CH₃CH₂O), 2.69 (s, 3H, CH₃CO), 4.33 (q, J = 7.5 Hz, 2H, CH₃CH₂O), 7.97 (d, J = 9 Hz, 2H, Ar-H), 8.97 (d, J = 9 Hz, 2H, Ar-H), 8.39 (s, 1H, =CH-N). ¹³C NMR (75 MHz, CDCl₃, δ , ppm): 14.06, 28.67, 61.26, 117.17, 119.68, 125.38, 132.09, 142.92, 146, 67, 151.90, 161.36, 193.04. MS (EI, m/z (%)): 303 (M⁺, 48), 288 (26), 260 (100). Anal. calcd. for C₁₄H₁₃N₃O₅: C, 55.45; H, 4.32; N, 13.86. Found: C, 55.21; H, 4.31; N, 13.65%.

Ethyl 1-phenyl-3-(thiophene-2-carbonyl)-1H-pyrazole-4carboxylate (**4b**): Color: Yellow crystals. Yield: 70% (MeOH). M.p.: 89-90 °C. FT-IR (KBr, cm⁻¹): 3144 v(CH), 1697, 1640 v(C=O). ¹H NMR (300 MHz, DMSO- d_6 , δ , ppm):1.37 (t, J = 7.5 Hz, 3H, CH₃CH₂O), 4.14 (q, J = 7.5 Hz, 2H, CH₃CH₂O), 7.25-8.19 (m, 8H, Ar-H), 9.11 (s, 1H, =CH-N). ¹³C NMR (75 MHz, DMSO- d_6 , δ , ppm): 14.00, 60.72, 115.97, 119.72, 121.12, 128.22, 129.13, 129.89, 132.50, 136.66, 138.60, 142.87, 150.24, 161.51, 180.44. Anal. calcd. for C₁₇H₁₄N₂O₃S: C, 62.57; H, 4.32; N, 8.59; S. 9.81. Found: C, 62.65; H, 4.41; N, 8.41; S, 9.70%.

Ethyl 1-(4-chlorophenyl)-3-(thiophene-2-carbonyl)-1Hpyrazole-4-carboxylate (**4c**): Color: Colorless crystals. Yield: 75% (EtOH). M.p.: 129-130 °C. FT-IR (KBr, cm⁻¹): 3124 v(CH), 1705, 1631 v(C=0). ¹H NMR (300 MHz, DMSO- d_6 , δ , ppm): 1.16 (t, *J* = 7 Hz, 3H, CH₃CH₂O), 4.17 (q, *J* = 7 Hz, 2H, CH₃CH₂O), 7.27 (m, 1H, Ar-H), 7.61 (d, *J* = 9 Hz, 2H, Ar-H), 7.68 (m, 1H, Ar-H), 8.01 (d, *J* = 9 Hz, 2H, Ar-H), 8.17 (m, 1H, Ar-H), 9.24 (s, 1H, =CH- N). ¹³C NMR (75 MHz, DMSO- d_6 , δ , ppm): 13.82, 60.41, 115.80, 120.87, 128.93, 129.57, 132.24, 132.72, 136.58, 136.77, 137.27, 142.58, 150.14, 161.09, 180.04. MS (EI, *m/z* (%)): 362 (M*+2, 4), 360 (M*, 13), 314 (16), 138 (15), 111 (100). Anal. calcd. for C₁₇H₁₃ClN₂O₃S: C, 56.60; H, 3.63; N, 7.77; S, 8.87. Found: C, 56.51; H, 3.41; N, 7.57; S, 8.62%.

Ethyl 1-(4-nitrophenyl)-3-(thiophene-2-carbonyl)-1Hpyrazole-4-carboxylate (**4d**): Color: Yellow crystals. Yield: 80% (MeCN). M.p.: 178-80 °C. FT-IR (KBr, cm⁻¹): 1695, 1654 ν(C=O). ¹H NMR (300 MHz, DMSO-*d*6, δ, ppm): 1.16 (t, *J* = 7 Hz, 3H, CH₃CH₂O), 4.18 (q, *J* = 7 Hz, 2H, CH₃CH₂O), 7.29 – 8.26 (m, 3H, Ar-H), 8.29 (d, *J* = 9 Hz, 2H, Ar-H), 8.40 (d, *J* = 9 Hz, 2H, Ar-H), 9.43 (s, 1H, =CH-N). ¹³C NMR (75 MHz, DMSO-*d*₆, δ, ppm): 13.76, 60.52, 116.39, 120.06, 120.62, 125.24, 128.96, 133.53, 136.79, 136.99, 142.40, 142.75, 146.07, 150.88, 160.85. MS (EI, *m/z* (%)): 371 (M⁺, 11), 327 (25), 326 (19), 111 (100). Anal. calcd. for C₁₇H₁₃N₃O₅S: C, 54.99; H, 3.53; N, 11.32; S, 8.62. Found: C, 54.81; H, 3.41; N, 11.22, S, 8.41%.

Ethyl 3-benzoyl-1-phenyl-1H-pyrazole-4-carboxylate (4e): Color: Yellow crystals. Yield: 65% (EtOH). M.p.: 102-103 °C. FT-IR (KBr, cm⁻¹): 3116 v(CH), 1735, 1690 v(C=O). ¹H NMR (300 MHz, CDCl₃, δ, ppm):1.16 (t, *J* = 7 Hz, 3H, CH₃CH₂O), 4.21 (q, *J* = 7 Hz, 2H, CH₃CH₂O), 7.38-7.91 (m, 10H, Ar-H), 9.11 (s, 1H, =CH-N). MS (EI, *m/z* (%)): 320 (M⁺, 25), 319 (20), 105 (100), 77 (75). Anal. calcd. for C₁₉H₁₆N₂O₃: C, 71.24; H, 5.03; N, 8.74. Found: C, 70.91; H, 4.91; N, 8.42%.

Ethyl 3-benzoyl-1-(*p*-tolyl)-1H-pyrazole-4-carboxylate (**4f**): Color: Colorless crystals. Yield: 75% (EtOH). M.p.: 148-150 °C. FT-IR (KBr, cm⁻¹): 1710, 1669 v(C=O). ¹H NMR (300 MHz, DMSO-*d*₆, δ , ppm): 1.04 (t, *J* = 7 Hz, 3H, CH₃CH₂O), 2.35 (s, 3H, Ar-CH₃), 4.10 (q, *J* = 7 Hz, 2H, CH₃CH₂O), 7.33-7.91 (m, 9H, Ar-H), 9.17 (s, 1H, =CH-N). ¹³C NMR (75 MHz, DMSO-*d*₆, δ , ppm): 13.6, 20.4, 60.2, 115.3, 119.3, 128.7, 129.4, 129.9, 131.9, 133.8, 136.2, 136.3, 137.4, 150.5, 161.1, 189.2. MS (EI, *m/z* (%)): 334 (M⁺, 28), 289 (17), 105 (100), 91 (15), 77 (71). Anal. calcd. for $C_{20}H_{18}N_2O_3$ (334.38): C, 71.84; H, 5.43; N, 8.38. Found: C, 71.71; H, 5.31; N, 8.22%.

Ethyl 3-benzoyl-1-(4-chlorophenyl)-1H-pyrazole-4carboxylate (**4g**): Color: Colorless crystals. Yield: 75% (EtOH). M.p.: 148-150 °C. FT-IR (KBr, cm⁻¹): 3116 v(CH), 1709, 1670 v(C=O). ¹H NMR (300 MHz, DMSO- d_6 , δ , ppm): 1.09 (t, J = 7 Hz, 3H, CH_3CH_2O), 4.15 (q, J = 7 Hz, 2H, CH_3CH_2O), 7.33-8.01 (m, 9H, Ar-H), 9.20 (s, 1H, =CH-N). MS (EI, m/z (%)): 356 (M⁺+2, 10), 354 (M⁺, 31), 309 (21), 138 (10), 105 (100), 77 (83). Anal. calcd. for C₁₉H₁₅ClN₂O₃: C, 64.32; H, 4.26; N, 7.90. Found: C, 64.11; H, 4.22; N, 7.82%.

Ethyl 3-(2-naphthoyl)-1-phenyl-1H-pyrazole-4-carboxylate (**4h**): Color: Yellow crystals. Yield: 73% (EtOH). M.p.: 122-124 °C. FT-IR (KBr, cm⁻¹): 1716, 1678 v(C=O). ¹H NMR (300 MHz, DMSO- d_6 , δ , ppm): 0.97 (t, J = 7 Hz, 3H, CH_3 CH₂O), 4.05 (q, J = 7 Hz, 2H, CH₃CH₂O), 7.42-8.01 (m, 11H, Ar-H), 8.42 (s, 1H, Ar-H), 9.20 (s, 1H, =CH-N). ¹³C NMR (75 MHz, DMSO- d_6 , δ , ppm): 13.57, 60.28, 115.61, 119.35, 123.88, 126.99, 127.60, 127.80, 128.46, 129.06, 129.56, 131.62, 131.83, 132.04, 132.48, 133.68, 135.28, 138.36, 150.90, 161.23, 189.35. MS (EI, m/z (%)): 370 (M+, 52), 341 (11), 325 (29), 297 (12), 155 (76), 127 (100), 104 (22), 77 (49). Anal. calcd. for C₂₃H₁₈N₂O₃: C, 74.58; H, 4.90; N, 7.56. Found: C, 74.32; H, 4.71; N, 7.33%.

Ethyl 3-(2-naphthoyl)-1-(p-tolyl)-1H-pyrazole-4-carboxylate (4i): Color: Yellow crystals. Yield: 80% (EtOH). M.p.: 115-116 °C. FT-IR (KBr, cm⁻¹): 1718, 1685 v(C=O).¹H NMR (300 MHz, CDCl₃, δ , ppm):0.97 (t, J = 7 Hz, 3H, CH₃CH₂O), 2.41 (s, 3H, Ar-CH₃), 4.01 (q, J = 7 Hz, 2H, CH₃CH₂O), 7.42-8.08 (m, 10H, Ar-H), 8.42 (s, 1H, Ar-H), 9.11 (s, 1H, =CH-N). MS (EI, m/z (%)): 384 (M⁺, 60), 383 (42), 155 (70), 127 (100), 91 (26). Anal. calcd. for C_{24H20}N₂O₃: C, 74.98; H, 5.24; N, 7.29. Found: C, 75.02; H, 5.01; N, 7.44%.

Ethyl 3-(2-naphthoyl)-1-(4-chlorophenyl)-1H-pyrazole-4carboxylate (**4j**): Color: Colorless crystals. Yield: 75% (MeCN). M.p.: 132-134 °C. FT-IR (KBr, cm⁻¹): 1701, 1670 v(C=0). ¹H NMR (300 MHz, DMSO- d_6 , δ , ppm): 0.95 (t, J = 7 Hz, 3H, CH₃CH₂O), 4.01 (q, J = 7 Hz, 2H, CH₃CH₂O), 7.52-8.04 (m, 10H, Ar-H), 8.41 (s, 1H, Ar-H), 9.17 (s, 1H, =CH-N). ¹³C NMR (75 MHz, DMSO- d_6 , δ , ppm): 13.58, 60.35, 115.80, 120.81, 123.83, 127.06, 127.64, 128.50, 129.14, 129.49, 129.65, 131.85, 132.20, 132.29, 132.45, 133.60, 135.32, 137.20, 151.06, 161.13, 189.23. MS (EI, m/z (%)): 406 (M⁺+2, 17), 404 (M⁺, 44), 359 (29), 249 (17), 154 (51), 138 (22), 127 (100). Anal. calcd. for C₂₃H₁₇ClN₂O₃: C, 68.23; H, 4.23; N, 6.92. Found: C, 68.11; H, 4.11; N, 6.72%.

Ethyl 3-(2-naphthoyl)-1-(4-nitrophenyl)-1H-pyrazole-4carboxylate (**4k**): Color: Yellow crystals. Yield: 80% (DMF). M.p.: 200-202 °C. FT-IR (KBr, cm⁻¹): 1701, 1670 v(C=O). ¹H NMR (300 MHz, DMSO- d_6 , δ , ppm): 0.98 (t, J = 7 Hz, 3H, CH₃CH₂O), 4.04 (q, J = 7 Hz, 2H, CH₃CH₂O), 7.59-8.40 (m, 10H, Ar-H), 8.43 (s, 1H, Ar-H), 9.40 (s, 1H, =CH-N). MS (EI, *m/z* (%)): 415 (M⁺, 47), 370 (18), 260 (14), 155 (82), 127 (100), 77 (18). Anal. calcd. for C₂₃H₁₇N₃O₅: C, 66.50; H, 4.13; N, 10.12. Found: C, 66.71; H, 4.01; N, 10.21%.

(*E*)-*Ethyl* 1-phenyl-3-styryl-1*H*-pyrazole-4-carboxylate (**5a**): Color: Pale yellow crystals. Yield: 73% (EtOH). M.p.: 104-106 °C. FT-IR (KBr, cm⁻¹): 3128 v(CH), 1705 v(C=O). ¹H NMR (300 MHz, DMSO- d_6 , δ , ppm): 1.32 (t, *J* = 7 Hz, 3H, CH₃CH₂O), 4.28 (q, *J* = 7 Hz, 2H, CH₃CH₂O), 7.28-7.95 (m, 12H, Ar-H, HC=CH), 8.95 (s, 1H, =CH-N). ¹³C NMR (75 MHz, DMSO- d_6 , δ , ppm): 14.40, 60.27, 113.52, 117.86, 119.27, 126.81, 127.58, 128.53, 129.04, 129.73, 132.11, 132.55, 136.49, 138.85, 150.23, 162.73. MS (EI, *m/z* (%)): 318 (M^{*}, 94), 317 (100), 289 (16), 271 (22), 245 (31), 140 (11), 115 (14), 77 (92). Anal. calcd. for C₂₀H₁₈N₂O₂: C, 75.45; H, 5.70; N, 8.80. Found: C, 75.61; H, 5.82; N, 8.61%.

Ethyl 3-(*furan-2-yl*)-1-(4-*nitrophenyl*)-1*H*-*pyrazole*-4*carboxylate* (**5b**): Color: Yellow crystals. Yield: 78% (DMF). M.p.: 198-200 °C. FT-IR (KBr, cm⁻¹): 3124 v(CH), 1686 v(C=O). ¹H NMR (300 MHz, DMSO-*d*₆, δ, ppm): 1.30 (t, *J* = 7 Hz, 3H, *CH*₃CH₂O), 4.3 (q, *J* = 7 Hz, 2H, CH₃CH₂O), 6.6 (m, 1H, furan-H), 7.38 (m, 1H, furan-H), 7.79 (m, 1H, furan-H), 8.33 (d, *J* = 9 Hz, 2H, Ar-H), 8.36 (d, *J* = 9 Hz, 2H, Ar-H), 9.20 (s, 1H, =CH-N). MS $(EI, \textit{m/z} (\%)): 327 (M^{*}, 100), 299 (14), 282 (47), 270 (19), 255 (15), 236 (25), 103 (12). Anal. calcd. for C_{16}H_{13}N_{3}O_{5}: C, 58.72; H, 4.00; N, 12.84. Found: C, 58.91; H, 4.12; N, 12.60\%.$

Ethyl 1-(4-nitrophenyl)-3-(thiophen-2-yl)-1H-pyrazole-4carboxylate (**5c**): Color: Golden yellow crystals. Yield: 82% (AcOH). M.p.: 178-180 °C. FT-IR (KBr, cm⁻¹): 3120 v(CH), 1718 v(C=0). ¹H NMR (300 MHz, DMSO- d_6 , δ , ppm): 1.30 (t, J = 7 Hz, 3H, CH₃CH₂O), 4.26 (q, J = 7 Hz, 2H, CH₃CH₂O), 7.14 (m, 1H, thiophene-H), 7.61 (m, 1H, thiophene-H), 8.04 (m, 1H, thiophene-H), 8.29 (d, J = 9 Hz, 2H, Ar-H), 8.32 (d, J = 9 Hz, 2H, Ar-H), 9.15 (s, 1H, =CH-N). MS (EI, m/z (%)): 343 (M⁺, 100), 315 (21), 298 (54), 252 (33), 120 (13). Anal. calcd. for C₁₆H₁₃N₃O₄S: C, 55.98; H, 3.82; N, 12.24; S, 9.32. Found: C, 55.71; H, 3.62; N, 12.01; S, 9.41%.

Diethyl 1-(4-nitrophenyl)-1H-pyrazole-3, 4-dicarboxylate (**5d**): Color: Pale yellow crystals. Yield: 82% (EtOH). M.P.: 148-150 °C. FT-IR (KBr, cm⁻¹): 3133 v(CH), 1743, 1702 v(C=O). ¹H NMR (300 MHz, DMSO- d_6 , δ , ppm): 1.25-133 (2t, J = 7 Hz, 6H, 2 CH₃CH₂O), 4.24-4.35 (2q, J = 7 Hz, 4H, 2 CH₃CH₂O), 8.14 (d, J = 9 Hz, 2H, Ar-H), 8.36 (d, J = 9 Hz, 2H, Ar-H), 9.23 (s, 1H, =CH-N). ¹³C NMR (75 MHz, DMSO- d_6 , δ , ppm): 14.13, 14.24, 61.15, 62.05, 116.47, 120.23, 125.53, 133.42, 142.80, 145.92, 146.39, 161.10, 161.79. Anal. calcd. for C15H15N₃O₆ (333.30): C, 54.05; H, 4.54; N, 12.61. Found: C, 54.21; H, 4.33; N, 12.41%.

2.2.3. Synthesis of 2-aryl-7-substituted-2H-pyrazolo[3,4-d] pyridazin-4(5H)-ones (7a-k)

A mixture of the appropriate ethyl 1-aryl-3-substituted-1*H*pyrazole-4-carboxylate **4a-k** (3 mmol) and hydrazine hydrate (13 g, 3 mmol) in ethanol (30 mL) was refluxed 1 h and then cooled. The product that was separated was filtered off and crystallized from the appropriate solvent to give the corresponding product **7**. The compounds prepared together with their physical constants are listed below (Scheme 2).

7-Methyl-2-(4-nitrophenyl)-2H-pyrazolo[3,4-d]pyridazin-4(5H)-one (7a): Color: Colorless crystals. Yield: 78% (DMF). M.p.: 358-360 °C. FT-IR (KBr, cm⁻¹): 3259 v(NH), 1666 v(C=O). ¹H NMR (300 MHz, DMSO- d_6 , δ , ppm): 2.50 (s, 3H, CH₃), 8.20 (d, *J* = 6 Hz, 2H, Ar-H), 8.42 (d, *J* = 6 Hz, 2H, Ar-H), 9.50 (s, 1H, =CH-N), 11.95 (s, 1H, NH). MS (EI, *m*/z (%)): 271 (M⁺, 100), 213 (21), 149 (14), 127 (20), 103 (16). Anal. calcd. for C₁₂H₉N₅O₃: C, 53.14; H, 3.34; N, 25.82. Found: C, 52.91; H, 3.12; N, 25.51%.

2-Phenyl-7-(thiophen-2-yl)-2H-pyrazolo[3,4-d]pyridazin-4(5H)-one (**7b**): Color: Colorless crystals. Yield: 81% (DMF). M.p.: 228-230 °C. FT-IR (KBr, cm⁻¹): 3240 v(NH), 1684 v(C=O). ¹H NMR (300 MHz, DMSO-*d*₆, δ , ppm): 7.21-8.34 (m, 9H, Ar-H, NH), 9.43 (s, 1H, =CH-N). ¹³C NMR (75 MHz, DMSO-*d*₆, δ , ppm): 78.91, 116.28, 120.41, 120.91, 127.85, 127.93, 128.11, 129.80, 135.11, 136.98, 138.68, 144.1, 157.90. MS (EI, *m/z* (%)): 294 (M⁺, 100), 237 (26), 151 (16), 149 (12), 77 (83). Anal. calcd. for C₁₅H₁₀N₄OS: C, 61.22; H, 3.43; N, 19.04; S, 10.87. Found: C, 61.01; H, 3.11; N, 18.73; S, 10.61%.

2-(4-Chlorophenyl)-7-(thiophen-2-yl)-2H-pyrazolo[3,4-d] pyridazin-4(5H)-one (**7c**): Color: Pale yellow crystals. Yield: 83% (DMF). M.p.: 272-274 °C. FT-IR (KBr, cm⁻¹): 3230 v(NH), 1684 v(C=0). ¹H NMR (300 MHz, DMSO- d_6 , δ , ppm): 7.2 (m, 1H, Ar-H), 7.50-8.10 (m, 6H, Ar-H, NH), 8.34 (m, 1H, Ar-H), 9.43 (s, 1H, =CH-N). ¹³C NMR (75 MHz, DMSO- d_6 , δ , ppm): 78.91, 116.28, 120.41, 120.91, 127.85, 127.93, 128.11, 129.80, 135.11, 136.98, 138.68, 144.1, 157.90. MS (EI, *m*/z (%)): 330 (M⁺+2, 38), 328 (M⁺, 100), 271 (19), 138 (12), 111 (61). Anal. calcd. for C₁₅H₂ClN₄OS: C, 54.81; H, 2.76; N, 17.04; S, 9.73. Found: C, 54.61; H, 2.56; N, 17.34; S, 9.51%.

2-(4-Nitrophenyl)-7-(thiophen-2-yl)-2H-pyrazolo[3,4-d] pyridazin-4(5H)-one (7d): Color: Yellow crystals. Yield: 80% (DMF). M.P.: >360 °C. FT-IR (KBr, cm⁻¹): 3336 v(NH), 1682 v(C=O). MS (EI, m/z (%)): 339 (M⁺, 100), 338 (37), 132 (16), 111 (21), 103 (12), 83 (14). Anal. calcd. for C₁₅H₉N₅O₃S: C, 53.10; H, 2.67; N, 20.64; S, 9.43. Found: C, 52.81; H, 2.41; N, 20.51; S, 9.61%.

Scheme 2

2,7-Diphenyl-2H-pyrazolo[3,4-d]pyridazin-4(5H)-one (7e): Color: Colorless crystals. Yield: 85% (DMF). M.p.: 228-230 °C. FT-IR (KBr, cm⁻¹): 3230 v(NH), 1671 v(C=O). ¹H NMR (300 MHz, DMSO- d_6 , δ , ppm): 7.49-8.34 (m, 10H, Ar-H), 9.45 (s, 1H, =CH-N), 12.54 (s, 1H, NH). ¹³C NMR (75 MHz, DMSO- d_6 , δ , ppm): 117, 120.8, 127.8, 128.0, 128.7, 129.1, 129.7, 130.1, 135.0, 139.0, 139.01, 145.4, 158.4. MS (EI, m/z (%)): 288 (M⁺, 100), 211 (28), 155 (12), 128 (12), 77 (96). Anal. calcd. for C₁₇H₁₂N₄0: C, 70.82; H, 4.20; N, 19.43. Found: C, 70.55; H, 4.01; N, 19.10%.

7-Phenyl-2-(p-tolyl)-2H-pyrazolo[3,4-d]pyridazin-4(5H)-one (7f): Color: Colorless crystals. Yield: 84% (DMF). M.p.: 262-264 °C. FT-IR (KBr, cm⁻¹): 3199 v(NH), 1667 v(C=0). ¹H NMR (300 MHz, DMSO- d_6 , δ , ppm): 2.49 (s, 3H, Ar-CH₃), 7.41- 8.32 (m, 9H, Ar-H), 9.37 (s, 1H, =CH-N), 12.51 (s, 1H, NH). ¹³C NMR (75 MHz, DMSO- d_6 , δ , ppm): 20.5, 116.5, 120.2, 120.8, 127.2, 127.5, 128.4, 129.3, 130.0, 133.7, 136.4, 138.4, 144.9, 158.1. MS (EI, *m/z* (%)): 302 (M⁺, 100), 301 (64), 245 (16), 210 (17), 185 (12), 129 (13), 91 (77), 77 (33). Anal. calcd. for C₁₈H₁₄N₄O: C, 71.51; H, 4.67; N, 18.53. Found: C, 71.41; H, 4.52; N, 18.22%.

2-(4-Chlorophenyl)-7-phenyl-2H-pyrazolo[3,4-d]pyridazin-4(5H)-one (**7g**): Color: Pale yellow crystals. Yield: 85% (DMF). M.p.: 296-298 °C. FT-IR (KBr, cm⁻¹): 3221 v(NH), 1670 v(C=O). ¹H NMR (300 MHz, DMSO-d₆, δ, ppm): 7.3-8.2 (m, 9H, Ar-H), 9.41 (s, 1H, =CH-N), 12.4 (s, 1H, NH). MS (EI, *m/z* (%)): 324 (M*+2, 24), 322 (M*, 100), 321 (27), 211 (29), 185 (13), 127 (14), 111 (36), 77 (23). Anal. calcd. for C₁₇H₁₁ClN₄O: C, 63.26; H, 3.44; N, 17.36. Found: C, 63.11; H, 3.22; N, 17.61%.

7-(*Naphthalen-2-yl*)-2-phenyl-2H-pyrazolo[3,4-d]pyridazin-4(5H)-one (**7h**): Color: Colorless crystals. Yield: 85% (DMF). M.p.: 259-261 °C. FT-IR (KBr, cm⁻¹): 3210 v(NH), 1675 v(C=O). ¹H NMR (300 MHz, DMSO-*d*₆, δ, ppm): 7.51-8.33 (m, 11H, Ar-H), 9.04 (s, 1H, Ar-H), 9.46 (s, 1H, =CH-N), 12.61 (s, 1H, NH). MS (EI, *m/z* (%)): 338 (M⁺, 100), 337 (15), 261 (16), 176 (12), 127 (16), 77 (64). Anal. calcd. for C₂₁H₁₄N₄O: C, 74.54; H, 4.17; N, 16.56. Found: C, 74.31; H, 3.92; N, 16.62%.

7-(*Naphthalen-2-yl*)-2-(*p-tolyl*)-2*H-pyrazolo*[3,4-*d*] *pyridazin-4*(5*H*)-one (**7i**): Color: Colorless crystals. Yield: 85% (DMF). M.p.: 280-282 °C. FT-IR (KBr, cm⁻¹): 3212 v(NH), 1677 v(C=0). ¹H NMR (300 MHz, DMSO- d_6 , δ , ppm): 2.4 (s, 3H, Ar-CH₃), 7.41-8.31 (m, 10H, Ar-H), 9.1 (s, 1H, Ar-H), 9.33 (s, 1H, =CH-N), 12.55 (s, 1H, NH). MS (EI, *m/z* (%)): 352 (M⁺, 100), 351 (20), 295 (11), 261 (11), 176 (16), 127 (9), 91 (40). Anal. calcd. for C₂₂H₁₆N₄O: C, 74.98; H, 4.58; N, 15.90. Found: C, 74.72; H, 4.33; N, 15.70%.

2-(4-Chlorophenyl)-7-(naphthalen-2-yl)-2H-pyrazolo[3,4-d] pyridazin-4(5H)-one (7j): Color: Colorless crystals. Yield: 82% (DMF). M.p.: 286-288 °C. FT-IR (KBr, cm⁻¹): 3215 v(NH), 1670 v(C=0). ¹H NMR (300 MHz, DMSO-d₆, δ, ppm): 7.71-8.31 (m, 10H, Ar-H), 9.10 (s, 1H, Ar-H), 9.41 (s, 1H, =CH-N), 12.59 (s, 1H, NH). MS (EI, *m/z* (%)): 374 (M*+2, 36), 372 (M*, 100), 371 (26), 261 (14), 176 (14), 151 (10), 127 (18), 111 (27). Anal. calcd. for C₂₁H₁₃ClN₄O: C, 67.66; H, 3.51; N, 15.03. Found: C, 67.41; H, 3.21; N, 14.88%.

7-(Naphthalen-2-yl)-2-(4-nitrophenyl)-2H-pyrazolo[3,4-d] pyridazin-4(5H)-one (**7k**): Color: Yellow crystals. Yield: 83% (DMF). M.p.: 354-356 °C. FT-IR (KBr, cm⁻¹): 3320 v(NH), 1680 v(C=O). MS (EI, *m/z* (%)): 383 (M⁺, 100), 382 (35), 279 (9), 261 (15), 168 (12), 127 (17). Anal. calcd. for C₂₁H₁₃N₅O₃: C, 65.79; H, 3.42; N, 18.27. Found: C, 65.71; H, 3.35; N, 18.04%.

2.2.4. Synthesis of (E)-ethyl 3-(3-(dimethylamino)acryloyl)-1-(4-nitrophenyl)-1H-pyrazole-4-carboxylate (8)

To a solution of ethyl 3-acetyl-1-(4-nitrophenyl)-1*H*-pyrazole-4-carboxylate **4a**, (6 g, 20 mmol) in dioxane (50 mL), DMF-DMA (2.36 g, 20 mol) was added. The reaction mixture was refluxed for 6 h and then cooled to room temperature. The solid that precipitated was filtered off and crystallized from acetonitrile to give the enaminone **8** (Scheme 3). Color: Yellow crystals. Yield: 75% (DMF). M.p.: 198-200 °C. FT-IR (KBr, cm⁻¹): 1700 v(C=O), 1647 v(C=O). ¹H NMR (300 MHz, DMSO-*d₆*, δ , ppm): 1.27 (t, *J* = 7 Hz, 3H, *CH*₃CH₂O), 3.14 (s, 6H, (CH₃)₂N), 4.22 (q, *J* = 7 Hz, 2H, Ar-H), 8.21 (d, *J* = 7 Hz, 2H, Ar-H), 8.76 (d, *J* = 13 Hz, 1H, =CH-CO), 8.0 (t, *S*, 1H, =CH-N). MS (EI, *m*/z (%)): 358 (M⁺, 31), 341 (27), 295 (100), 260 (49), 245 (19), 199 (16), 180 (16), 138 (20). Anal. calcd. for C₁₇H₁₈N₄O₅ (358.35): C, 56.98; H, 5.06; N, 15.63. Found: C, 56.71; H, 4.92; N, 15.41%.

Scheme 3

2.2.5. Synthesis of ethyl 3-(1-aryl-3-substituted-1H-pyrazole-4-carbonyl)-1-(4-nitrophenyl)-1H-pyrazole-4-carboxylates (9a-c, 10a-c)

To a mixture of the appropriate hydrazonoyl halide **2e**, **2h**, **2l** and **3a-c** (3 mmol) and (*E*)-ethyl 3-(3-(dimethylamino) acryloyl)-1-(4-nitrophenyl)-1*H*-pyrazole-4-carboxylate **8** (1.07 g, 3 mmol) in dioxane was added triethylamine (0.6 g, 6 mmol) and the mixture was refluxed for 5 h, then cooled. The triethylamine hydrochloride that precipitated was filtered off. The filtrate was distilled under reduced pressure and the residue left was triturated with ethanol (15 mL) and the solid that produced was collected and crystallized from the appropriate solvent to give the corresponding *bis*-3,4'-pyrazolyl derivative. The compounds prepared together with their physical constants are listed below (Scheme 3).

Ethyl 3-(3-benzoyl-1-phenyl-1H-pyrazole-4-carbonyl)-1-(4nitrophenyl)-1H-pyrazole-4-carboxylate (**9a**): Color: Golden yellow crystals. Yield: 72% (MeCN). M.p.: 166-168°C. FT-IR (KBr, cm⁻¹): 1715, 1697, 1662 v(C=O). ¹H NMR (300 MHz, DMSO- d_6 , δ , ppm): 1.21 (t, J = 7 Hz, 3H, CH₃CH₂O), 4.22 (q, J = 7Hz, 2H, CH₃CH₂O), 7.64-8.30 (m, 14H, Ar-H), 9.20 (s, 1H, =CH-N), 9.37 (s, 1H, =CH-N). ¹³C NMR (75 MHz, DMSO- d_6 , δ ppm): 13.8, 60.5, 112.4, 116.5, 119.4, 119.8, 123.6, 125.1, 128.1, 128.7, 129.4, 129.7, 133.6, 133.7, 136.0, 136.7, 138.4, 142.5, 145.9, 151.3, 180.0, 188.9. MS (EI, m/z (%)): 535 (M⁺, 18), 489 (9), 385 (8), 275 (13), 105 (82), 77 (100). Anal. calcd. for C₂₉H₂₁N₅O₆: C, 65.04; H, 3.95; N, 13.08. Found: C, 64.81; H, 3.77; N, 12.79.

Ethyl 3-(3-(2-naphthoyl)-1-phenyl-1H-pyrazole-4-carbonyl)-1-(4-nitrophenyl)-1H-pyrazole-4-carboxylate (**9b**): Color: Pale yellow crystals. Yield: 80% (DMF). M.p.: 258-260 °C. FT-IR (KBr, cm⁻¹): 1732, 1690, 1670 v(C=0). ¹H NMR (300 MHz, DMSO- d_6 , δ , ppm): 1.17 (t, J = 7 Hz, 3H, CH₃CH₂O), 4.14 (q, J = 7Hz, 2H, CH₃CH₂O), 7.46-8.05 (m, 15H, Ar-H), 8.46 (s, 1H, Ar-H), 9.23 (s, 1H, =CH-N), 9.44 (s, 1H, =CH-N). ¹³C NMR (75 MHz, DMSO- d_6 , δ , ppm): 13.9, 60.5, 116.4, 119.8, 120.9, 121.0123.7, 123.9, 124.7, 126.9, 127.5, 128.1, 128.4, 129.0, 129.7, 129.8, 131.8, 132.6, 133.4, 133.7, 135.2, 138.4, 142.2, 145.6, 151.4, 151.7, 160.7, 180.1, 180.9. MS (EI, m/z (%)): 585 (M⁺, 42), 584 (24), 325 (14), 270 (13), 155 (69), 154 (53), 127 (100), 104 (23), 77 (36). Anal. calcd. for C₃₃H₂₃N₅O₆: C, 67.69; H, 3.96; N, 11.96. Found: C, 67.39; H, 3.71; N, 11.61.

Ethyl 3-(3-acetyl-1-phenyl-1H-pyrazole-4-carbonyl)-1-(4nitrophenyl)-1H-pyrazole-4-carboxylate (9c): Color: Golden yellow crystals. Yield: 72% (MeCN). M.p.: 208-210 °C. FT-IR (KBr, cm⁻¹): 1714, 1693, 1662 v(C=0). ¹H NMR (300 MHz, DMSO-d₆, δ , ppm): 1.22 (t, J = 7 Hz, 3H, CH₃CH₂O), 2.5 (s, 3H, CH₃CO), 4.22 (q, J = 7 Hz, 2H, CH₃CH₂O), 7.46-8.40 (m, 9H, Ar-H), 9.34 (s, 1H, =CH-N), 9.39 (s, 1H, =CH-N). MS (EI, m/z (%)): 473 (M⁺, 50), 386 (74), 372 (32), 213 (44), 171 (52), 103 (26), 77 (100). Anal. calcd. for C₂4H₁₉N₅O₆: C, 60.89; H, 4.05; N, 14.79. Found: C, 60.52; H, 3.81; N, 14.41%.

(E)-Ethyl 1-(4-nitrophenyl)-3-(1-phenyl-3-styryl-1H-pyrazole-4-carbonyl)-1H-pyrazole-4-carboxylate (10a): Color: Pale yellow crystals. Yield: 75% (MeCN). M.p.: 232-234 °C. FT-IR (KBr, cm⁻¹): 1710, 1670 v(C=O). ¹H NMR (300 MHz, DMSO- d_6 , δ , ppm): 1.17 (t, J = 7 Hz, 3H, CH_3CH_{2O}), 4.30 (q, J = 7 Hz, 2H, CH_3CH_{2O}), 7.41-8.41 (m, 16H, Ar-H, HC=CH), 9.0 (s, 1H, =CH-N), 9.6 (s, 1H, =CH-N). MS (EI, m/z (%)): 533 (M⁺, 67), 532 (56), 321 (56), 260 (28), 245 (31), 91 (25), 77 (100). Anal. calcd. for C₃₀H₂₃N₅O₅: C, 67.54; H, 4.35; N, 13.13. Found: C, 67.31; H, 4.21; N, 13.01%.

Ethyl 3-(3-(furan-2-yl)-1-(4-nitrophenyl)-1H-pyrazole-4carbonyl)-1-(4-nitrophenyl)-1H-pyrazole-4-carboxylate (**10b**): Color: Brown crystals. Yield: 70% (EtOH). M.p.: 148-150 °C. FT-IR (KBr, cm⁻¹): 1715, 1671 v(C=O). ¹H NMR (300 MHz, DMSO- d_6 , δ , ppm): 1.16 (t, J = 7 Hz, 3H, CH_3CH_2O), 4.19 (q, J = 7 Hz, 2H, CH_3CH_2O), 6.68-8.40 (m, 11H, Ar-H), 9.34(s, 1H, =CH-N), 9.48 (s, 1H, =CH-N). ¹³C NMR (75 MHz, DMSO- d_6 , δ , ppm): 13.8, 60.5, 111.7, 113.8, 116.1, 119.5, 119.6, 120.0, 120.9, 121.0, 121.3, 125.3, 133.4, 137.2, 142.7, 144.1, 145.7, 145.9, 152.4, 161.0, 181.2. MS (EI, m/z (%)): 542 (M⁺, 93), 541 (45), 374 (15), 249 (17), 236 (64), 235 (48), 149 (15), 103 (56), 102 (46), 76 (100). Anal. calcd. for C₂₆H₁₈N₆O₈: C, 57.57; H, 3.34; N, 15.49. Found: C, 57.61; H, 3.21; N, 15.12%.

Ethyl 1-(4-nitrophenyl)-3-(1-(4-nitrophenyl)-3-(thiophen-2yl)-1H-pyrazole-4-carbonyl)-1H-pyrazole-4-carboxylate (**10c**): Color: Brown crystals. Yield: 71% (EtOH). M.p.: 236-238 °C. FT-IR (KBr, cm⁻¹): 1714, 1666 v(C=O). ¹H NMR (300 MHz, DMSO- d_6 , δ, ppm): 1.19 (t, *J* = 7 Hz, 3H, CH₃CH₂O), 4.22 (q, *J* = 7 Hz, 2H, CH₃CH₂O), 6.96-8.30 (m, 11H, Ar-H), 9.18 (s, 1H, =CH-N), 9.61 (s, 1H, =CH-N). MS (EI, m/z (%)): 558 (M⁺, 23), 557 (17), 409 (26), 308 (100), 111 (80), 93 (20). Anal. calcd. for C₂₆H₁₈N₆O₇S: C, 55.92; H, 3.25; N, 15.05;S, 5.73. Found: C, 55.71; H, 3.01; N, 14.79; S, 5.55%.

2.2.6. Synthesis of 2-(4-nitrophenyl)-7-(1-phenyl-3substituted-1H-pyrazol-4-yl)-2H-pyrazolo[3,4-d]pyridazin-4(5H)-ones (11a-c, 13a-c)

General procedure: A mixture of the appropriate ethyl 3-(1-aryl-3-substituted-1*H*-pyrazole-4-carbonyl)-1-(4-nitrophenyl)-1*H*-pyrazole-4-carboxylate **9(10)** (3 mol) and hydrazine hydrate (5 mL, 99%) was refluxed for 3 h and then cooled. The solid that precipitated was collected, washed with hot ethanol and finally crystallized from the appropriate solvents. The compounds **11a-c** and **13a-c** prepared together with their physical constants are listed below (Scheme 4 and 5).

Scheme 4

7-(3-Benzoyl-1-phenyl-1H-pyrazol-4-yl)-2-(4-nitrophenyl)-2H-pyrazolo[3,4-d]pyridazin-4(5H)-one (**11a**): Color: Yellow crystals. Yield: 82% (DMF). M.p.: 308-310 °C. FT-IR (KBr, cm⁻¹): 3242 v(NH), 1695, 1670 v(C=O). ¹H NMR (300 MHz, DMSO- d_6 , δ, ppm): 7.51-8.25 (m, 14H, Ar-H), 9.22 (s, 1H, =CH-N), 9. 14 (s, 1H, =CH-N), 12.41 (s, 1H, NH). MS (EI, *m/z* (%)): 503 (M⁺, 18), 502 (36), 367 (54), 311 (55), 252 (54), 154 (64), 153 (73), 105 (27), 104 (82), 103 (100). Anal. calcd. for C₂₇H₁₇N₇O₄: C, 64.41; H, 3.40; N, 19.47. Found: C, 64.13; H, 3.11; N, 19.11%.

7-(3-(2-Naphthoyl)-1-phenyl-1H-pyrazol-4-yl)-2-(4-nitro phenyl)-2H-pyrazolo[3,4-d]pyridazin-4(5H)-one (**11b**): Color: Yellow crystals. Yield: 85% (DMF). M.p.: 302-304 °C. FT-IR (KBr, cm⁻¹): 3240 v(NH), 1697, 1665 v(C=O). ¹H NMR (300 MHz, DMSO-*d*₆, δ , ppm): 7.40-8.24 (m, 15H, Ar-H), 8.70 (s, 1H, Ar-H), 9.16 (s, 1H, =CH-N), 9.55 (s, 1H, =CH-N), 12.41 (s, 1H, NH). ¹³C NMR (75 MHz, DMSO-*d*₆, δ , ppm): 116.4, 117.8, 119.5, 120.4, 120.6, 124.6, 124.7, 127, 127.6, 128.3, 129.0, 129.7, 1219.8, 132.0, 132.6, 133.1, 134.0, 135.2, 138.9, 142.7, 145.5, 146.2, 149.4, 157.5, 180.1. MS (EI, *m/z* (%)): 553 (M⁺, 56), 552 (52), 380 (13), 277 (15), 276 (13), 127 (100), 77 (54). Anal. calcd. for C₃₁H₁₉N₇O₄: C, 67.27; H, 3.46; N, 17.71. Found: C, 67.31; H, 3.11; N, 17.55%.

Scheme 5

7-(3-Acetyl-1-phenyl-1H-pyrazol-4-yl)-2-(4-nitrophenyl)-2Hpyrazolo[3,4-d]pyridazin-4(5H)-one (**11c**): Color: Pale yellow crystals. Yield: 81% (DMF). M.p.: 322-324 °C. FT-IR (KBr, cm⁻¹): 3255 v(NH), 1700, 1670 v(C=0). ¹H NMR (300 MHz, DMSO- d_6 , δ , ppm): 2.4 (s, 3H, CH₃CO), 7.69-8.52 (m, 9H, Ar-H), 9.44 (s, 1H, =CH-N), 9.64 (s, 1H, =CH-N), 12.60 (s, 1H, NH). MS (EI, *m*/z (%)): 441 (M⁺, 44), 440 (25), 398 (17), 397 (51), 142 (49), 104 (34), 77 (100). Anal. calcd. for C₂₂H₁₅N₇O₄: C, 59.86; H, 3.43; N, 22.21. Found: C, 59.81; H, 3.22; N, 22.01%.

(E)-2-(4-Nitrophenyl)-7-(1-phenyl-3-styryl-1H-pyrazol-4-yl)-2H-pyrazolo[3,4-d]pyridazin-4(5H)-one (**13a**): Color: Colorless crystals. Yield: 79% (DMF). M.p.: 256-258 °C. FT-IR (KBr, cm⁻¹): 3359 v(NH), 1688 v(C=O). ¹H NMR (300 MHz, DMSO- d_6 , δ , ppm): 7.41-8.41 (m, 17H, Ar-H, HC=CH, NH), 9.21 (s, 1H, =CH-N), 9.72 (s, 1H, =CH-N). MS (EI, m/z (%)): 501 (M⁺, 72), 500 (37), 424 (100), 378 (42), 250 (19), 77 (100). Anal. calcd. for C_{28H19}N₇O₃: C, 67.06; H, 3.82; N, 19.55. Found: C, 66.99; H, 3.62; N, 19.77%.

7-(3-(Furan-2-yl)-1-(4-nitrophenyl)-1H-pyrazol-4-yl)-2-(4nitrophenyl)-2H-pyrazolo[3,4-d]pyridazin-4(5H)-one (13b): Color: Yellow crystals. Yield: 77% (DMF). M.p.: > 360 °C. FT-IR (KBr, cm⁻¹): 3280 v(NH), 1692 v(C=0). ¹H NMR (300 MHz, DMSO- d_6 , δ , ppm): 6.6 (m, 1H, Ar-H), 7.11 (m, 1H, Ar-H), 8.27-8.46 (m, 10H, Ar-H, NH), 9.39 (s, 1H, =CH-N), 9.77 (s, 1H, =CH-N). MS (EI, *m/z* (%)): 510 (M*, 100), 509 (56), 481 (17), 388 (16), 373 (23), 255 (21), 217 (22), 195 (25), 103 (30), 76 (54). Anal. calcd. for C₂₄H₁₄M₈O₆ (510.43): C, 56.48; H, 2.76; N, 21.95. Found: C, 56.19; H, 2.51; N, 22.10%.

2-(4-Nitrophenyl)-7-(1-(4-nitrophenyl)-3-(thiophen-2-yl)-1H-pyrazol-4-yl)-2H-pyrazolo[3,4-d]pyridazin-4(5H)-one (13c): Color: Pale yellow crystals. Yield: 80% (DMF). M.P.: 258-260 °C. FT-IR (KBr, cm⁻¹): 3348 v(NH), 1686 v(C=O). ¹H NMR (300 MHz, DMSO- d_6 , δ , ppm): 6.82-8.23 (m, 12H, Ar-H, NH), 9.11 (s, 1H, =CH-N), 9.62 (s, 1H, =CH-N). MS (EI, m/z (%)): 526 (M⁺, 100), 481 (76), 322 (38), 122 (38). Anal. calcd. for C₂₄H₁₄N₈O₅S (526.43): C, 54.76; H, 2.68; N, 21.59; S, 6.08. Found: C, 54.44; H, 2.40; N, 21.81; S, 5.82%.

2.2.7. Synthesis of (E)-7-(2-(dimethylamino)vinyl)-2-(4-nitro phenyl)-2H-pyrazolo[3,4-d]pyridazin-4(5H)-one (14)

To a solution of 7-methyl-2-(4-nitrophenyl)-2*H*-pyrazolo[3,4-*d*]pyridazin-4(5*H*)-one, **7a** (2.71 g, 0.01 mol) in dioxane (50 mL), was added dimethylformamidedimethylacetal (1.2 g, 0.01 mol). The reaction mixture was refluxed for 10 h and then cooled to room temperature. The solid that was formed was filtered off and crystallized to give the enamine **14** (Scheme 6). Color: Pale yellow. Yield: 80% (DMF). M.p.: 278-280 °C. FT-IR (KBr, cm⁻¹): 3255 v(NH), 1660 v(C=0). ¹H NMR (300 MHz, DMSO-*d*₆, δ , ppm): 2.86 (s, 6H, (CH₃)₂N), 7.85-8.43 (m, 6H, Ar-H, HC=CH), 9.12 (s, 1H, =CH-N),

2.2.8. Alternate synthesis of 11a and 13c

To an equimolar mixture of the enamine **14** and the hydrazonoyl chloride **21** (5 mmol each) in dioxane (50 mL) was added triethylamine (0.6 g, 5 mmol) and the reaction mixture was refluxed for 8 h, then the solvent was distilled under reduced pressure. To the residue left was triturated with ethanol and the solid formed was collected and crystallized from DMF to give a product that proved identical in all respect (M.p., Mixed m.p., IR, ¹H NMR and elemental analysis) with **11c** obtained above from **9c** and hydrazine hydraze.When the above procedure was repeated using the hydrazonoyl chloride **3a** in lieu **21**, the product obtained proved to be **13a** identical in all respect with that one obtained from reaction of **10a** with hydrazine hydrate.

3. Results and discussion

The target new enamino ester **1**, which has not been reported hitherto, was prepared in this study by reaction of dipropylamine with ethyl propiolate in methanol at room temperature (Scheme 1). Its structure was verified by elemental analysis and spectroscopic methods (IR and NMR) (see Experimental). For example, its ¹H NMR spectrum displayed a quartet and triplet signals at δ 1.15 and 4.02 due to the CH₃CH₂OCO group, two doublet signals at δ 4.42 and 7.36 with coupling constant *J* = 13 Hz assignable to the two olefinic protons. The latter coupling constant value indicates that the enamino ester prepared exists predominantly in the *E*-configuration. In addition to such signals, the ¹H NMR spectrum reveals three signals at δ 0.79 (6H), 1.47 (4H) and 2.97 (4H) assignable to the resonances of the protons of the (CH₃CH₂CH₂)₂N-moiety.

Next, the reactions of the enamino ester **1**, as a dipolarophile, with various nitrilimines, generated *in situ* by dehydrohalogenation of the respective *N*-aryl hydrazonoyl halides were examined. Thus, in our hands, reaction of compound **1** with each of compounds **2a-k** in refluxing dioxane in the presence of triethylamine yielded, in each case, a single product that was identified, on the basis of its elemental analysis and spectral (IR, NMR and MS) data as the corresponding ethyl 1-aryl-3-substituted-1*H*-pyrazole-4-carboxylate **4a-k** (Scheme 1).

Similar reactions of compound 1 with the halides 3a-d under the same conditions afforded regioselectively the pyrazole derivatives 5a-d (Scheme 1). The other possible regioisomeric structure namely ethyl 1-aryl-3-substituted-1Hpyrazole-5-carboxylate 6 was discarded. This is because the ¹H NMR spectra of the products 4(5) isolated showed in each case a singlet signal in the region δ 8.60– 9.22, which corresponds to H-5 of the pyrazole ring residue in the products. This assignment is consistent with literature reports which indicate that in pyrazole derivatives, the signal of H-5 usually appears at δ 8.66-8.69 whereas that of H-4 appears at δ 5.81-5.89 [25]. The formation of compounds 4(5) rather than compound 6indicates that the studied reaction of compound 1 with compounds 2(3) is regiospecific. To account for the formation of compounds 4(5), it is suggested, as depicted in Scheme 1 that the reaction of compound 1 with each of compounds 2 and 3 proceeds via 1,3-dipolar cycloaddition of the nitrilimine, derived from compounds 2(3), to the activated double bond in the enamino ester, 1, to give the respective cycloadducts which in turn undergo in situ elimination of dipropylamine to afford compounds 4(5) as the end products.

The assigned structures **4** for the isolated products were further confirmed by their chemical reactions. For example, treatment of compounds **4a-k** each with hydrazine hydrate in refluxing ethanol yielded in each case one product whose spectroscopic (MS, IR, NMR) and elemental analysis data were consistent with the structure of the corresponding 2-aryl-7-substituted-2*H*-pyrazolo[3,4-*d*]pyridazin-4(5*H*)-one, **7a-k** (Scheme 2).

Condensation of the pyrazole derivative **4a** with DMF-DMA in refluxing dioxane afforded the corresponding enaminone, **8** (Scheme 3). The structure of the latter enaminone was confirmed by its spectral and elemental analyses. For example, its IR spectrum showed C=O bands at v 1700 and 1647 cm⁻¹. Its ¹H NMR spectrum revealed a singlet signal at δ 3.14 (6H) for the protons of the (CH₃)₂N- group, two characteristic doublets at δ 6.27 (d, 1H) and 8.76 (d, 1H) with coupling constant *J* = 13 Hz assignable to the two olefinic protons. This coupling constant value indicates that this enaminone, **8**, has the indicated *trans*-configuration.

Similar to the enamino ester **1**, the enaminone, **8**, reacted with various hydrazonoyl halides **2e**, **2h**, **2l** and **3a-c** in refluxing dioxane in the presence of triethylamine and yielded the corresponding *bis*-3,4'-pyrazolyl ketones, **9a-c** and **10a-c** (Scheme 3). The structures of the latter products were established by their spectral and elemental analysis data (see Experimental).

Next, hydrazinolysis of the products **9** was studied to shed some light on its site selectivity as it can theoretically lead to the formation of the products **11** and/or **12** (Scheme 4). When each of compounds **9** was refluxed with hydrazine hydrate in ethanol, it yielded chemoselectively a single product in each case as evidenced by TLC analysis of the crude product. The isolated products proved to be the corresponding 2-(4nitrophenyl)-7-(3-aroyl-1-phenyl-1*H*-pyrazol-4-yl)-2*H*-pyrazolo[3,4-*d*]pyridazin-4(5*H*)-one, **11**, (Scheme 4). The structures of the latter products **11** were established on the basis of their spectral and elemental analysis data (see Experimental). For example, the IR spectra of products **11** revealed two C=O bands near v 1697 and 1665 cm⁻¹ in addition to NH band at v 3240 $\rm cm^{-1}.$ Their $^{1}\rm H$ NMR spectra revealed the absence of the triplet and quartet signals characteristic of the ester group, -COOCH_2CH_3.

Similar treatment of compounds **10** with hydrazine hydrate in refluxing ethanol afforded the corresponding 2-(4nitrophenyl)-7-(1-phenyl-3-substituted-1*H*-pyrazol-4-yl)-2*H*pyrazolo[3,4-*d*]pyridazin-4(5*H*)-one, **13** (Scheme 5). The structures of the latter products were established by their spectral and elemental analysis data (see Experimental).

To provide further evidence for the assigned structures of the products **11** and **13**, they were prepared by an unambiguous alternate synthesis (Scheme 6). Thus, treatment of compound **7a** with DMF-DMA in dioxane yielded the corresponding enamine**14**. Reaction of the latter with each of the hydrazonoyl chlorides **2l** and **3a** in dioxane in the presence of triethylamine afforded two products that proved identical in all respects with compounds **11c** and **13a**, prepared from hydrazinolysis of compounds **9c** and **10a**, respectively (Scheme **4** and **5**).

4. Conclusion

In summary, ethyl 3-(dipropylamino)acrylate and C-acyl nitrilimines proved useful precursors for synthesis of 3,4-*bis*-(functionalized carbonyl) derivatives of pyrazole **4** and 3,4'-*bis*-(pyrazolyl) ketones, **9(10**). In addition, reaction of **4** with hydrazine hydrate afforded the corresponding pyrazolo[3,4-*d*]pyridazin-4(5)-ones, **7**. Similar hydrazinolysis of **9(10**) proved to be site selective as it yielded the corresponding 7-substituted-2*H*-pyrazolo[3,4-*d*]pyridazin-4(5)-ones, **11(13**).

References

- [1]. Shawali, A. S.; Parkanyi, C. J. Heterocycl. Chem. 1980, 17, 833-854.
- [2]. Shawali, A. S. *Heterocycles* **1983**, *20*, 2239-2285.
- [3]. Shawali, A. S. Chem. Rev. 1993, 93, 2731-2777.
- [4]. Shawali, A. S.; Abdallah, M. A. Adv. Heterocycl. Chem. 1995, 63, 277-338.
- [5]. Shawali, A. S.; Elsheikh, S. M. J. Heterocycl. Chem. 2001, 38, 541-559.

- Shawali, A. S.; Mosselhi, M. A. N. J. Heterocycl. Chem. 2003, 40, 725-[6]. 746.
- Shawali, A. S.; Mosselhi, M. A. N. J. Sulfur. Chem. 2005, 26, 267-303. [7].
- [8] Shawali, A. S.; Edrees, M. M. Arkivoc 2006, 9, 292-365.
- Shawali, A. S.; Sherif, S. M. Current Org. Chem. 2007, 11, 773-799. [9].
- [10]. Osterloh, J. H.; Birkhauser Verlag Basel 2004, 1-13.
- [11]. Rainer, G.; Kruger, U.; Klemm K. Arzneimittel-Forschung 1981, 31, 649-655.
- [12]. Goertz, R.; Appelboom, T. Int. J. Tissue React. 1985, 7, 263-265.
- [13]. Vinge, E.; Bjorkman, S. B. ActaPharmacol. Toxicol 1986, 59, 165-174. [14]. Kameyama, T.; Ukai, M.; Nabeshima, T. Chem. Pharm. Bull. 1978, 26,
- 3265-3270. [15].
- [16].
- Akbas, E.; Berber, I. *Eur. J. Med. Chem.* **2005**, *40*, 401-405. Bildirici, I.; Sener, A.; Tozlu, J. *Med. Chem. J.* **2007**, *16*, 418-426. Bildirici, I.; Sener, A.; Battal, A. *Med. Chem. J.* **2009**, *18*, 327-340. [17].
- Ì18Ì. Eweiss, N. F.; Osman, A. J. Heterocycl. Chem. 1980, 11, 1713-1717.
- Hassaneen, H. M.; Mousa, H. A. H.; Abed, N. M.; Shawali, A. S. [19]. Heterocycles 1988, 27, 695-706.
- [20]. Shawali, A. S.; Hassaneen, H. M.; Ibrahim, H. A.; Mekki, S. T.; Fahmi, A. A. Arch. Pharm. Res. 1990, 13, 126-131.
- [21]. Hassaneen, H. M.; Hilal, R. H.; Elwan, N. M.; Harhash, A.; Shawali, A. S. J. Heterocycl. Chem. 1984, 21, 1013-1016.
- [22]. Farag, A. M.; Algharib, M. S. Org. Prep. Proc. Int. 1988, 20, 521-526. [23]. Shawali, A. S.; Abdelhamid, A. O. Bull. Chem. Soc. Japan 1976, 49, 321-332.
- [24]. Shawali, A. S.; Eweiss, N. F.; Hassaneen, H. M.; Sami, M. Bull. Chem. Soc. Jpn. 1975, 48, 365-366.
- [25]. Shawali, A. S.; Farghaly, T. A.; Al-Dahshoury, A. R. Arkivoc 2009, 14, 88-99.