

European Journal of Chemistry

Journal homepage: <u>www.eurjchem.com</u>

Ahmed Hamdy Halawa ^a, Ahmed Abd El-Hameed Hassan ^{a,b,*}, Mohamed Ahmed El-Nassag ^a, Mahmoud Mohamed Abd El-All ^{a,c}, GehadAbd El-Raheem Abd El-Jaleel ^d, Essam Mohamed Eliwa ^a and Ahmed Hammam Bedair ^a

^a Chemistry Department, Faculty of Science, Al-Azhar University, 11884, Nasr City, Cairo, Egypt

^b Chemistry Department, Faculty of Medicine, Jazan University, 82621, Jazan, Saudi Arabia

^c Chemistry Department, Faculty of Science and Art, Al-Baha University, 1988, Al-Baha, Saudi Arabia

^d Pharmacology Department, National Research Center, 12622, Dokki, Cairo, Egypt

*Corresponding author at: Chemistry Department, Faculty of Science, Al-Azhar University, 11884, Nasr City, Cairo, Egypt. Tel.: +2.0100.4353504. Fax: +2.022.2926356. E-mail address: <u>ahmed_hassan7979@hotmail.com</u> (A.A.E. Hassan).

ARTICLE INFORMATION

ABSTRACT

We report on the synthesis of new coumarin derivatives coupled with heterocyclic and bifunctionalized moieties at position 7. The proposed structures were confirmed by correct elemental analysis and spectral data (IR, MS, ¹H NMR and ¹³C NMR). Some selected derivatives were also screened for their antioxidant and anticancer activities. The results indicated that 7-{[6-(4-nitrophenyl)-7*H*-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-3-yl]methoxy}-4-phenyl-*H*-chromen-2-one has the highest antioxidant and anticancer activity in tested compounds.

DOI: 10.5155/eurjchem.5.1.111-121.860

Received: 15 June 2013 Received in revised form: 15 September 2013 Accepted: 15 September 2013 Online: 31 March 2014

KEYWORDS

Triazole Oxadiazole Cytotoxicity Benzoimidazole Antioxidant activity Coumarinacetohydrazide

1. Introduction

The coumarin nucleus is frequently found in bioactive compounds and plays an important role in biochemical processes. The cytotoxic activities of the coumarin derivatives were tested in several human tumor cell lines [1-7]. In addition, the antimicrobial, antitumor, anti-inflammatory, antimalarial and anti-HIV activities of hydrazide compounds on tumor cell lines have been observed and recently reported [8-14], Moreover, some synthetic oxadiazole derivatives exhibit a range of pharmacological activities [15-18]. The biological and medicinal activities of triazole moieties have stimulated considerable interest in the synthesis of derivatives of this ring system [19-25]. In view of the above observations and in continuation of our previous works in heterocyclic chemistry. we report herein the synthesis of some new derivatives of these ring systems incorporated with 4-phenylcoumarin moiety, using ethyl 2-(2-oxo-4-phenyl-2H-chromen-7-yloxy) acetate (1) [26] as a key starting material. A selected series of these compounds were investigated for their antitumor activities.

2. Experimental

2.1. Instrumentation

All melting points, antioxidant and anticancer activities are uncorrected. IR spectra (KBr) were recorded on FT-IR 5300 spectrometer and Perkin Elmer spectrum RXIFT-IR system (v, cm⁻¹). The ¹H NMR spectra were recorded in (DMSO-*d*₆) at 300 MHz on a Varian Mercury VX-300 NMR spectrometer (δ , ppm) using TMS as an internal standard. ¹³C NMR spectra were recorded on Varian Mercury VX 300 NMR using DMSO-*d*₆ as solvent and TMS as an internal standard. Mass spectrum was obtained on GC MS-QP 1000 EX mass spectrometer at 70 eV. Elemental analyses were carried out by the Microanalytical Research Center, Faculty of Science, Cairo University and Al-Azhar University.

European Journal of Chemistry

2.2. Synthesis

2.2.1. Synthesis of 2-(2-oxo-4-phenyl-2H-chromen-7-yloxy) acetohydrazide (2)

A mixture of compound **1** (0.01 mol) and hydrazine hydrate (0.02 mol) in ethanol (30 mL) was refluxed for 8 h. The reaction mixture was concentrated and left to cool (Scheme 1). Color: Colorless. Yield: 80%. M.p.: 188-190 °C. FT-IR (KBr, v, cm⁻¹): 3340, 3254 (NH₂, NH), 1716 (C=O, lactone), 1690 (C=O, amide). ¹H NMR (300 MHz, DMSO- d_6 , δ , ppm): 9.43 (s, 1H, NH exchangeable with D₂O), 6.96-7.58 (m, 8H, Ar-H), 6.25 (s, 1H, H-3), 4.63 (s, 2H, OCH₂), 4.36 (s, 2H, NH₂ exchangeable with D₂O). MS (EI, *m/z* (%)): 310 (M⁺, 77). Anal. calcd. for C₁₇H₁₄N₂O₄: C, 65.80; H, 4.55; N, 9.03. Found: C, 65.74; H, 4.43; N, 8.91%.

2.2.2. Synthesis of potassium 2-[2-(2-oxo-4-phenyl-2Hchromen-7-yloxy) acetyl]hydrazinecarbodithioate (3)

To a solution of 2-(2-oxo-4-phenyl-2*H*-chromen-7-yloxy)acetohydrazide (**2**, 0.01 mol) in ethanol (30 mL), a solution of potassium hydroxide (0.01 mol) in water (5 mL) and carbon disulfide (0.01 mol) were added. The reaction mixture was heated under reflux for 3 h, the resulting solid on heating was collected by filtration, washed with ether and dried to afford 2.8 g of the potassium salt **3** (Scheme 1). Color: yellow. Yield: 90%. M.p.: >360 °C. FT-IR (KBr, v, cm⁻¹): 3320, 3266 (NH), 1698 (C=O). ¹H NMR (300 MHz, DMSO- d_6 , δ_6 , ppm): 6.57-7.58 (m, 10H, Ar-H and 2NH), 6.25 (s, 1H, H-3), 5.19 (s, 2H, OCH₂). MS (EI, *m/z* (%)): 424 (M⁺, 61). Anal. calcd. for C₁₈H₁₃KN₂O₄S₂: C, 50.92; H, 3.09; N, 6.60. Found: C, 50.85; H, 3.00; N, 6.51%.

2.2.3. Synthesis of 7-[(5-thioxo-1,3,4-oxadiazol-2yl)methoxy]-4-phenyl-2H-chromen-2-one (4)

The potassium salt **3** (0.01 mol) was dissolved in aqueous potassium hydroxide solution (0.01 mol) in water (10 mL) and refluxed for 2 h then cooled. The resulting reaction mixture was treated with dilute hydrochloric acid till pH=~4. The resulting solid was collected by filtration, washed with water, and recrystallized from ethanol to give compound **4** (Scheme 1). Color: yellow. Yield: 76%. M.p.: 185-187 °C. FT-IR (KBr, v, cm⁻¹): 1686 (C=O). ¹H NMR (300 MHz, DMSO-*d*₆, δ , ppm): 14.23 (s, 1H, NH), 7.02-7.58 (m, 8H, Ar-H), 6.28 (s, 1H, H-3), 5.42 (s, 2H, OCH₂). MS (EI, *m/z* (%)): 352 (M⁺, 51). Anal. calcd. for C1₈H₁2_NO₄S: C, 61.35; H, 3.43; N, 7.95. Found: C, 61.28; H, 3.35; N, 7.87%.

2.2.4. Synthesis of 7-[(4-amino-5-thioxo-4, 5-dihydro-1H-1, 2, 4-triazol-3-yl) meth-oxy]-4-phenyl-2H-chromen-2-one (5)

Method A: To a solution of potassium salt **3** (0.01 mol) in ethanol (20 mL) and water (10 mL), hydrazine hydrate (0.2 mL) was added. The reaction mixture was heated under reflux for 2 h, then left to cool, then poured into crushed ice. The resulted reaction mixture was acidified with dilute hydrochloric acid.

ΗŃ

(12)

The resulting solid was collected by filtration, washed with water and recrystallized from dioxane (Scheme 1). Color: White. Yield: 77%. M.p.: 222-224 °C. FT-IR (KBr, v, cm⁻¹): 1686 (C=O), 3384, 3298 (NH₂), 3182 (NH), 1698 (C=O). ¹H NMR (300 MHz, DMSO-*d*₆, δ , ppm): 13.84 (s, 1H, NH exchangeable with D₂O), 6.99-7.56 (m, 8H, Ar-H), 6.25 (s, 1H, H-3), 5.67 (b, 2H, NH₂ exchangeable with D₂O), 5.27(s, 2H, OCH₂). ¹³C NMR (300 MHz, DMSO-*d*₆, δ , ppm): 166.79, 160.61, 159.79, 155.17, 154.93, 147.49, 134.83, 129.61, 128.79, 128.35, 127.85, 112.80, 112.48, 111.78, 102.35 and 59.73. MS (EI, *m/z* (%)): 366 (M⁺, 25). Anal. calcd. for C₁₈H₁₄N₄O₃S: C, 59.01; H, 3.85; N, 15.29. Found: C, 58.89; H, 3.78; N, 15.18%.

NH₂

(5)

Method B: A mixture of 7-[(5-thioxo-1,3,4-oxadiazol-2-yl)methoxy]-4-phenyl-2*H*-chromen-2-one (**4**) (0.01 mol) in ethanol (20 mL) and hydrazine hydrate (0.2 mL) was heated under reflux for 2 h, then left to cool and poured onto crushed ice. The reaction mixture was acidified with dilute hydrochloric acid till pH = \sim 4. The resulting solid was collected by filtration, washed with water and recrystallized from dioxane, to give compound **5**.

2.2.5. Synthesis of N-(4-(4-nitrophenyl)-2-thioxothiazol-3(2H)-yl)-2-((2-oxo-4-phenyl-2H-chromen-7-yl)oxy) acetamide (7)

A mixture of potassium salt **3** (0.01 mol) and *p*-nitro phenacyl bromide (0.01 mol) in *N*,*N*-dimethylformamide (DMF) (15 mL) was heated under reflux for 3 h, then left to cool and poured onto crushed ice. The precipitated solid was collected by filtration, washed with ethanol, dried and recrystallized from dioxane (Scheme 1). Color: Yellow. Yield: 54%. M.p.: 170-172 °C. FT-IR (KBr, v, cm⁻¹): 3315(NH), 1716, 1700 (C=O). ¹H NMR (300 MHz, DMSO-*d*₆, δ , ppm): 10.62 (s, 1H, NH), 6.80-8.38 (m, 13H, Ar-H and CH-thiazole), 6.29 (s, 1H, H-3), 5.18 (s, 2H, OCH₂). Anal. calcd. for C₂₆H₁/N₃O₆S₂: C, 58.75; H, 3.22; N, 7.91. Found: C, 58.70; H, 3.14; N 7.82%.

2.2.6. Synthesis of 7-{[5-(2-(4-nitrophenyl)-2-oxoethylthio)-1,3,4-oxadiazol-2-yl]methoxy}-4-phenyl-2H-chromen-2-one (8)

A mixture of 7-[(5-thioxo-1,3,4-oxadiazol-2-yl)methoxy]-4phenyl-2*H*-chromen-2-one (4) (0.01 mol), *p*-nitrophenacyl bromide (0.01 mol) and anhydrous potassium carbonate (0.01 mol) in dry acetone (15 mL) was refluxed for 6 h. The formed precipitate was filtered off and washed with acetone. The filtrate was distilled under reduced pressure till dryness then the residue was treated with water. The solid formed was collected by filtration, washed with water, dried and recrystallized from dioxane to give compound 8 (Scheme 1). Color: Yellow. Yield: 64%. M.p.: 110-112 °C. FT-IR (KBr, v, cm⁻¹): 1710 (C=O). ¹H NMR (300 MHz, DMSO- d_6 , δ , ppm): 6.51-8.39 (m, 12H, Ar-H), 6.14 (s, 1H, H-3), 5.21 (s, 2H, OCH₂), 4.60 (s, 2H, CH₂). MS (EI, *m/z* (%)): 515 (M⁺, 25). Anal. calcd. for C₂₆H₁₇N₃O₇S: C, 60.58; H, 3.32; N, 8.15. Found: C, 60.48; H, 3.20; N, 8.03%.

NO,

2.2.7. Synthesis of 7-((6-(4-nitrophenyl)-7H-[1,2,4]triazolo [3,4-b][1,3,4]thiadiazin-3-yl)methoxy)-4-phenyl-2Hchromen-2-one (10)

Method A: A mixture of 7-[(4-amino-5-thioxo-4,5-dihydro-1*H*-1,2,4-triazol-3-yl)methoxy]-4-phenyl-2*H*-chromen-2-one **(5)** (0.01 mol), *p*-nitrophenacyl bromide (0.01 mol) and triethylamine (TEA) (0.2 mL) in DMF (15 mL) was heated under reflux for 2 h, then left to cool and poured onto crushed ice. The reaction mixture was acidified with dilute hydrochloric acid till pH = ~4. The resulting solid was collected by filtration, washed with water and recrystallized from dioxane (Scheme 1). Color: Brown. Yield: 56%. M.p.: 176-178 °C. FT-IR (KBr, v, cm⁻¹): 1712 (C=O). ¹H NMR (300 MHz, DMSO-*d*₆, δ , ppm): 6.76-8.35 (m, 12H, Ar-H), 6.23 (s, 1H, H-3), 5.22 (s, 2H, OCH₂), 4.81 (s, 2H, CH₂). MS (EI, *m/z* (%)): 511 (M⁺, 36). Anal.calcd. for C₂₆H₁₇N₅O₅S: C, 61.05; H, 3.35; N, 13.69. Found: C, 60.91; H, 3.23: N. 13.60%.

Method B: To 7-{[5-(2-(4-nitrophenyl)-2-oxoethylthio)-1,3,4-oxadiazol-2-yl]methoxy}-4-phenyl-2*H*-chromen-2-one (**8**) (0.01 mol) in ethanol (20 mL), hydrazine hydrate (0.2 mL) was added. The reaction mixture was heated under reflux for 3 h, then left to cool. The resulting solid was collected by filtration, washed with water, and recrystallized from dioxane, to give compound **10**.

2.2.8. Synthesis of 7-{[4-(4-nitrobenzylideneamino)-5thioxo-4,5-dihydro-1H-1,2,4-triazol-3-yl]methoxy}-4-phenyl-2H-chromen-2-one (11)

A mixture of *p*-nitrobenzaldehyde (0.01 mol) and 7-[(4-amino-5-thioxo-4,5-dihydro-1*H*-1,2,4-triazol-3-yl)methoxy]-4-phenyl-2H-chromen-2-one (**5**) (0.01 mol) in ethanol (20 mL) in the presence of acetic acid (1 mL) was refluxed for 4 h, then left to cool. The solid product was collected by filtration, washed with ethanol, dried and recrystallized from dioxane (Scheme 2). Color: Brown. Yield: 70%. M.p.: 238-240 °C. FT-IR (KBr, v, cm⁻¹): 3190 (NH), 1700(C=O). ¹H NMR (300 MHz, DMSO-*d*₆, δ , ppm): 10.39 (s, 1H, NH exchangeable with D₂O), 8.86 (s, 1H, CH=N), 7.03-8.38 (m, 12H, Ar-H), 6.28 (s, 1H, H-3), 5.40 (s, 2H, OCH₂). Anal. calcd. for C₂₅H₁₇N₅O₅S: C, 60.11; H, 3.43; N, 14.02. Found: C, 60.02; H, 3.30; N, 13.92%.

2.2.9. General procedure for preparation of N-(substituted)-2-(2-oxo-4-phenyl-2H-chromen-7-yloxy)acetamide (13a,b)

A mixture of 2-(2-oxo-4-phenyl-2*H*-chromen-7-yloxy)aceto hydrazide (**2**) (0.01 mol) and phthalic anhydride orpyrazine-2,3-dicarboxylic anhydride (0.01 mol) in glacial acetic acid (20 mL) was refluxed for 6 h, then the reaction mixture left to cool. The white solid was filtered off and recrystallized from dioxane to give compounds **13a,b** (Scheme 3).

N-(1,3-Dioxoisoindolin-2-yl)-2-(2-oxo-4-phenyl-2H-chromen-7-yloxy)-acetamide (**13a**): Color: White. Yield: 80%. M.p.: 262-264 °C. FT-IR (KBr, ν, cm⁻¹): 3176 (NH), 1715, 1708 (C=O). ¹H NMR (300 MHz, DMSO- d_6 , δ, ppm): 11.09 (s, 1H, NH), 7.04-8.01 (m, 12H, Ar-H), 6.29 (s, 1H, H-3), 5.01 (s, 2H, OCH₂). MS (EI, *m/z* (%)): 440 (M⁺, 20). Anal. calcd. for C₂₅H₁₆N₂O₆: C, 68.18; H, 3.66; N, 6.36. Found: C, 68.10; H, 3.58; N, 6.29%.

N-(5,7-*Dioxo*-5*H*-*pyrrolo*[3,4-*b*]*pyrazin*-6(7*H*)-*y*]*)*-2-(2-*oxo*-4-*pheny*]-2*H*-*chromen*-7-*y*[*oxy*]*acetamide* (**13b**): Color: White. Yield: 82%. M.p.: 158-160 °C. FT-IR (KBr, v, cm⁻¹): 3276 (NH), 1720, 1714 (C=0). ¹H NMR (300 MHz, DMSO-*d*₆, δ , ppm): 10.78 (s, 1H, NH), 8.76, 8.90 (d, 2H, 2CH pyrazine), 6.93-7.55 (m, 8H, Ar-H), 6.24 (s, 1H, H-3), 4.84(s, 2H, OCH₂). ¹³CNMR (300 MHz, DMSO-*d*₆, δ , ppm): 166.06, 162.02, 160.75, 159.84, 155.19, 154.99, 147.96, 144.00, 143.67, 143.52, 134.87, 129.62, 128.81, 128.35, 127.76, 120.79, 112.93, 112.35, 111.68, 102.16 and 66.36. MS (EI, *m/z* (%)): 442 (M⁺, 50). Anal. calcd. for C₂₃H₁₄N₄O₆: C, 62.45; H, 3.19; N, 12.66. Found: C, 62.38; H, 3.10; N, 12.52%.

2.2.10. General procedure for the preparation of 4-phenyl-7-((4-phenyl-5-substituted-4,5-dihydro-1H-1,2,4-triazol-3-yl) methoxy)-2H-chromen-2-one (15a,b)

A mixture of 2-(2-oxo-4-phenyl-2*H*-chromen-7-yloxy)aceto hydrazide (**2**) (0.01 mol) and phenylisothiocyanate or phenyliso-cyanate (0.01 mol) in dioxane (15 mL) was refluxed for3 h, the resulting solid on heating was collected by filtration, washed with ethanol several times and recrystallized from DMF to give compounds **15a,b** (Scheme 3).

4-Phenyl-7-((4-phenyl-5-thioxo-4,5-dihydro-1H-1,2,4-triazol-3-yl)methoxy)-2H-chromen-2-one (15a): Color: White. Yield: 76%. M.p.: 224-226 °C. FT-IR (KBr, ν , cm⁻¹): 3345 (NH), 1720 (C=0). ¹H NMR (300 MHz, DMSO- d_6 , δ , ppm): 14.08 (s, 1H, NH), 6.78-7.56 (m, 13H, Ar-H), 6.24 (s, 1H, H-3), 5.13 (s, 2H, OCH₂). MS (EI, *m/z* (%)): 427 (M⁺, 10). Anal. calcd. for C₂₄H₁₇N₃O₃S: C, 67.43; H, 4.01; N 9.83. Found: C, 67.37; H, 3.93; N, 9.75%.

3-((2-0xo-4-phenyl-2H-chromen-7-yloxy)methyl)-4-phenyl-1H-1,2,4-triazol-5(4H)-one (**15b**): Color: White. Yield: 82%. M.p.: 220-222 °C. FT-IR (KBr, ν, cm⁻¹): 3302 (NH), 1692 (C=0). ¹H NMR (300 MHz, DMSO-*d*₆, δ, ppm): 10.06 (s, 1H, NH), 6.95-8.74 (m, 13H, Ar-H), 6.27 (s, 1H, H-3), 4.78 (s, 2H, OCH₂). MS (EI, *m/z* (%)): 411 (M⁺, 75). Anal. calcd. for C₂₄H₁₇N₃O₄: C, 70.07; H, 4.16; N, 10.21. Found: C, 69.89; H, 4.08; N, 10.10%.

2.2.11. Synthesis of N'-(4-amino-5-cyano-6-(4-methoxy phenyl) pyrimidin-2-yl)-2-(2-oxo-4-phenyl-2H-chromen-7-yloxy) acetohydrazide (17)

A mixture of 2-(2-oxo-4-phenyl-2*H*-chromen-7-yloxy)aceto hydrazide (2) (0.01 mol),4-amino-2-mercapto-6-(4-methoxyphenyl)pyrimidine-5-carbonitrile (16) (0.01 mol) and pyridine (0.2 mL) in DMF (15 mL) was heated under reflux for 4 h, then left to cool and poured onto crushed ice. The reaction mixture was acidified with dilute hydrochloric acid till pH = ~4. The resulting solid was collected by filtration, washed with water and recrystallized from dioxane (Scheme 3). Color: Yellow. Yield: 92%. M.p.: 98-100 °C. FT-IR (KBr, v, cm⁻¹): 3325 (NH₂), 3230 (NH), 2200 (CN), 1712 (C=O). ¹H NMR (300 MHz, DMSOd₆, δ , ppm): 10.03 (s, 1H, NH), 10.29 (s, 1H, NH), 8.02 (s, 2H, NH₂), 7.01-7.81 (m, 12H, Ar-H), 6.24 (s, 1H, H-3), 4.74 (s, 2H, OCH₂), 3.79 (s, 3H, OCH₃). Anal. calcd. for C₂9H₂2N₆O₅: C, 65.16; H, 4.15; N, 15.72. Found: C, 65.08; H, 4.07; N, 15.65%.

2.2.12. Synthesis of 7-[(6-benzyl-[1,2,4]triazolo[3,4-a] phthalazin-3-yl)methoxy]-4-phenyl-2H-chromen-2-one (20)

A mixture of 2-(2-oxo-4-phenyl-2*H*-chromen-7-yloxy) aceto hydrazide (2) (0.01 mol) and 4-benzyl-1-chlorophthalazine (**18**) (0.01 mol) in dry dioxane (10 mL) and a catalytic amount of pyridine was refluxed for 4 h. The solid product which obtained after cooling was collected and recrystallized from dioxane to give compound **20** (Scheme 4).

Color: Yellow. Yield: 84%. M.p.: 170-172 °C. FT-IR (KBr, ν, cm⁻¹): 3012 (CH-aromatic), 2902 (CH-aliphatic), 1712 (C=O). ¹H NMR (300 MHz, DMSO-*d*₆, δ, ppm): 6.96-8.26 (m, 17H, Ar-H), 6.25 (s, 1H, H-3), 4.63 (s, 2H, OCH₂), 4.35 (s, 2H, CH₂). MS (EI, *m/z* (%)): 510 (M⁺, 29). Anal. calcd. for C₃₂H₂₂N₄O₃: C, 75.28; H, 4.34; N, 10.97. Found: C, 75.20; H, 4.23; N, 10.90%.

2.2.13. Synthesis of 7-[(6-amino-4H-1,3,4-oxadiazin-2-yl) methoxy]-4-phenyl-2H-chromen-2-one (22)

A mixture of 2-(2-oxo-4-phenyl-2*H*-chromen-7-yloxy)aceto hydrazide (**2**) (0.01 mol) and chloroacetonitrile (0.01 mol) in dry dioxane (10 mL) and a catalytic amount of pyridine was refluxed for 3 h, then the reaction mixture left to cool. The solid product was filtered off, washed with ethanol several times and recrystallized from dioxane (Scheme 4). Color: White. Yield: 56%. M.p.: 240-242 °C. FT-IR (KBr, v, cm⁻¹): 3245 (NH₂), 3175 (NH), 1712 (C=O). ¹H NMR (300 MHz, DMSO-*d*₆, δ , ppm): 10.29 (s, 1H, NH), 7.07-7.53 (m, 11H, Ar-H, CH-oxadiazin and NH₂), 6.23 (s, 1H, H-3), 4.76 (s, 2H, OCH₂). MS (EI, *m/z* (%)): 349 (M⁺, 16). Anal. calcd. for C₁₉H₁₅N₃O₄: C, 65.32; H, 4.33; N, 12.03. Found: C, 65.19; H, 4.12; N, 11.83%.

2.2.14. Synthesis of 7-[(4,5-dihydro-1H-imidazol-2-yl) methoxy]-4-phenyl-2H-chromen-2-one (24)

A mixture of 2-(2-oxo-4-phenyl-2*H*-chromen-7-yloxy) acetic acid (**23**) (0.01 mol) and ethylenediamine (0.01 mol) was heated without solvent at 180-200 °C for 30 min. Then the mixture was left to cool. The solid product that formed was recrystallized from dioxane (Scheme 5). Color: Brown. Yield: 58%. M.p.: 266-268 °C. FT-IR (KBr, v, cm⁻¹): 3376 (NH), 1712 (C=0). ¹H NMR (300 MHz, DMSO-*d*₆, δ , ppm): 8.24 (s, 1H, NH), 6.91-7.56 (m, 8H, Ar-H), 6.22 (s, 1H, H-3), 4.59 (s, 2H, OCH₂), 3.28 (s, 4H, 2CH₂). MS (EI, *m/z* (%)): 320 (M⁺, 17). Anal. calcd. for C₁₉H₁₆N₂O₃: C, 71.24; H, 5.03; N, 8.74. Found: C, 71.17; H, 4.91; N, 8.69%.

2.2.15. General procedure for preparation of 7-(substituted-2-ylmethoxy)-4-phenyl-2H-chromen-2-one (25a-c)

A mixture of 2-(2-oxo-4-phenyl-2*H*-chromen-7-yloxy) acetic acid (**23**) (0.01 mol) and 1,2-phenylenediamine, or 2-aminophenol, or 2-aminothiophenol (0.01 mol) was heated without solvent at 180-200°C for 30 min. Then the mixture was left to cool. The solid products that formed were recrystallized from dioxane to give compounds **25a-c** (Scheme 5).

7-[(1H-Benzo[d]imidazol-2-yl)methoxy]-4-phenyl-2Hchromen-2-one (**25a**): Color: Brown. Yield: 64%. M.p.: 242-244 °C. FT-IR (KBr, ν, cm⁻¹): 3320 (NH), 1706 (C=O). ¹H NMR (300 MHz, DMSO-*d*₆, δ, ppm): 12.72 (s, 1H, NH), 7.05-7.65 (m, 12H, Ar-H), 6.25 (s, 1H, H-3), 5.46 (s, 2H, OCH₂). Anal. calcd. for C₂₃H₁₆N₂O₃: C, 74.99; H, 4.38; N, 7.60. Found: C, 74.91; H, 4.30; N, 7.52%.

7-(Benzo[d]oxazol-2-ylmethoxy)-4-phenyl-2H-chromen-2one (**25b**): Color: Reddish brown. Yield: 52%. M.p.: 170-172 °C. FT-IR (KBr, ν, cm⁻¹): 1730 (C=O). ¹H NMR (300 MHz, DMSO-*d*₆, δ, ppm): 7.05-7.80 (m, 12H, Ar-H), 6.26 (s, 1H, H-3), 5.63 (s, 2H, OCH₂). MS (EI, *m/z* (%)): 369 (M⁺, 32). Anal. calcd. for C₂₃H₁₅NO₄: C, 74.79; H, 4.09; N, 3.79. Found: C, 74.68; H, 4.00; N, 3.68%.

7-(Benzo[d]thiazol-2-ylmethoxy)-4-phenyl-2H-chromen-2one (**25c**): Color: Yellow. Yield: 78%. M.p.: 138 °C. FT-IR (KBr, ν, cm⁻¹): 1716 (C=O). ¹H NMR (300 MHz, DMSO-*d*₆, δ, ppm): 7.08-8.15 (m, 12H, Ar-H), 6.27 (s, 1H, H-3), 5.76 (s, 2H, OCH₂). MS (EI, *m/z* (%)): 385 (M⁺, 26). Anal. calcd. for C₂₃H₁₅NO₃S: C, 71.67; H, 3.92; N, 3.63. Found: C, 71.58; H, 3.83; N, 3.57%.

2.2.16. Synthesis of 2-(2-oxo-4-phenyl-2H-chromen-7-yloxy) acetyl chloride (26)

A mixture of 2-(2-oxo-4-phenyl-2*H*-chromen-7-yloxy)acetic acid **(23)** (0.01 mol) and thionyl chloride (15 mL) was fused for 1 h. Excess of thionyl chloride removed under pressure to obtain the pure acyl chloride (Scheme 5). Color: Pale yellow. Yield: 95%. M.p.: 140-142 °C. FT-IR (KBr, v, cm⁻¹): 1700 (C=O). ¹H NMR (300 MHz, DMSO-*d*₆, δ , ppm): 6.76-7.58 (m, 8H, Ar-H), 6.15 (s, 1H, H-3), 4.84 (s, 2H, OCH₂). MS (El, *m/z* (%)): 314 (M⁺, 25). Anal. calcd. for C₁₇H₁₁ClO₄: C, 64.88; H, 3.52. Found: C, 64.80; H, 3.44%.

2.2.17. General procedure for preparation of N-(4-acetyl phenyl)-2-(2-oxo-4-phenyl-2H-chromen-7-yloxy)acetamide, 2-{4-[2-(2-oxo-4-phenyl-2H-chromen-7-yloxy)acetamido] phenyl} acetic acid and 4-[2-(2-oxo-4-phenyl-2H-chromen-7-yloxy)acetamido]benzoic acid (27a-c)

A mixture of 2-(2-oxo-4-phenyl-2*H*-chromen-7-yloxy)acetyl chloride (**26**) (0.01 mol) and aniline derivatives namely (4-amino-acetophenone, 4-aminophenylacetic acid and 4-aminobenzoic acid) (0.01 mol) in dry dioxane (10 mL) and a catalytic amount of pyridine was refluxed for1 h, the resulting solid on heating was collected by filtration, washed with ethanol several times and recrystallized from DMF to give compounds **27a-c** (Scheme 6).

N-(4-Acetylphenyl)-2-(2-oxo-4-phenyl-2H-chromen-7-yloxy) acetamide (**27a**): Color: White. Yield: 97%. M.p.: 222-224 °C. FT-IR (KBr, ν, cm⁻¹): 3344 (NH), 1718, 1682 (C=O). ¹H NMR (300 MHz, DMSO-*d*₆, δ, ppm): 10.48 (s, 1H, NH), 7.01-7.96 (m, 12H, Ar-H), 6.26 (s, 1H, H-3), 4.91 (s, 2H, OCH₂), 2.48 (s, 3H, CH₃). Anal. calcd. for C₂₅H₁₉NO₅: C, 72.63; H, 4.63; N, 3.39. Found: C, 72.51; H, 4.58; N, 3.28%.

2-{4-[2-(2-0xo-4-phenyl-2H-chromen-7-yloxy)acetamido] phenyl}acetic acid (**27b**): Color: Yellow. Yield: 90%. M.p.: 216-218 °C. FT-IR (KBr, v, cm⁻¹): 3432 (OH), 3334 (NH), 1720 (C=O). ¹H NMR (300 MHz, DMSO-*d*₆, δ, ppm): 12.22 (s, 1H, OH exchangeable with D₂O), 10.12 (s, 1H, NH exchangeable with D₂O), 6.80-7.62 (m, 12H, Ar-H), 6.25 (s, 1H, H-3), 4.85 (s, 2H, OCH₂), 3.56 (s, 2H, CH₂). MS (EI, *m/z* (%)): 429 (M⁺, 10). Anal. calcd. for C₂₅H₁₉NO₆: C, 69.92; H, 4.46; N, 3.26. Found: C, 69.84; H, 4.38; N, 3.18%.

4-(2-(2-0xo-4-phenyl-2H-chromen-7-yloxy)acetamido) benzoic acid (**27c**): Color: White. Yield: 95%. M.p.: 316-318 °C. FT-IR (KBr, v, cm⁻¹): 3435 (OH), 3352 (NH), 1698 (C=O). ¹H NMR (300 MHz, DMSO- d_6 , δ , ppm): 12.71 (s, 1H, OH exchangeable with D₂O), 10.45 (s, 1H, NH exchangeable with D₂O), 7.01-7.93 (m, 12H, Ar-H), 6.26 (s, 1H, H-3), 4.91 (s, 2H, OCH₂). MS (EI, m/z (%)): 415 (M⁺, 16). Anal. calcd. for C_{24H17}NO₆: C, 69.39; H, 4.12; N, 3.37. Found: C, 69.30; H, 4.06; N, 3.26%.

2.2.18. Synthesis of 4-[2-(2-oxo-4-phenyl-2H-chromen-7yloxy)acetamido]benzenesulfonic acid (28)

A mixture of 2-(2-oxo-4-phenyl-2*H*-chromen-7-yloxy)acetyl chloride (**26**) (0.01 mol) and 4-aminobenzenesulfonic

acid(0.01 mol) in dry dioxane (10 mL) and a catalytic amount of pyridine was refluxed for1 h, the resulting solid on heating was collected by filtration, washed with ethanol several times and recrystallized from DMF to give compound **28** (Scheme 6). Color: White. Yield: 70%. M.p.: 344-346 °C. FT-IR (KBr, v, cm⁻¹): 3430(OH), 3235(NH), 1700(C=O). ¹H NMR (300 MHz, DMSO- d_6 , δ , ppm): 14.01 (s, 1H, OH), 9.16 (s, 1H, NH), 7.04-7.70 (m, 12H, Ar-H), 6.26 (s, 1H, H-3), 4.92 (s, 2H, OCH₂). MS (EI, *m/z* (%)): 451 (M⁺, 22). Anal. calcd. for C₂₃H₁₇NO₇S: C, 61.19; H, 3.80; N, 3.10. Found: C, 61.08; H, 3.73; N, 3.02%.

2.2.19. General procedure for preparation of 2-[2-(2-oxo-4phenyl-2H-chromen-7-yloxy)acetamido] benzoic acid and Methyl-2-[2-(2-oxo-4-phenyl-2H-chromen-7-yloxy) acetamido] benzoate (29a,b)

A mixture of 2-(2-oxo-4-phenyl-2*H*-chromen-7-yloxy)acetyl chloride (**26**) (0.01 mol) and anthranilic acid or methyl anthranilate (0.01 mol) in dry dioxane (10 mL) and a catalytic amount of pyridine was refluxed for1 h, the resulting solid on heating was collected by filtration, washed with ethanol several times and recrystallized from DMF to give compounds **29a,b** (Scheme 6).

2-[2-(2-0xo-4-phenyl-2H-chromen-7-yloxy)acetamido] benzoicacid (**29a**): Color: White. Yield: 90%. M.p.: 280-282 °C. FT-IR (KBr, ν, cm⁻¹): 3258(NH), 1732, 1686 (C=O). ¹H NMR (300 MHz, DMSO-*d*₆, δ, ppm): 13.90 (s, 1H, OH), 12.12 (s, 1H, NH), 7.07-8.68 (m, 12H, Ar-H), 6.28 (s, 1H, H-3), 4.90 (s, 2H, OCH₂). MS (EI, *m/z* (%)): 415 (M⁺, 10). Anal. calcd. for C₂₄H₁₇NO₆: C, 69.39; H, 4.12; N, 3.37. Found: C, 69.30; H, 4.05; N, 3.27%.

Methyl-2-[2-(2-oxo-4-phenyl-2H-chromen-7-yloxy) acetamido]benzoate (**29b**): Color: White. Yield: 87%. M.p.: 202-204 °C. FT-IR (KBr, v, cm⁻¹): 3244(NH), 1726, 1694 (C=O). ¹H NMR (300 MHz, DMSO- d_6 , δ , ppm): 11.65 (s, 1H, NH), 7.10-8.58 (m, 12H, Ar-H), 6.28 (s, 1H, H-3), 4.90 (s, 2H, OCH₂), 3.95 (s, 3H, OCH₃). Anal. calcd. for C₂₅H₁₉NO₆: C, 69.92; H, 4.46; N, 3.26. Found: C, 69.85; H, 4.38; N, 3.19%.

2.2.20. Synthesis of N,N'-bis [2-(2-oxo-4-phenyl-2H-chromen-7-yloxy) acetyl] hydrazine (30)

A mixture of 2-(2-oxo-4-phenyl-2*H*-chromen-7-yloxy) acetyl chloride (**26**) (0.01 mol) and 2-(2-oxo-4-phenyl-2*H*-chromen-7-yloxy) acetohydrazide (**2**) (0.01 mol) in dry dioxane (10 mL) and a catalytic amount of pyridine was refluxed for 2 h.

The precipitate formed was filtered off hot, washed with ethanol several times, dried and recrystallized from DMF to give compound **30**. Color: White. Yield: 80%. M.p.: 246-248 °C. FT-IR (KBr, v, cm⁻¹): 3220 (NH), 1715(C=0). ¹H NMR (300 MHz, DMSO-*d*₆, δ , ppm): 10.29 (s, 2H, 2NH), 6.99-7.58 (m, 16H, Ar-H), 6.26 (s, 2H, 2H-3), 4.79 (s, 4H, 20CH₂). MS (EI, *m/z* (%)): 588 (M⁺, 27). Anal. calcd. for C₃₄H₂₄N₂O₈: C, 69.38; H, 4.11; N, 4.76. Found: C, 69.28; H, 4.03; N, 4.69%.

2.2.21. General procedure for preparation of N-{4-[N-(substituted) sulfamoyl] phenyl}-2-(2-oxo-4-phenyl-2Hchromen-7-yloxy) acetamide (31a,b).

A mixture of 2-(2-oxo-4-phenyl-2*H*-chromen-7-yloxy) acetyl chloride (**26**) (0.01 mol) and benzenesulfonamide derivatives namely (4-amino-*N*-(5-methylisoxazol-3-yl) benzene sulfonamide and 4-amino-*N*-(2,6-dimethoxy pyrimidin-4-yl)benzenesulfonamide) (0.01 mol) in dry dioxane (10 mL) and a catalytic amount of pyridine was refluxed for1 h. Then the mixture was left to cool. The solid product that formed was recrystallized from dioxane to give compounds **31a,b** (Scheme 6).

N-{4-[*N*-(5-*Methylisoxazol*-3-*yl*)*sulfamoyl*]*phenyl*}-2-(2-*oxo*-4-*phenyl*-2*H*-*chromen*-7-*yloxy*]*acetamide* (**31a**): Color: White. Yield: 64%. M.p.: 248-250 °C. FT-IR (KBr, ν, cm⁻¹): 3352, 3230 (NH), 1706 (C=O). ¹H NMR (300 MHz, DMSO- d_6 , δ, ppm): 10.56 (s, 1H, 1NH), 11.31 (s, 1H, 1NH), 6.99-7.82 (m, 12H, Ar-H), 6.25 (s, 1H, H-3), 6.11 (s, 1H, CH-oxazole), 4.90 (s, 2H, OCH₂), 2.28 (s, 3H, CH₃). Anal. calcd. for C₂₇H₂₁N₃O₇S: C, 61.01; H, 3.98; N, 7.91. Found: C, 60.90; H, 3.91; N, 7.85%.

N-{4-[*N*-(2,6-Dimethoxypyrimidin-4-yl]sulfamoyl]phenyl}-2-(2-oxo-4-phenyl-2H-chromen-7-yloxy)acetamide (**31b**): Color: White. Yield: 64%. M.p.: 240-242 °C. FT-IR (KBr, ν, cm⁻¹): 3336 (NH), 1706 (C=0). ¹H NMR (300 MHz, DMSO-d₆, δ, ppm): 10.56 (s, 1H, 1NH exchangeable with D_2O), 11.48 (s, 1H, 1NH exchangeable with D_2O), 6.99-7.92 (m, 12H, Ar-H), 6.25 (s, 1H, H-3), 5.94 (s, 1H, CH-pyrimidine), 4.90 (s, 2H, OCH₂), 3.86 (s, 3H, OCH₃), 3.75 (s, 3H, OCH₃). Anal. calcd. for $C_{29}H_{24}N_4O_8S$: C, 59.18; H, 4.11; N, 9.52. Found: C, 59.10; H, 4.03; N, 9.44%.

2.2.22. General procedure for preparation of N,N'-bis[2-(2oxo-4-phenyl-2H-chromen-7-yloxy)acetyl]p-phenylene diamine, N,N'-bis[2-(2-oxo-4-phenyl-2H-chromen-7-yloxy) acetyl] benzidine, N,N'-bis[2-(2-oxo-4-phenyl-2H-chromen-7yloxy) acetyl]ethylenediamine and N,N'-bis[2-(2-oxo-4phenyl-2H-chromen-7-yloxy)acetyl]4-aminobenzenesulfonamide (32a-d)

A mixture of 2-(2-oxo-4-phenyl-2*H*-chromen-7-yloxy)acetyl chloride (**26**) (0.02 mol) and bifunctional amines namely (1,4-phenylenediamine, benzidine, ethylenediamine and 4-aminoben-zenesulfonamide) (0.01 mol) in dry dioxane (10 mL) and a catalytic amount of pyridine was refluxed for2 h. The precipitate formed was filtered off hot, washed with ethanol several times, dried and recrystallized from DMF to give compounds **32a-d** (Scheme 7).

N,*N*'-*bis*[2-(2-0xo-4-phenyl-2H-chromen-7-yloxy)acetyl]pphenylene-diamine (**32a**): Color: Grey. Yield: 83%. M.p.: 306-308 °C. FT-IR (KBr, v, cm⁻¹): 3434, 3348 (NH), 1714 (C=O). ¹H NMR (300 MHz, DMSO- d_6 , δ , ppm): 10.13 (s, 2H, 2NH exchangeable with D₂O), 7.01-7.58 (m, 20H, Ar-H), 6.25 (s, 2H, 2H-3), 4.84 (s, 4H, 2OCH₂). Anal. calcd. for C₄₀H₂₈N₂O₈: C, 72.28; H, 4.25; N, 4.21. Found: C, 72.20; H, 4.13; N, 4.12%.

N,*N*'-*bis*[2-(2-0xo-4-phenyl-2H-chromen-7-yloxy)acetyl] benzidine (**32b**): Color: Pale yellow. Yield: 85%. M.p.: 268-270 °C. FT-IR (KBr, ν, cm⁻¹): 3300 (NH), 1714 (C=O). ¹H NMR (300 MHz, DMSO-*d*₆, δ, ppm): 10.28 (s, 2H, 2NH), 6.76-7.74 (m, 24H, Ar-H), 6.26 (s, 2H, 2H-3), 4.89 (s, 4H, 2OCH₂).

MS (EI, m/z (%)): 740 (M⁺, 56). Anal. calcd. for C₄₆H₃₂N₂O₈: C, 74.59; H, 4.35; N, 3.78. Found: C, 74.50; H, 4.27; N, 3.67%.

N,*N*'-*bis*[2-(2-0xo-4-phenyl-2H-chromen-7-yloxy)acetyl] ethylenediamine (**32c**): Color: White. Yield: 80%. M.p.: 280-282 °C. FT-IR (KBr, ν, cm⁻¹): 3380 (NH), 1716, 1668 (C=O). ¹H NMR (300 MHz, DMSO-*d*₆, δ, ppm): 8.26 (s, 2H,2NH), 6.92-7.56 (m, 16H, Ar-H), 6.27 (s, 1H, H-3), 6.22 (s, 1H, H-3), 4.66 (s, 2H, OCH₂), 4.60 (s, 2H, OCH₂), 3.56 (s, 2H, CH₂), 3.39 (s, 2H, CH₂). MS (EI, *m/z* (%)): 616 (M⁺, 8). Anal. calcd. for C₃₆H₂₈N₂O₈: C, 70.12; H, 4.58; N, 4.54. Found: C, 70.06; H, 4.50; N, 4.47%.

N,*N*'-*bis*[2-(2-0xo-4-phenyl-2H-chromen-7-yloxy)acetyl]4aminobenzene-sulfonamide (**32d**): Color: White. Yield: 73%. M.p.: 252-254 °C. FT-IR (KBr, ν, cm⁻¹): 3392, 3336 (NH), 1698(C=O). ¹H NMR (300 MHz, DMSO- d_6 , δ , ppm): 10.48 (s, 2H, 2NH), 7.04-7.79 (m, 20H, Ar-H), 6.26 (s, 2H, 2H-3), 4.91 (s, 4H, 2OCH₂). MS (EI, *m/z* (%)): 728 (M⁺, 27). Anal. calcd. for C₄₀H₂₈N₂O₁₀S: C, 65.93; H, 3.87; N, 3.84. Found: C, 65.87; H, 3.80; N, 3.77%.

2.3. Pharmacology

2.3.1. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity

In the DPPH assay, antioxidants reduce the free radical 2,2diphenyl-1- picrylhydrazyl. In the presence of an antioxidant, the purple color of DPPH• fades and the change of absorbance can be followed spectrophotometrically at 515 nm [27].

Test compounds are dissolved in *N*,*N*-dimethylformamide (DMF) solution to specific concentrations, and each sample was mixed with DPPH in DMF solution, the blank sample contains the same amount of DMF and DPPH. The mixtures were left for

15 min at 25 °C then the absorbance measured at 517 nm using the UV-vis spectrophotometer. Generally, the results are reported as the percent of inhibition, i.e. the amount of antioxidant necessary to decrease the initial DPPHconcentration by 50%. The percentage of DPPH radical scavenger was calculated using the equation (1), [28].

The percentage of DPPH radical scavenger = $[(A_0-A_t)/A_0] \times 100$ (1)

Where, A_0 is the absorbance value of blank sample, at a particular time and A_t is the absorbance value of the tested sample. The IC₅₀ (concentration causing 50% inhibition of DPPH) values of each test compound are determined. Ascorbic acid can be used as positive controls.

2.3.2. Cytotoxicity assay in-vitro

The cytotoxicity of the drugs will be tested against human liver cancer cell line (HepG2) by SRB assay as described by Sumangala *et al.* [29]. Exponentially growing cells will be collected using 0.25% Trypsin-EDTA and plated in 96-well plates at 1000-2000 cells/well. Cells will be exposed to the drugs for 72 h and subsequently fixed with TCA (10%) for 1 h at 4 °C. After several washings, cells will be exposed to 0.4% SRB solution for 10 min in dark place and subsequently washed with 1% glacial acetic acid. After drying overnight, Tris-HCl will be used to dissolve the SRB-stained cells and color intensity will be measured at 492 and 630 nm (for the reference wavelength) with the enzyme linked immune sorbent assay (ELISA) reader. All of the compounds were tested in twice in each of the cell lines.

3. Results and discussion

3.1. Synthesis

Hydrazinolysis of ethyl 2-(2-oxo-4-phenyl-2*H*-chromen-7yloxy)acetate (1)with hydrazine hydrate in ethanol at refluxing temperature,2-(2-oxo-4-phenyl-2*H*-chromen-7-yloxy)aceto hydrazide (2)was obtained in good yield (Scheme 1).

Interaction of acetohydrazide**2** with carbon disulfide in refluxing ethanol in the presence of potassium hydroxide resulted in the formation of the potassium salt of hydrazinecarbodithioate,**3**. Which on treatment with aqueous potassium hydroxide solution under reflux then neutralized with hydrochloric acid afforded a product identified as 7-[(5-thioxo-1,3,4-oxadiazol-2-yl)-methoxy]-4-phenyl-2*H*-chromen-2-one (**4**). Treatment of the potassium salt **3** or **4** with hydrazine hydrate in aqueous ethanol yielded the corresponding 7-[(4-amino-5-thioxo-4,5-dihydro-1*H*-1,2,4-triazol-3-yl)methoxy]-4-phenyl-2*H*-chromen-2-one (**5**).

Interaction of the potassium salt **3** with 4-nitrophenacyl bromide in refluxing DMF furnished the expected product that identified as N-[4-(4-nitrophenv])-2-thioxothiazol-3(2H)-v])-2-(2-oxo-4-phenyl-2*H*-chromen-7-yloxy] acetamide (7),the formation of this compound was shown through the proposed mechanism outline in Scheme 1. Treatment of compound4with 4-nitrophenacyl bromide in refluxing acetone in the presence of anhydrous potassium carbonate afforded a single product which identified as 7-{[5-(2-(4-nitrophenyl)-2-oxoethylthio)-1,3,4-oxadiazol-2-yl]methoxy}-4-phenyl-2*H*-chromen-2-one (8). Compound 10 was obtained by treatment of compound 5 with *p*-nitrophenacyl bromide in refluxing DMF in the presence of triethylamine. The formation of compound 10 was explained by the nucleophilic transformation into acyclic non-isolable intermediate (9) that undergoes intramolecular ring closure to the final product through nucleophilic addition of amino (NH₂) to the carbonyl group followed by elimination of water molecule to furnish the expected product7-{[6-(4-nitrophenyl)-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadia-zin-3-yl]methoxy}-4phenyl-H-chromen-2-one (10). The structure of this compound was further confirmed by its alternative synthesis from the reaction of the 1,3,4-oxadiazole derivative 8 with hydrazine hydrate in refluxing ethanol afforded a product which identical in all aspects (M.p., mixed m.p. and spectral data) with compound 10. (Scheme 1).

Condensation of 7-[(4-amino-5-thioxo-4,5-dihydro-1*H*-1,2, 4-triazol-3-yl)methoxy]-4-phenyl-2*H*-chromen-2-one(5)with 4nitrobenzaldehyde in refluxing ethanol containing a few drops from acetic acid gave the corresponding imine **11**, rather than the expected product triazolothiadiazolyl derivative**12**, (Scheme 2).

Also, the acetohydrazide2 was reacted with some anhydrides such as phthalic anhydride and pyrazine-2,3dicarboxylicanhydride in refluxing glacial acetic acid to give the corresponding imides which formulated as N-(substituted)-2-(2-oxo-4-phenyl-2H-chromen-7-yloxy)acetamide (13a,b),respectively. Treatment of compound 2 with phenylisothio cyanate and phenylisocyanate in refluxing dioxane gave 4phenyl-7-[(4-phenyl-5-thioxo-4,5-dihydro-1H-1,2,4-triazol-3yl)methoxy]-2H-chromen-2-one (15a) and 3-[(2-oxo-4-phenyl-2H-chromen-7-yloxy)methyl]-4-phenyl-1H-1,2,4-triazol-5(4H)one (15b), respectively. The formation of these compounds were assumed to proceed via nucleophilic addition of amino group in compound 2 to isothiocyanate and/or isocyanate to give acyclic non-isolable semicarbazide intermediate 14a,b which underwent intramolecular cyclization by elimination of water molecule to furnish the final products 15a,b, respectively. Acetohydrazide 2 reacted with 4-amino-2mercapto-6-(4-methoxyphenyl) pyrimidine-5-carbonitrile (16) [30] in refluxing DMF in the presence of a few drops from pyridine to give N'-[4-amino-5-cyano-6-(4-methoxyphenyl) pyrimidin-2-yl]-2-(2-oxo-4-phenyl-2*H*-chromen-7-yloxy)aceto hydrazide (**17**), (Scheme 3).

The reaction of hydrazide2 with 4-benzyl-1-chloro phthalazine (18)[31] in boiling dioxane in the presence of pyridine furnished 7-[(6-benzyl-[1,2,4]triazolo[4,5-a] phthalazin-3-yl)methoxy]-4-phenyl-2H-chromen-2-one (20) as the only isolable product. The formation of this compound was explained by the nucleophilic transformation into acyclic nonisolable intermediate **19** which undergoes intramolecular ring closure to the final product via elimination of water molecule, while treatment of hydrazide2 with chloroacetonitrile in dry dioxane-pyridine under reflux yielded a product which identified as 7-[(6-amino-4H-1,3,4-oxadiazin-2-yl)methoxy]-4phenyl-2H-chromen-2-one (22). The formation of this compound was assumed by nucleophilic substitution to form acyclic non-isolable intermediate 21 followed by intramolecular attack at the cyanide group to form the cyclized product 22 (Scheme 4).

On the other hand, when ethyl 2-(2-oxo-4-phenyl-2*H*-chromen-7-yloxy)acetate (**1**) was treated with sodium hydroxide in refluxing ethanol yielded the corresponding acid which identified as 2-(2-oxo-4-phenyl-2*H*-chromen-7-yloxy)acetic acid (**23**) [26].

7-((4,5-Dihydro-1*H*-imidazol-2-yl)methoxy)-4-phenyl-2*H*chromen-2-one (**24**) was prepared by fusion of ethylene diamine with compound **23**, while cyclocondensation of compound **23** with (1,2-phenylenediamine, 2-aminophenol and 2-aminothiophenol) under fusion conditions yielded products which identified as 7-[(substituted)methoxy]-4-phenyl-2*H*chromen-2-one (**25a-c**). Treatment of compound **23** with thionyl chloride gave the corresponding acid chloride as 2-(2oxo-4-phenyl-2*H*-chromen-7-yloxy) acetyl chloride (**26**) (Scheme 5).

The acid chloride 26 was allowed to react with different aromatic amines in dry dioxane containing a few drops of pyridine under reflux afforded products which identified as: N-(4-acetylphenyl)-2-(2-oxo-4-phenyl-2H-chromen-7-yloxy) (27a), 2-{4-[2-(2-0x0-4-phenyl-2*H*-chromen-7acetamide yloxy)acetamido]-phenyl}acetic acid (27b) and 4-[2-(2-oxo-4phenyl-2H-chromen-7-yloxy)acetamido]benzoic acid (27c), respectively. Furthermore, whencompound 26 was subjected to the reaction with 4-amino benzenesulfonic acid in refluxing dioxane-pyridine yielded asingle product which identified as: 4-[2-(2-oxo-4-phenyl-2H-chromen-7-yloxy)acetamido] benzenesulfonic acid (28), while compound 26 reacted with anthranilic acid and methyl anthranilate in boiling dioxanepyridineto give the products which were found to be 2-[2-(2oxo-4-phenyl-2H-chromen-7-yloxy)acetamido] benzoic acid (29a) and methyl 2-[2-(2-oxo-4-phenyl-2*H*-chromen-7-yloxy) acetamido]benzoate (29b), respectively. Also, reaction of acid chloride 26 with 2-(2-oxo-4-phenyl-2H-chromen-7-yloxy) acetohydrazide (2) in dry dioxane containing a few drops from pyridine at reflux temperature afforded bis acyl hydrazine derivative 30. The acid chloride 26 was reacted with sulfa drug derivatives under the same reaction conditions to produce N-{4-[N-(substituted)sulfamoyl] phenyl}-2-(2-oxo-4-phenyl-2Hchromen-7-yloxy)acetamide (31a,b) (Scheme 6).

Finally, this investigation was extended to include the reactivity of 2-(2-oxo-4-phenyl-2*H*-chromen-7-yloxy)acetyl chloride (**26**) towards bifunctional isolated amines to furnish the corresponding bis compounds (**32a-d**) (Scheme 7).

3.2. Pharmacology

3.2.1. Antioxidant activity

Antioxidant compounds in food play an important role as a health-protecting factor. Scientific evidence suggests that antioxidants reduce the risk for chronic diseases. The role of antioxidant is to remove free radicals, by donating hydrogen to free radicals in its reduction to produce non-reactive species. Many synthetic antioxidant compounds have shown toxic and/or mutagenic effects; therefore attention has been paid to naturally occurring antioxidants. Test compounds were screened for *in vitro* antioxidant activity using DPPH.

The effect of the different synthetic compounds on DPPH radical scavenging was compared to ascorbic acid using as positive control and appreciated by the determination of the IC_{50} values. The results are listed in Table 1.

DPPH test is a direct and reliable method for determining radical scavenging action. The DPPH radical contains an odd electron, which is responsible for the absorbance at 515-517 nm and also for a visible deep purple color. When DPPH accepts an electron donated by an antioxidant compound, the DPPH is decolorized, which can be quantitatively measured from the changes in absorbance.

The ratio of antioxidant/DPPH required to decrease the concentration of DPPH to 50% of its initial value, denoted as IC_{50} or Efficient Concentration (EC₅₀), is an indicator of antiradical activity [32]. It is clear from the tabulated results that compound **10**showed the best antioxidant activity against DPPH intested compounds, while compounds **29b**, **31a** and **32a** showed no activity. In concentration 1000 µg/mL, we noted that derivative **10** has most potent scavenging behavior among test compounds and also more potent than ascorbic acid. Similarly, **28** and **32b** have scavenging activity more than ascorbic acid (Figure 1). However, compound **4** have scavenging activity similar to ascorbic acid.

Figure 1. Effect of compounds 4, 10, 28 and 32b toward 2,2-diphenyl-1picrylhydrazyl (DPPH).

3.2.2. Cytotoxicity assay in vitro

The results expressed as IC_{50} (inhibitory concentration of 50%) were the averages of two determinations and were calculated by using igmoidal concentration-response curve fitting models (Sigma Plot software). The results are listed in Table 2.

This study revealed that 7-{[6-(4-nitrophenyl)-7*H*-[1,2,4]tria-zolo[3,4-b][1,3,4]thiadiazin-3-yl]methoxy}-4-phenyl-*H*-chromen-2-one (**10**) derivative is the most potent (IC₅₀ (μ g/mL) = 9.067), while derivatives **28** and **32b** are similar (IC₅₀ (μ g/mL) = 18.56).

4. Conclusions

Our interest in synthesis of heterocyclic compounds is to focus on their biological activity as a part of our program, which aimed at the development of new and more potent antioxidant and anticancer agents. Thus, in this paper, we revealed the synthesis of some coumarin derivatives and biological evaluation of some novel compounds.

Entry	Compound	Concentration	% Inhibition	IC ₅₀
1	4	250	50.40	263
		500	62.78	
		750	66.21	
2	7	1000	83.10	(110
2	/	250	31.17	6118
		750	36.56	
		1000	39.33	
3	10	250	55.72	213
		500	86.60	
		750	89.15	
4	13h	250	19.58	1473
	150	500	24.61	1475
		750	35.30	
		1000	43.18	
5	15b	250	26.02	1433
		500	36.99	
		/50	42.19	
6	24	250	45.88	123
0		500	38.60	
		750	37.80	
		1000	36.56	
7	25a	250	37.44	114
		500 750	28.84	
		1000	19.30	
8	25c	250	52.66	317
		500	44.65	
		750	38.02	
0	276	1000	31.54	F200
9	270	250	37.30	5360
		750	39.62	
		1000	44.21	
10	27c	250	39.40	683792
		500	39.55	
		750	40.13	
11	28	250	41.51	397
	20	500	47.85	577
		750	63.66	
		1000	88.71	
12	29b	250	39.04	Inactive
		500 750	38.82	
		1000	37.73	
13	31a	250	40.79	Inactive
		500	40.93	
		750	41.88	
1.4	211	1000	42.61	11(()
14	310	250	39.91	11663
		750	41.81	
		1000	43.99	
15	32a	250	39.48	Inactive
		500	39.11	
		750	37.58	
16	2.216	1000	36.13	244
	320	250	40.28	344
		750	78.88	
		1000	88.71	
17 Std	32d	250	32.77	2590
		500	36.57	
		750	41.35	
	Ascorbic	250	42.33	91.45
Std.	acid	500	75.89	91.45
		750	78.22	
		1000	0210	

The structures of the newly compounds were elucidated on the basis of IR, ¹H NMR, ¹³C NMR and MS spectral data. A series of novel coumarin derivatives were prepared. The antioxidant and anticancer activity of some compounds were evaluated. 7-{[6-(4-Nitrophenyl)-7*H*-[1,2,4]tria-zolo[3,4-b][1,3,4]thiadiazin-3-yl] methoxy}-4-phenyl-*H*-chromen-2-one **(10)** has the highest antioxidant and anticancer activity in screened compounds.

Table 2. Cytotoxicity assay in vitro for some synthesized compounds.				
Entry	Compounds	IC ₅₀ (μg/mL)		
1	4	14.48		
2	10	9.067		
3	28	18.56		
4	32b	18.56		

Acknowledgements

This study was supported by the Chemistry Department, Faculty of Science, Al-Azhar University. We are deeply thankful to Micro Analytical Center for making the IR, ¹H NMR, ¹³C NMR and MS samples.

References

- [1]. Chakraborty, D. P.; Chatterji, D. J. Org. Chem. 1969, 34(12), 3784-3786.
- [2]. Finnegan, R. A.; Morris, M. P.; Djerassi, C. J. Org. Chem. 1961, 26(4), 1180-1184.
- [3]. Al-Amiery, A. A.; Ahmed, Y. M.; Abdul Amir, H. K.; Abu Bakar, M. Molecules 2011, 16, 6833-6843.
- [4]. Holho, D.; Boschetti, E.; Lipha, Fr. Pat. No. 1, 310, 535; 1963.
- [5]. Meguro, K.; Tawada, H.; Jpn. *Pat. No.* 90129, 240; 1991.
 [6]. Anderson, D. M.; Shelley, S.; Crick, N.; Buraglio, M. *J. Clin. Pharmacol.* 2002, 42, 1358-1365.
- [7]. Tassies, D.; Freire, C.; Puoan, J.; Maragall, S.; Monteagudo, J. Haematologica 2002, 87, 1185-1191.
- [8]. Vittorio, F.; Ronsisvalle, G.; Marrazzo, A.; Blandini, G. Farmaco 1995, 50, 265-272.
- [9] Nayyar, V.; Monga, A.; Malde, E.; Coutinho, R. Bioorg. Med. Chem. 2007, 15, 626-640.
- [10]. Sztanke, K.; Pasterhak, K.; Rzymowska, J.; Sztanke, M.; Kandefer-Szerszen, M. Eur. J. Med. Chem. 2007, 43, 404-419.
- [11]. Radhwan, M. A. A.; Ragab, E. A.; Sabry, N. M.; El-Shenawy, S. M. Bioorg. Med. Chem. 2007, 15, 3832-3841.
- [12]. Gemma, S.; Kukreja, G.; Fattorusso, C.; Persico, M.; Romano, M. P.; Altarelli, M.; Savini, L.; Campiani, G.; Fattorusso, E.; Basilico, N.; Taramelli, D.; Yardley, V.; Butini, S. *Bioorg. Med. Chem. Lett.* **2006**, *16*, 5384-5388.
- [13]. Al-Mawsawi, L. Q.; Dayam, R.; Taheri, L.; Witvrouw, M.; Debyser, Z.; Neamati, N. *Bioorg. Med. Chem. Lett.* **2007**, *17*, 6472-6475.
- [14]. Hansch, C.; Fujita, T. J. Am. Chem. Soc. 1964, 86, 1616-1626.
- [15]. Kamal, M. D.; Ahmad, M. F.; Hatem, A. A. Heteroatom. Chem. 2005, 16, 621-627.
- [16]. Abdel-Al, E. H.; Al-Ashamawi, M. I.; Abd El-Fattah, B. Arch. Pharm. 1983, 38, 833-838.
- [17]. Gupta, A.K.S.; Garg, M.; Chandra, U. J. Indian Chem. Soc. 1979, 56, 1230-1232.
- [18]. Mansour, A. K.; Eid, M. M.; Khalil, N. S. A. M. Molecules 2003, 8, 744-755.
- [19]. Walser, A.; Flynn, T.; Mason, C. J. Heterocycl. Chem. 1991, 28, 1121-1125.
- [20]. Reiter, J.; Pongo, L.; Kovesdi, I.; Pallagi, I. *J. Heterocycl. Chem.* 1995, *32*, 407-417.
 [21]. Anderson, D. K.; Deuwer, D. L.; Sirkorski, J. A. *J. Heterocycl. Chem.*
- 1995, 32, 893-898. [22]. Collin, X.; Sauleau, A.; Coulon, J. Bioorg. Med. Chem. Lett. 2003, 13,
- [22]. Goswami, B. N.; Kataky, J. C. S.; Baruah, J. N. J. Indian Chem. Soc. 1987,
- 64, 422-424. [24]. Hirota, T.; Sasaki, K.; Yamamoto, H.; Nakayama, T. J. Heterocycl. Chem.
- **1991**, *28*, 257-261. [25]. Al-Soud, Y. A.; Al-Masoudi, N. A.; Ferwanah, A. E. S. *Bioorg. Med. Chem.*
- **2003**, *11*, 1701-1708. [26]. Garazd, M. M.; Garazd, Ya. L.; Smirnov, M. N.; Khilya, V. P. *Chem. Nat.*
- Compd. 1999, 35, 415-419.
 [27]. Schlesier, K.; Harwat, M.; Böhm, V.; Bitsch, R. Free Radic. Res. 2002, 36, 177-187.
- [28]. Kadhun, A. H.; Al-Amiery, A. A.; Musa, A. Y.; Mohamad, A. B. Int. J. Mol. Sci.2011, 12, 5747-5761.
- [29]. Sumangala, V.; Boja, P.; Chidananda, N.; Arulmoli, T.; Shalini, S. Eur. J. Med. Chem. 2012, 54, 59-64.
- [30]. El-Agrody, A. M.; Ali, F. M.; Eid, F. A.; El-Nassag, M. A.; El-Sherbeny, A. G.; Bedair, A. H. *Phosphorous Sulfur* **2006**, *18*, 839-864.

- [31]. Abd El-Wahab, A. H. F.; Mohamed, H. M.; El-Agrody, A. M.; El-Nassag, M. A.; Bedair, A. H. *Eur. J. Chem.* **2013**, *4*, 10-19.
- [32]. Brand-Williams, W.; Cuvelier, M. E.; Berset, C. Lebensm. Wiss. Technol. 1995, 28, 25-30.