European Journal of Chemistry 2015, 6(2), 225-236. doi:10.5155/eurjchem.6.2.225-236.1246

Activation parameter changes as a mechanistic tool in SN2 reactions in solution


Vladislav Mikhailovich Vlasov (1,*)

(1) Nikolay Nikolaevich Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russian Federation
(*) Corresponding Author

Received: 21 Jan 2015, Accepted: 21 Feb 2015, Published: 30 Jun 2015

Abstract


Recent applications of activation parameters variation approach to the elucidation of SN2 reaction mechanisms have led to further clarifications of structures of transition states involved in the concerted reaction pathway. SN2 reactions in solution are reviewed with special emphasis of activation parameter variation ΔX (X = H, S and G) with substituents in the nucleophile, leaving and nonleaving groups applying linear free energy relationships in order to evaluate the resultant δΔXreaction constants. The use of internal enthalpy reaction constants δΔHint as a mechanistic tool is stressed when the structure of transition state in SN2 reaction is changed. Variations of the activation parameters in SN2 reactions and their mechanisms were analyzed.


Keywords


Transition state; Substituent effects; Charge development; Reaction mechanisms; Activation parameters; SN2 reactions in solution

Full Text:

PDF /    /


DOI: 10.5155/eurjchem.6.2.225-236.1246

Article Metrics


This Abstract was viewed 799 times | PDF Article downloaded 250 times

Citations

/


References

[1]. Ingold, C. K. Structure and Mechanism in Organic Chemistry. Cornell University Press, Ithaca, New York, 1953.

[2]. Carey, F. A.; Sundbery, R. J. Adv. Org. Chem. A: Structure and Mechanisms, 5th Ed. Springer, New York, 2007.

[3]. Williams, A. Concerted Organic and Bio-organic Mechanisms. CRC Press, Boca Baton, 2000.

[4]. Shaik, S. S.; Schlegel, H. B.; Wolfe, S. Theoretical Aspects of Physical Organic Chemistry, the SN2 Mechanism. Wiley, New York, 1992.

[5]. Pross, A. Theoretical and Physical Principles of Organic Reactivity. Wiley, New York, 1995.

[6]. Anslyn, E. V.; Dougherty, D. A. Modern Physical Organic Chemistry. University Science Books, Sausalito, CA, 2006.

[7]. Reichardt, C. Solvents and Solvent Effects in Organic Chemistry. 4th Ed. VCH, Weinheim, 2003.

[8]. Lee, I. Chem. Soc. Rev. 1990, 19, 317-333.
http://dx.doi.org/10.1039/cs9901900317

[9]. Uggerud, E. J. Phys. Org. Chem. 2006, 19, 461-466.
http://dx.doi.org/10.1002/poc.1061

[10]. Lee, I.; Sung, D. D. Anilines as Nucleophiles. In The Chemistry of anilines. Rappoport, Z., Ed. Wiley, Chichester, 2007, pp. 537-581, Chapter 10.
http://dx.doi.org/10.1002/9780470871737.ch10

[11]. Ji, P.; Atherton, J.; Page, M. I. Org. Biomol. Chem. 2012, 10, 5732-5739.
http://dx.doi.org/10.1039/c2ob25064k

[12]. Lee, I. Chem. Soc. Rev. 1995, 24, 223-229.
http://dx.doi.org/10.1039/cs9952400223

[13]. Westaway, K. C. Adv. Phys. Org. Chem. 2006, 41, 217-270.

[14]. Hengge, A. C. Acc. Chem. Res. 2002, 35, 105-112.
http://dx.doi.org/10.1021/ar000143q

[15]. Simmon, E. M.; Hartwig, J. F. Angew. Chem. Int. Ed. 2012, 51, 3066-3072.
http://dx.doi.org/10.1002/anie.201107334

[16]. Leffler, J. F.; Grunwald, E. Rates and Equilibria of Organic Reactions. Wiley, New York, London, 1963.

[17]. Hammett, L. P. Physical Organic Chemistry, Reaction Rates, Equilibria and Mechanisms. McGraw Hill, New York, 1970.

[18]. Johnson, C. D. The Hammett Equation. Cambridge University Press, Cambridge, 1973.

[19]. Williams, A. Free Energy Relationships in Organic and Bio-organic Chemistry. The Royal Society of Chemistry, Cambridge, 2003.

[20]. Ammal, S. C.; Mishima, M.; Yamataka, H. J. Org. Chem. 2003, 68, 7772-7778.
http://dx.doi.org/10.1021/jo034971j

[21]. Itoh, S.; Yamataka, H. Chem. Eur. J. 2011, 17, 1230-1237.
http://dx.doi.org/10.1002/chem.201001926

[22]. Itoh, S.; Yoshimura, N.; Sato, M.; Yamataka, H. J. Org. Chem. 2011, 76, 8294-8299.
http://dx.doi.org/10.1021/jo201485y

[23]. Vlasov, V. M. Russ. Chem. Rev. 2006, 75, 765-796.
http://dx.doi.org/10.1070/RC2006v075n09ABEH003614

[24]. Vlasov, V. M. J. Phys. Org. Chem. 2010, 23, 468-476.

[25]. Vlasov, V. M. New J. Chem. 2010, 34, 1408-1416.
http://dx.doi.org/10.1039/c0nj00058b

[26]. Vlasov, V. M. New J. Chem. 2010, 34, 2962-2970.
http://dx.doi.org/10.1039/c0nj00419g

[27]. Vlasov, V. M. J. Phys. Org. Chem. 2012, 25, 296-308.
http://dx.doi.org/10.1002/poc.1912

[28]. Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165- 195.
http://dx.doi.org/10.1021/cr00002a004

[29]. Nummert, V.; Piirsalu, M. J. Chem. Soc. Perkin Trans. 2 2000, 583-593.
http://dx.doi.org/10.1039/a904741g

[30]. Tsuno, Y.; Fujio, M. Chem. Soc. Rev. 1996, 25, 129-139.
http://dx.doi.org/10.1039/cs9962500129

[31]. Krygowski, T. M.; Stepien, B. T. hem. Rev. 2005, 105, 3482-3512.

[32]. Palusiak, M.; Krygowski, T. M. New J. Chem. 2009, 33, 1753-1759.
http://dx.doi.org/10.1039/b905909a

[33]. Exner, O.; Bohm, S. Curr. Org. Chem. 2006, 10, 763-778.
http://dx.doi.org/10.2174/138527206776818892

[34]. Hepler, L. G. J. Am. Chem. Soc. 1963, 85, 3089-3092.
http://dx.doi.org/10.1021/ja00903a008

[35]. Hepler, L. G. Can. J. Chem. 1971, 49, 2803-2807.
http://dx.doi.org/10.1139/v71-466

[36]. Ruff, F. J. Mol. Struct. (Theochem) 2002, 617, 31-45.
http://dx.doi.org/10.1016/S0166-1280(02)00398-6

[37]. Ruff, F. J. Mol. Struct. (Theochem) 2003, 625, 111-120.
http://dx.doi.org/10.1016/S0166-1280(03)00008-3

[38]. Ruff, F. Internet Electron. J. Des. 2004, 3, 474-498.

[39]. Ruff, F.; Farkas, O. J. Org. Chem. 2006, 71, 3409-3416.
http://dx.doi.org/10.1021/jo052101r

[40]. Ruff, F.; Farkas, O.; Kucsman, A. Eur. J. Org. Chem. 2006, 5570.
http://dx.doi.org/10.1002/ejoc.200600543

[41]. Fabian, A.; Ruff, F.; Farkas, O. J. Phys. Org. Chem. 2008, 21, 988-996.
http://dx.doi.org/10.1002/poc.1412

[42]. Exner, O. Prog. Phys. Org. Chem. 1973, 10, 411-482.

[43]. Liu, L.; Guo, Q. X. Chem. Rev. 2001, 101, 673-695.
http://dx.doi.org/10.1021/cr990416z

[44]. Robertson, R. E.; Stein, A.; Sugamori, S. E. Can. J. Chem. 1966, 44, 685-688.
http://dx.doi.org/10.1139/v66-095

[45]. Robertson, R. E. Can. J. Chem. 1953, 31, 589-601.
http://dx.doi.org/10.1139/v53-082

[46]. Hoffman, R. V.; Shankweiler, J. M. J. Am. Chem. Soc. 1986, 108, 5536-5539.
http://dx.doi.org/10.1021/ja00278a028

[47]. Sentega, R. V.; Vizgert, R. V.; Mikhalevich, M. K. Org. React. 1970, 7, 512-537.

[48]. Vizgert, R. V.; Sentega, R. V. Org. React. 1969, 6, 197-213.

[49]. Sentega, R. V.; Mikhalevich, M. K.; Vizgert, R. V. Org. React. 1971, 8, 153-168.

[50]. Arnett, E. M.; Reich, R. J. Am. Chem. Soc. 1980, 102, 5892-5902.
http://dx.doi.org/10.1021/ja00538a031

[51]. Ji, P.; Atherton, J.; Page, M. J. J. Chem. Soc. Faraday Discuss. 2010, 145, 15-25.
http://dx.doi.org/10.1039/B912261N

[52]. Ji, P.; Atherton, J.; Page, M. J. J. Org. Chem. 2011, 76, 1425-1436.
http://dx.doi.org/10.1021/jo102173k

[53]. Svetkin, Y. V.; Mirza, M. M. Org. React. 1971, 8, 875-880.

[54]. Lee, I.; Koh, H. J.; Lee, B. C.; Park, B. S. Bull. Korean Chem. Soc. 1994, 15, 576-581.

[55]. Haberfield, P.; Nudelman, A.; Bloom, A.; Romm, R.; Ginsberg, H. J. Org. Chem. 1971, 36, 1792-1795.
http://dx.doi.org/10.1021/jo00812a016

[56]. Yau, H. M.; Howe, A. G.; Hook, J. M.; Croft, A. K.; Harper, J. B. Org. Biomol. Chem. 2009, 7, 3572-3575.
http://dx.doi.org/10.1039/b909171h

[57]. Gohar, G. A. N.; Khattab, S. N.; Farahat, O. O.; Khalil, H. H. J. Phys. Org. Chem. 2012, 25, 343-350.
http://dx.doi.org/10.1002/poc.1921

[58]. Westaway, K. C.; Waszczylo, Z. Can. J. Chem. 1982, 60, 2500-2520.
http://dx.doi.org/10.1139/v82-360

[59]. Stein, A. R.; Tencer, M.; Moffatt, E. A.; Drawe, R.; Sweet, J. J. Org. Chem. 1980, 45, 3539-3543.
http://dx.doi.org/10.1021/jo01305a045

[60]. Evans, D. P.; Watson, H. B.; Williams, R. J. Chem. Soc. 1939, 1345-1348.
http://dx.doi.org/10.1039/jr9390001345

[61]. Matsui, T.; Tokura, N. Bull. Chem. Soc. Jpn. 1970, 43, 1751-1762.
http://dx.doi.org/10.1246/bcsj.43.1751

[62]. Rao, T. J.; Punnaiah, G.; Sundaram, E. V. Proc. Indian Acad. Sci. (Chem. Sci.) 1986, 97, 55-61.

[63]. Saksena, S. P.; Rose, A. N. Indian J. Chem. 1975, 13, 421-422.

[64]. Vlasov, V. M. Monatsh. Chem. 2013, 144, 41-48.
http://dx.doi.org/10.1007/s00706-012-0765-x

[65]. Soni, A. N.; Pathak, S. B.; Patel, S. R. J. Prakt. Chem. 1972, 314, 780-784.
http://dx.doi.org/10.1002/prac.19723140510

[66]. Ravi, R.; Sanjeev, R.; Jagannadham, V. Int. J. Chem. Kinet. 2013, 45, 803-810.
http://dx.doi.org/10.1002/kin.20818

[67]. Khamis, G.; Stoeva, S.; Aleksiev, D. J. Phys. Org. Chem. 2010, 23, 461-467.

[68]. Perez-Benito, J. F. Monatsh. Chem. 2013, 144, 49-58.
http://dx.doi.org/10.1007/s00706-012-0842-1

[69]. Cooper, A.; Johnson, C. M.; Lakey, J. H.; Nollmann, M. Biophys. Chem. 2001, 93, 215-220.
http://dx.doi.org/10.1016/S0301-4622(01)00222-8

[70]. Cornish-Bowden, A. J. Biosci. 2002, 27, 121-126.
http://dx.doi.org/10.1007/BF02703768

[71]. Starikov, E. B.; Norden, B. J. Phys. Chem. B 2007, 111, 14431-14435.
http://dx.doi.org/10.1021/jp075784i

[72]. Lee, I.; Choi, Y. H.; Rhyu, K. W.; Shim, C. S. J. Chem. Soc. Perkin Trans. 2 1989, 1881-1886.
http://dx.doi.org/10.1039/p29890001881

[73]. Lee, I.; Rhyu, K. W.; Lee, H. W.; Shim, C. S. J. Phys. Org. Chem. 1990, 3, 751-756.
http://dx.doi.org/10.1002/poc.610031109

[74]. Oh, H. K.; Koh, H. J.; Lee, I. J. Chem. Soc. Perkin Trans. 2 1991, 1981-1984.
http://dx.doi.org/10.1039/p29910001981

[75]. Oh, H. K.; Cho, J. H.; Jin, M. J.; Lee, I. J. Phys. Org. Chem. 1994, 7, 629-633.
http://dx.doi.org/10.1002/poc.610071107

[76]. Ando, T.; Tanaka, H.; Yamataka, H. J. Am. Chem. Soc. 1984, 106, 2084-2088.
http://dx.doi.org/10.1021/ja00319a030

[77]. Lee, I.; Sohn, S. C.; Kang, C. H.; Oh, Y. J. J. Chem. Soc. Perkin Trans. 2 1986, 1631-1634.
http://dx.doi.org/10.1039/p29860001631

[78]. Yoh, S. D. J. Korean Chem. Soc. 1975, 19, 116-122.

[79]. Lee, I.; Huh, C.; Koh, H. J.; Lee, H. W. Bull. Korean Chem. Soc. 1988, 9, 376-378.

[80]. Ballistreri, F. P.; Maccarone, E.; Mamo, A. J. Org. Chem. 1976, 41, 3364-3367.
http://dx.doi.org/10.1021/jo00883a005

[81]. Lee, I.; Sohn, S. C.; Song, H. B.; Lee, D. C. J. Korean Chem. Soc. 1984, 28, 155-162.

[82]. Lee, I.; Park, Y. K.; Huh, C.; Lee, H. W. J. Phys. Org. Chem. 1994, 7, 555-560.
http://dx.doi.org/10.1002/poc.610071006

[83]. Kim, S. H.; Yoh, S.-D.; Lim, C.; Mishima, M.; Fujio, M.; Tsuno, Y. J. Phys. Org. Chem. 1998, 11, 254-260.
http://dx.doi.org/10.1002/(SICI)1099-1395(199804)11:4<254::AID-POC2>3.0.CO;2-6

[84]. Lim, C.; Kim, S.-H.; Yoh, S.-D.; Fujio, M.; Tsuno, Y. Tetrahedron Lett. 1997, 38, 3243-3246.
http://dx.doi.org/10.1016/S0040-4039(97)00574-1

[85]. Lee, I.; Kim, I. C. Bull. Korean Chem. Soc. 1988, 9, 133-135.

[86]. Davies, W. C.; Addis, H. W. J. Chem. Soc. 1937, 1622-1627.
http://dx.doi.org/10.1039/jr9370001622

[87]. Li, J.-N.; Fu, Y.; Liu, L.; Guo, Q.-X. Tetrahedron 2006, 62, 11801-11813.
http://dx.doi.org/10.1016/j.tet.2006.09.018

[88]. Kaljurand, I.; Kutt, A.; Soovali, L.; Rodima, T.; Maemets, V.; Leito, I.; Koppel, I. A. J. Org. Chem. 2005, 70, 1019-1028.
http://dx.doi.org/10.1021/jo048252w

[89]. Tanner, E. E. L.; Yau, H. M.; Hawker, R. R.; Croft, A. K.; Harper, J. B. Org. Biomol. Chem. 2013, 11, 6170-6175.
http://dx.doi.org/10.1039/c3ob41038b

[90]. Lee, I.; Kim, H. Y.; Kang, H. K.; Lee, H. W. J. Org. Chem. 1988, 53, 2678-2683.
http://dx.doi.org/10.1021/jo00247a004

[91]. Lee, I.; Lee, H. W. Collect. Czech. Chem. Commun. 1999, 64, 1529-1550.
http://dx.doi.org/10.1135/cccc19991529

[92]. Oh, Y. K.; Yang, J. H.; Lee, H. W.; Lee, I. New J. Chem, 2000, 24, 213-219.
http://dx.doi.org/10.1039/a909541a

[93]. Bernasconi, C. F.; Michoff, M. E. Z.; de Rossi, R. H.; Granados, A. M. J. Org. Chem. 2007, 72, 1285-1293.
http://dx.doi.org/10.1021/jo062138r

[94]. Bernasconi, C. F.; Perez-Lorenzo, M.; Codding, S. J. J. Org. Chem. 2007, 72, 9456-9463.
http://dx.doi.org/10.1021/jo701422z

[95]. Kondo, Y.; Urade, M.; Yamanishi, Y.; Chen, X. J. Chem. Soc. Perkin Trans. 2 2002, 1449-1454.
http://dx.doi.org/10.1039/b203032m

[96]. Edwards, D. R.; Montoya-Peleaz, P.; Crudden, C. M. Org. Lett. 2007, 9, 5481-5484.
http://dx.doi.org/10.1021/ol702300d

[97]. Lee, I.; Lee, B. S.; Koh, H. J.; Chang, B. D. Bull. Korean Chem. Soc. 1995, 16, 277-281.

[98]. Hallett, J. P.; Liotta, C. L.; Ranieri, G.; Welton, T. J. Org. Chem. 2009, 74, 1864-1868.
http://dx.doi.org/10.1021/jo802121d

[99]. Lee, I.; Shim, C. S.; Chung, S, Y.; Kim, H. Y.; Lee, H. W. J. Chem. Soc. Perkin Trans. 2 1988, 1919-1923.
http://dx.doi.org/10.1039/p29880001919

[100]. Kim, W. K.; Ryu, W. S.; Han, I. S.; Kim, C. K.; Lee, I. J. Phys. Org. Chem. 1998, 11, 115-124.
http://dx.doi.org/10.1002/(SICI)1099-1395(199802)11:2<115::AID-POC985>3.0.CO;2-B

[101]. Cowie, G. R.; Fitches, H. J. M.; Kohnstam, G. J. Chem. Soc. 1963, 1585-1593.

[102]. Fox, J. R.; Kohnstam, G. J. Chem. Soc. 1963, 1593-1598.

[103]. Phan, T. B.; Nolte, C.; Kobayashi, S.; Ofial, A. R.; Mayr, H. J. Am. Chem. Soc. 2009, 131, 11392- 11401.

[104]. Bel'skii, V. Е. Russ. Chem. Bull. 2000, 1968-1973.

[105]. Jiang, L.; Orimoto, Y.; Aoki, Y. J. Phys. Org. Chem. 2013, 26, 885-891.
http://dx.doi.org/10.1002/poc.3186

[106]. Rablen, P. R.; McLarney, B. D.; Karlow, B. J.; Schneider, J. E. J. Org. Chem. 2014, 79, 867-879.

[107]. Nettey, S.; Swift, C. A.; Joviliano, R.; Noin, D. O.; Gronert, S. J. Am. Chem. Soc. 2012, 134, 9303-9310.

[108]. Wu, C. H.; Galabov, B.; Wu, J. I. C.; Ilieva, S. I.; Schleyer, P. von R.; Allen, W. D. J. Am. Chem. Soc. 2014, 136, 3118-3126.

[109]. Li, Q. G.; Xue, Y. J. Phys. Chem. A 2009, 113, 10359-10366.

[110]. Wang, T.; Yin, H.; Wang, D.; Valiev, M. J. Phys. Chem. A 2012, 116, 2371-2376.
http://dx.doi.org/10.1021/jp3005986

[111]. Jaworski, J. S. J. Phys. Org. Chem. 2002, 15, 319-323.
http://dx.doi.org/10.1002/poc.490

[112]. Doi, K.; Togano, E.; Xantheas, S. S.; Nakanishi, R.; Nagata, T.; Ebata, T.; Inokuchi, Y. Angew. Chem. Int. Ed. 2013, 52, 4380-4383.
http://dx.doi.org/10.1002/anie.201207697

[113]. Chen, X.; Brauman, J. I. J. Am. Chem. Soc. 2008, 130, 15038-15046.
http://dx.doi.org/10.1021/ja802814a

[114]. Westaway, K. C.; Gao, Y.; Fang, Y. R. J. Org. Chem. 2003, 68, 3084-3089.
http://dx.doi.org/10.1021/jo026879d

[115]. Streitwieser, A.; Jayasree, E. G.; Leung, S. S.-H.; Choy, G. S. C. J. Org. Chem. 2005, 70, 8486-8491.
http://dx.doi.org/10.1021/jo051277q

[116]. Cayzergues, P.; Georgoulis, C.; Mathieu, G. J. Chim. Phys. 1987, 84, 63-70.

[117]. Chen, X.; Regan, C. K.; Craig, S. L.; Krenske, E. H.; Houk, K. N.; Jorgensen, W. L.; Brauman, J. I. J. Am. Chem. Soc. 2009, 131, 16162-161710.
http://dx.doi.org/10.1021/ja9053459

[118]. Mohamed, A. A.; Jensen, F. J. Phys. Chem. A 2001, 105, 3259-3268.
http://dx.doi.org/10.1021/jp002802m

[119]. Laerdahl, J. K.; Uggerud, E. Int. J. Mass Spectrom. 2002, 214, 277-314.
http://dx.doi.org/10.1016/S1387-3806(01)00575-9

[120]. Humeres, E.; Nunes, R. J.; Machado, V. G.; Gasques, M. D. G.; Machado, C. J. Org. Chem. 2001, 66, 1163-1170.
http://dx.doi.org/10.1021/jo0012501

[121]. Melo, A.; Alfaia, A. J. I.; Reis, J. C. R.; Calado, A. R. T. J. Phys. Chem. B 2006, 110, 1877-1888.
http://dx.doi.org/10.1021/jp055660a

[122]. Almerindo, G. I.; Pliego, J. R. Jr. Chem. Phys. Lett. 2006, 423, 459-462.
http://dx.doi.org/10.1016/j.cplett.2006.04.015

[123]. Pliego, J. R. Jr. J. Phys. Chem. B 2009, 113, 505-510.
http://dx.doi.org/10.1021/jp808581t

[124]. Ebrahimi, A.; Habibi, M.; Amirmijani, A. J. Mol. Struct. (Theochem) 2007, 809, 115-124.
http://dx.doi.org/10.1016/j.theochem.2007.01.037

[125]. Im, S.; Jang, S. W.; Kim, H. R.; Oh, Y. H.; Park, S. W.; Lee, S.; Chi, D. Y. J. Phys. Chem. A 2009, 113, 3685-3689.
http://dx.doi.org/10.1021/jp900576x

[126]. Kim, J. Y.; Kim, D. W.; Song, C. E.; Chi, D. Y.; Lee, S. J. Phys. Org. Chem. 2013, 26, 9-14.
http://dx.doi.org/10.1002/poc.3010

[127]. Bento, A. P.; Bickelhaupt, F. M. J. Org. Chem. 2007, 72, 2201-2207.
http://dx.doi.org/10.1021/jo070076e

[128]. Bento, A. P.; Bickelhaupt, F. M. J. Org. Chem. 2008, 73, 7290-7299.
http://dx.doi.org/10.1021/jo801215z

[129]. Bento, A. P.; Bickelhaupt, F. M. Chem. Asian J. 2008, 3, 1783-1792.
http://dx.doi.org/10.1002/asia.200800065

[130]. Van Bochove, M. A.; Bickelhaupt, F. M. Eur. J. Org. Chem. 2008, 649-654.
http://dx.doi.org/10.1002/ejoc.200700953

[131]. Garver, J. M.; Fang, Y. R.; Eyet, N.; Villano, S. M.; Bierbaum, V. M.; Westaway, K. C. J. Am. Chem. Soc. 2010, 132, 3808-3814.
http://dx.doi.org/10.1021/ja909399u


How to cite


Vlasov, V. Eur. J. Chem. 2015, 6(2), 225-236. doi:10.5155/eurjchem.6.2.225-236.1246
Vlasov, V. Activation parameter changes as a mechanistic tool in SN2 reactions in solution. Eur. J. Chem. 2015, 6(2), 225-236. doi:10.5155/eurjchem.6.2.225-236.1246
Vlasov, V. (2015). Activation parameter changes as a mechanistic tool in SN2 reactions in solution. European Journal of Chemistry, 6(2), 225-236. doi:10.5155/eurjchem.6.2.225-236.1246
Vlasov, Vladislav. "Activation parameter changes as a mechanistic tool in SN2 reactions in solution." European Journal of Chemistry [Online], 6.2 (2015): 225-236. Web. 18 Oct. 2019
Vlasov, Vladislav. "Activation parameter changes as a mechanistic tool in SN2 reactions in solution" European Journal of Chemistry [Online], Volume 6 Number 2 (30 June 2015)

DOI Link: https://doi.org/10.5155/eurjchem.6.2.225-236.1246

Refbacks

  • There are currently no refbacks.




Copyright (c)




© Copyright 2019  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2019 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 4614 Lavista road, Tucker, GA, 30084, USA. Registered in USA.