European Journal of Chemistry 2016, 7(3), 290-297 | doi: https://doi.org/10.5155/eurjchem.7.3.290-297.1438 | Get rights and content






  OPEN ACCESS | PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Silver and zinc oxide nanoparticles as potential weapons for enhancement of antibiotics activity against multi drug resistant microorganisms


Kholoud Mohammed Abou El-Nour (1) , Alaa Mohammed Hassan (2) , Omar Abdulrahman Abdulwahid (3,*)

(1) Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
(2) Department of Botany, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
(3) Department of Botany, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
(*) Corresponding Author

Received: 09 Apr 2016 | Revised: 20 May 2016 | Accepted: 21 May 2016 | Published: 30 Sep 2016 | Issue Date: September 2016

Abstract


Some microorganisms became less sensitive to several ordinary used antibiotics, causing the outbreak of infectious diseases. Therefore, the present study is carried out to investigate the antibacterial properties of silver and zinc oxide nanoparticles. Their physicochemical properties as well as the combined effects of antibiotics previously impregnated with the metal and metal oxide nanoparticles. Silver nanoparticles (AgNPs) were obtained using the chemical reduction method, while zinc oxide nanoparticles (ZnONPs) were synthesized using the precipitation method followed by calcination process. The formed nanoparticles (Nps) were characterized using UV-Visible spectroscopy, Fourier Transforms Infrared Spectroscopy (FT-IR), X-ray diffraction analysis (XRD) and Transmission Electron Microscopy (TEM). The antibacterial effect of AgNPs and ZnONPs was tested against four different genera: Staphylococcus aureus (Gram positive), Shigella boydii (Gram negative), Klebsiella pneumoniae (Gram negative) and Escherichia coli (Gram negative) and showed strong effect against all. Also, the synthesized nanoparticles were evaluated for their role in increasing the antibacterial activity of ten tested antibiotics which cover most antibiotics groups according to their mechanism of action. Enhancement in the antibiotic activities was recognized via increasing inhibition zone diameters (mm).


Keywords


Antibacterial effect; Silver nanoparticles; Precipitation method; Zinc oxide nanoparticles; Antibiotics enhancement; Chemical reduction method

Full Text:

PDF /    /


DOI: 10.5155/eurjchem.7.3.290-297.1438

Links for Article


| | | | | | |

| | | | | | |

| |

Related Articles




Article Metrics

This Abstract was viewed 946 times | PDF Article downloaded 195 times

Funding information


Suez Canal University, Ismailia, 41522, Egypt

References

[1]. Davies, J.; Davies, D. Microbiol. Mol. Biol. R 2010, 74, 417-433.
http://dx.doi.org/10.1128/MMBR.00016-10

[2]. Todar, K. Todar's Online Textbook of Bacteriology, Kenneth Todar, Ph.D. www.textbookofbacteriology.net, 2015.

[3]. Odonkor, S. T.; Addo, K. K. Int. J. Biol. Med. Res. 2011, 2, 1204-1210.

[4]. Bisht, R.; Katiyar, A.; Singh, R.; Mittal, P. Asian J. Pharma. Clinic. Res. 2009, 2, 34-39.

[5]. Shamnas, M.; Arya, P. S.; Deepak, M. G. Pharma. Innov. J. 2013, 2, 122-132.

[6]. Jain, P.; Aggarwal, V. Int. J. Nano. Mat. Sci. 2012, 1, 108-120.

[7]. Rai, R. V.; Bai, J. A. Nanoparticles and Their Potential Application as Antimicrobials, Méndez-Vilas, Spain, 2011.

[8]. Mukherjee, A.; Sadiq, M. I.; Prathna, T. C.; Chandrasekaran, N. Antimicrobial Activity of Aluminium Oxide Nanoparticles for Potential Clinical Applications Méndez-Vilas, Microbiology Book Series #3, Vol. 1, Formatex Research Center, Spain, 2011, pp. 245-251.

[9]. Santos, C. L.; Albuquerque, A. J.; Sampaio, F. C.; Keyson, D. Nanomaterials with Antimicrobial Properties: Applications in Health Sciences, Méndez-Vilas, Microbiology Book Series #4, Vol. 1, Formatex Research Center, Spain, 2013, pp. 143-154.

[10]. Mftah, A.; Alhassan, F. H.; Al-Qubaisi, M. S.; El Zowalaty, M. E.; Webster, T. J.; Sheldin, M.; Rasedee, A.; Taufiq-Yap, Y. H.; Rashid, S. S. Int. J. Nanomed. 2015, 10, 765-774.
http://dx.doi.org/10.2217/nnm.14.221

[11]. El-Kheshen, A. A.; Gad El-Rab, S. F. Der Pharma Chemica 2012, 4, 53-65.

[12]. Joshia, S. C.; Kaushika, U. Res. J. Pharma Biol. Chem. Sci. 2013, 4, 1396-1410.

[13]. Bhattacharya, D.; Samanta S.; Mukherjee, A.; Santra, C. R.; Ghosh, A. N.; Niyogi, S. K.; Karmakar, P. J. Nanosci. Nanotech. 2012, 12, 1-9.
http://dx.doi.org/10.1166/jnn.2012.5111

[14]. Vasylchenko, O. A.; Sologub, V. V.; Vasylchenko, K. K. Biotechn. Acta 2013, 6, 33-42.
http://dx.doi.org/10.15407/biotech6.02.034

[15]. Balasubramanian, A.; Singh, A. J. Int. J. Curr. Res. Chem. Pharma. Sci. 2015, 2, 1-3.

[16]. Anitha, M.; Jayakumar, K.; Kumar, A. J. Int. J. Biol. Pharma. Alli. Sci. 2014, 3, 228-234.

[17]. Dugal, S.; Chakraborty, S. Int. J. Pharma. Pharma. Sci. 2013, 5, 498-501.

[18]. Ouda, S. M. Res. J. Microbiol. 2014, 9, 34-42.
http://dx.doi.org/10.3923/jm.2014.34.42

[19]. Banu, A.; Rathod, V. Int. J. Biotherap. Disc. 2013, 3, 1-5.

[20]. Bassan, H. S.; Randhawa, J. S.; Suri, N. M. Int. J. Sci. Res. 2013, 2, 163-164.

[21]. Guzman, M. G.; Dille J.; Godet, S. Int. J. Chem. Biomol. Eng. 2009, 2, 104-111.

[22]. Landage, S. M.; Wasif, A. I.; Dhuppe, P. Int. J. Adv. Res. Eng. Appl. Sci. 2014, 3, 14-22.

[23]. Abou El-Nour, K. M.; Eftaiha, A.; Al-Warthan, A.; Ammar, R. A. Arab. J. Chem. 2010, 3, 135-140.
http://dx.doi.org/10.1016/j.arabjc.2010.04.008

[24]. Iravani, S.; Korbekandi, H.; Mirmohammadi, S. V.; Zolfaghari, B. Res. Pharma. Sci. 2014, 9, 385-406.

[25]. Sreeram, K. J.; Nidhin, M.; Nair, B. U. Bull. Mat. Sci. 2008, 33, 937-942.
http://dx.doi.org/10.1007/s12034-008-0149-3

[26]. Henglein, A. J. Phys. Chem. 1993, 97, 5457-5471.
http://dx.doi.org/10.1021/j100123a004

[27]. Sastry, M.; Patil, V.; Sainkar, S. R. J. Phys. Chem. B 1999, 102, 1404-1410.
http://dx.doi.org/10.1021/jp9719873

[28]. Sastry, M.; Mayya, K. S.; Bandyopadhyay, K. Coll. Surf. A Phys. Eng. Asp. 1997, 127, 221-228.
http://dx.doi.org/10.1016/S0927-7757(97)00087-3

[29]. Birla, S. S.; Gaikwad, S. C.; Gade, A. K.; Rai, M. K. The Sci. Worl. J. 2013, 2013, 1-12.

[30]. Faber, J.; Fawcett, T. Acta Crystallog. B 2002, 58, 325-332.
http://dx.doi.org/10.1107/S0108768102003312

[31]. Kon, K.; Rai, M. J. Compa. Clin. Path. Res. 2013, 2, 160-174.

[32]. Prabhu, S.; Poulose, E. K. Int. Nano. Lett. 2012, 2, 32-41.
http://dx.doi.org/10.1186/2228-5326-2-32

[33]. Singh, K.; Panghal, M.; Kadyan, S.; Chaudhary, U.; Yadav, J. P. J. Nanomed. Nanotech. 2014, 5, 192-197.

[34]. Logeswari, P.; Silambarasan, S.; Abraham, J. J. Saudi Chem. Soc. 2015, 19, 311-317.
http://dx.doi.org/10.1016/j.jscs.2012.04.007

[35]. Danilcauk, M.; Lund, A.; Saldo, J.; Yamada, H.; Michalik, J. Spectrochim. Acta A 2006, 63, 189-191.
http://dx.doi.org/10.1016/j.saa.2005.05.002

[36]. Kim, J. S.; Kuk, E.; Yu, K.; Kim, J. H.; Park, S. J.; Lee, H. J.; Kim, S. H.; Park, Y. K.; Park, Y. H.; Hwang, C. Y; Kim, Y. K.; Lee, Y. S.; Jeong, D. H.; Cho, M. H. Nanomedicine Nanotec. Biol. Med. 2007, 3, 95-101.

[37]. Matsumura, Y.; Yoshikata, K.; Kunisaki, S.; Tsuchido, T. App. Env. Microb. 2003, 69, 4278-4281.
http://dx.doi.org/10.1128/AEM.69.7.4278-4281.2003

[38]. Xie, Y.; He, Y.; Irwin, P. L.; Jin, T.; Shi, X. App. Env. Microb. 2011, 77, 2325-2331.
http://dx.doi.org/10.1128/AEM.02149-10

[39]. Brayner, R.; Ferrari-Iliou, R.; Brivois, N.; Djediat, S.; Benedetti, M. F.; Fievet, F. Nano. Lett. 2006, 6, 866-870.
http://dx.doi.org/10.1021/nl052326h

[40]. Zhang, L.; Jiang, Y.; Ding, Y.; Povey, M.; York, D. J. Nanopart. Res. 2007, 9, 479-489.
http://dx.doi.org/10.1007/s11051-006-9150-1

How to cite


El-Nour, K.; Hassan, A.; Abdulwahid, O. Eur. J. Chem. 2016, 7(3), 290-297. doi:10.5155/eurjchem.7.3.290-297.1438
El-Nour, K.; Hassan, A.; Abdulwahid, O. Silver and zinc oxide nanoparticles as potential weapons for enhancement of antibiotics activity against multi drug resistant microorganisms. Eur. J. Chem. 2016, 7(3), 290-297. doi:10.5155/eurjchem.7.3.290-297.1438
El-Nour, K., Hassan, A., & Abdulwahid, O. (2016). Silver and zinc oxide nanoparticles as potential weapons for enhancement of antibiotics activity against multi drug resistant microorganisms. European Journal of Chemistry, 7(3), 290-297. doi:10.5155/eurjchem.7.3.290-297.1438
El-Nour, Kholoud, Alaa Mohammed Hassan, & Omar Abdulrahman Abdulwahid. "Silver and zinc oxide nanoparticles as potential weapons for enhancement of antibiotics activity against multi drug resistant microorganisms." European Journal of Chemistry [Online], 7.3 (2016): 290-297. Web. 1 Dec. 2020
El-Nour, Kholoud, Hassan, Alaa, AND Abdulwahid, Omar. "Silver and zinc oxide nanoparticles as potential weapons for enhancement of antibiotics activity against multi drug resistant microorganisms" European Journal of Chemistry [Online], Volume 7 Number 3 (30 September 2016)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item


DOI Link: https://doi.org/10.5155/eurjchem.7.3.290-297.1438

| | | | | | | |

| | | | | |

Save to Zotero Save to Mendeley



European Journal of Chemistry 2016, 7(3), 290-297 | doi: https://doi.org/10.5155/eurjchem.7.3.290-297.1438 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c)




© Copyright 2010 - 2020  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2020 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.