Polyethylene glycol (PEG-400) mediated synthesis of quinoxalines

Lingaiah Nagarapu, Raghu Mallepalli, Glory Arava, Lingappa Yeramanchi

Abstract


A simple and highly efficient protocol for the synthesis of quinoxaline derivatives from various ortho-phenylenediamines with α-halo ketones under catalyst free conditions is reported by using polyethylene glycol (PEG-400) as an efficient recyclable medium without using any organic co-solvent or additive. This protocol gives wide range of quinoxaline derivatives with high yields.

1_3_228_231_800


Keyword(s)


α-Halo ketones; o-Phenylenediamines; Quinoxalines; Catalyst-free; Polyethylene glycol; PEG-400

European Journal of Chemistry, 1 (3), (2010), 228-231

Full Text:

PDF    /    /

DOI: http://dx.doi.org/10.5155/eurjchem.1.3.228-231.172

 

Cited-By

[1]. Multistep soluble polymer-supported, microwave-assisted synthesis of quinoxalines
Farid Fouad
Green Chemistry Letters and Reviews  Volume: 6  Issue: 3  First page: 249  Year: 2013  
/

[2]. Synthesis of libraries of quinoxalines through eco-friendly tandem oxidation–condensation or condensation reactions
Susmita Paul, Basudeb Basu
Tetrahedron Letters  Volume: 52  Issue: 49  First page: 6597  Year: 2011  
/

[3]. A green approach toward quinoxalines andbis-quinoxalines and their biological evaluation against A431, human skin cancer cell lines
Debasish Bandyopadhyay, Jessica Cruz, Liza D Morales, Hadi D Arman, Erica Cuate, Young S Lee, Bimal K Banik, Dae J Kim
Future Medicinal Chemistry  Volume: 5  Issue: 12  First page: 1377  Year: 2013  
/

[4]. γ-Maghemite-silica nanocomposite: A green catalyst for diverse aromatic N-heterocycles
Pranab Ghosh, Amitava Mandal, Raju Subba
Catalysis Communications  Volume: 41  First page: 146  Year: 2013  
/

[5]. Synthesis of α1-oxindole-α-hydroxyphosphonates under catalyst-free conditions using polyethylene glycol (PEG-400) as an efficient and recyclable reaction medium
Lingaiah Nagarapu, Raghu Mallepalli, U. Nikhil Kumar, P. Venkateswarlu, Rajashaker Bantu, Lingappa Yeramanchi
Tetrahedron Letters  Volume: 53  Issue: 14  First page: 1699  Year: 2012  
/

[6]. Synthesis of 2-Substituted Benzimidazoles and 1,5-Disubstituted Benzodiazepines on Alumina and Zirconia Catalysts
M. REKHA, A. HAMZA, B.R. VENUGOPAL, N. NAGARAJU
Chinese Journal of Catalysis  Volume: 33  Issue: 2-3  First page: 439  Year: 2012  
/

[7]. Phase Separation As a Strategy Toward Controlling Dilution Effects in Macrocyclic Glaser-Hay Couplings
Anne-Catherine Bédard, Shawn K. Collins
Journal of the American Chemical Society  Volume: 133  Issue: 49  First page: 19976  Year: 2011  
/

[8]. A rapid synthesis of quinoxalines starting from ketones
K. Padmavathy, Gopalpur Nagendrappa, K.V. Geetha
Tetrahedron Letters  Volume: 52  Issue: 4  First page: 544  Year: 2011  
/

[9]. Polyethylene glycol (PEG-400): a mild and efficient reaction medium for one-pot synthesis of 3-hydroxy-3-(pyridin-2-ylmethyl)indolin-2-ones
M. Raghu, M. Rajasekhar, B. Chandra Obula Reddy, C. Suresh Reddy, B.V. Subba Reddy
Tetrahedron Letters  Volume: 54  Issue: 27  First page: 3503  Year: 2013  
/

[10]. Influence of Poly(ethylene glycol) Structure in Catalytic Macrocyclization Reactions
Anne-Catherine Bédard, Shawn K. Collins
ACS Catalysis  Volume: 3  Issue: 4  First page: 773  Year: 2013  
/

 


References

[1]. Seitz, L. E.; Suling, W. J.; Reynolds, R. C. J. Med. Chem. 2002, 45, 5604-5606.
doi:10.1021/jm020310n
PMid:12459027

[2]. Hazeldine, S. T.; Polin, L.; Kushner, J.; Paluch, J.; White, K.; Edelstein, M.; Palomino, E.; Corbett, T. H.; Horwitz, J. P. J. Med. Chem. 2001, 44, 1758-1776.
doi:10.1021/jm0005149
PMid:11356111

[3]. Badran, M. M.; Botros, S.; El-Gendy, A. A.; Abdou, N. A.; El-Assi, H.; Salem, A. Bull. Pharm. Sci. 2001, 24, 135-144.
doi:10.1248/bpb.24.135

[4]. Dell, A.; Williams, D. H.; Morris, H. R.; Smith, G. A.; Feeney, J.; Roberts, G. C. K. J. Am. Chem. Soc. 1975, 97, 2497-2502.
doi:10.1021/ja00842a029
PMid:1133418

[5]. Bailly, C.; Echepare, S.; Gago, F.; Waring, M. J. Anti-Cancer Drug Des. 1999, 14, 291-303.
PMid:10500504

[6]. Sato, S.; Shiratori, O.; Katagiri, K. J. Antibiot. 1967, 20, 270-276.

[7]. Dailey, S.; Feast, J. W.; Peace, R. J.; Sage, I. C.; Till, S.; Wood, E. L. J. Mater. Chem. 2001, 11, 2238-2243.
doi:10.1039/b104674h

[8]. O’Brien, D.; Weaver, M. S.; Lidzey, D. G.; Bradley, D. D. C. Appl. Phys. Lett. 1996, 69, 881-883.
doi:10.1063/1.117975

[9]. Bouabdallah, I.; Zidane, I.; Touzani, R.; Hacht, B.; Ramdani, A. Arkivoc 2006, 10, 77-81.

[10]. VOGEL’s Textbook of Practical Organic Chemistry 5th ed., 1989, p1190.

[11]. Brown, D. J. In Chemistry of Heterocyclic Compounds, Quinoxalines Supplements II; Taylor, E. C., Wipf, P., Eds.; John Wiley and Sons: New Jersey, 2004.

[12]. Bhosale, R. S.; Sarda, S. R.; Andhapure, S. S.; Jadhav, W. N.; Bhusare, S. R.; Pawar, R. P. Tetrahedron Lett. 2005, 46, 7183-7186.
doi:10.1016/j.tetlet.2005.08.080

[13]. More, S. V.; Sastry, M. N. V.; Wang, C.; Yao, C. F. Tetrahedron Lett. 2005, 46, 6345-6348.
doi:10.1016/j.tetlet.2005.07.026

[14]. Aparicio, D.; Attanasi, O. A.; Filippone, P.; Ignacio, R.; Lillini, S.; Mantellini, F.; Palacios, F.; Delos Santos, J. M. J. Org. Chem. 2006, 71, 5897-5905.
doi:10.1021/jo060450v
PMid:16872170

[15]. Wu, Z.; Ede, N. J. Tetrahedron Lett. 2001, 42, 8115-8118.
doi:10.1016/S0040-4039(01)01733-6

[16]. Singh, S. K.; Gupta, P.; Duggineni, S.; Kundu, B. Synlett 2003, 14, 2147-2150.

[17]. Antoniotti, S.; Duńach, E. Tetrahedron Lett. 2002, 43, 3971-3973.
doi:10.1016/S0040-4039(02)00715-3

[18]. Xekoukoulotakis, N. P.; Hadjiantoniu-Maroulis, C. P.; Maroulis, A. J. Tetrahedron Lett. 2000, 41, 10299-10302.
doi:10.1016/S0040-4039(00)01847-5

[19]. Robinson, R. S.; Taylor, R. J. K. Synlett 2005, 6, 1003-1005.

[20]. Raw, S. A.; Wilfred, C. D.; Taylor, R. J. K. Org. Biomol. Chem. 2004, 2, 788-796.
doi:10.1039/b315689c

[21]. Raw, S. A.; Wilfred, C. D.; Taylor, R. J. K. Chem. Commun. 2003, 18, 2286-2287.
doi:10.1039/b307177b
PMid:14518877

[22]. Sithambaram, S.; Ding, Y.; Li, W.; Shen, X.; Gaenzler, F.; Suib, S. L. Green Chem. 2008, 10, 1029-1032.
doi:10.1039/b805155k

[23]. Cai, J-J.; Zou, J-P.; Pan,X-Q.; Zhang, W. Tetrahedron Lett. 2008, 49, 7386-7390.
doi:10.1016/j.tetlet.2008.10.058

[24]. Das, B.; Venkateswarlu, K.; Suneel, K.; Majhi, A. Tetrahedron Lett. 2007, 48, 5371-5374.
doi:10.1016/j.tetlet.2007.06.036

[25]. Chan, S. C.; Sung, G. O. Tetrahedron Lett. 2006, 47, 5633-5636.
doi:10.1016/j.tetlet.2006.06.038

[26]. Chan, S. C.; Wen, X. R.; Sang, C. S. Tetrahedron Lett. 2007, 48, 4665-4667.
doi:10.1016/j.tetlet.2006.11.023

[27]. Chan, S. C.; Wen, X. R. J. Organometallic Chem. 2009, 694, 3215-3217.
doi:10.1016/j.jorganchem.2009.06.002

[28]. Madhav, A.; Murthy, S.N.; Reddy, V.P.; Rama Rao. K, Nageswar, Y. V. D. Tetrahedron Lett. 2009, 50, 6025-6028.
doi:10.1016/j.tetlet.2009.08.033

[29]. Kamal. A.; Reddy, D. R.; Rajendar, Tetrahedron Lett. 2006, 47, 2261-2264.
doi:10.1016/j.tetlet.2006.01.086

[30]. Mukhopadhyay, C.; Tapaswi, P. K. Tetrahedron Lett. 2008, 49, 6237-6240.
doi:10.1016/j.tetlet.2008.08.041

[31]. Jain, S. L.; Singhal, S.; Sain, B. Green Chem. 2007, 9, 740-741.
doi:10.1039/b702311a

[32]. Suryakiran, N.; Srikanth Reddy, T.; Ashalatha, K.; Lakshman, M.; Venkateswarlu, Y. Tetrahedron Lett. 2006, 47, 3853-3856.

[33]. Yogesh, R. J.; Rajagopal, G.; Prakash, J. S.; Ravindra, R. P. Tetrahedron Lett. 2008, 49, 1495-1497.
doi:10.1016/j.tetlet.2007.12.115

[34]. Nagarapu, L.; Chary, M. V.; Supriya, B.; Satyender, A.; Rajashaker, B. Synthesis 2009, 13, 2278-2282.
doi:10.1016/S1090-5138(02)00107-1

[35]. Nagarapu, L.; Gopal, P.; Satyender, A, Synth. Commun. 2009, 39(2), 355-365.
doi:10.1111/j.1467-9280.1992.tb00028.x

[36]. Nagarapu, L.; Rajashaker, B.; Hari Babu, M. J. Heterocyclic Chem. 2009, 48(4), 728-731.

[37]. Nagarapu, L.; Venkata Narsimhaji, CH.; Shukla Chary, K.; Rajashaker, B. Synthesis, 2010, In press, DOI: 10.1055/s-0030-1257973.


Refbacks

  • There are currently no refbacks.