European Journal of Chemistry 2018, 9(4), 338-346 | doi: https://doi.org/10.5155/eurjchem.9.4.338-346.1777 | Get rights and content






  OPEN ACCESS | PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Selective colorimetric molecular probe for cyanide ion detection in aqueous solution


Yousef Mohammad Hijji (1,*) orcid , Hani Darwish Tabba (2) orcid , Rajeesha Rajan (3) orcid , Hamzeh Mohammad Abdel-Halim (4) orcid , Musa Ibrahim El-Barghouthi (5) orcid , Hutaf Mustafa Baker (6) orcid

(1) Department of Chemistry and Earth Sciences, Qatar University, Doha, 2713, Qatar
(2) Department of Chemistry and Earth Sciences, Qatar University, Doha, 2713, Qatar
(3) Department of Chemistry and Earth Sciences, Qatar University, Doha, 2713, Qatar
(4) Department of Chemistry, The Hashemite University, Zarqa 13133, Jordan
(5) Department of Chemistry, The Hashemite University, Zarqa 13133, Jordan
(6) Department of Chemistry, Al Al-Bayt University, Mafraq 25113, Jordan
(*) Corresponding Author

Received: 28 Jul 2018 | Revised: 08 Sep 2018 | Accepted: 12 Sep 2018 | Published: 31 Dec 2018 | Issue Date: December 2018

Abstract


5-Nitro-2-hydroxybenzaldehyde (1) demonstrated to be a sensitive, and a selective molecular probe for cyanide ion (CN-) in aqueous media. In acetonitrile, compound 1 shows sensitivity and selectivity for cyanide, acetate and fluoride, in comparison to other investigated anions using both visual and spectroscopic means. In aqueous solution, the color becomes intense yellow upon addition of cyanide, while acetate showed this effect to a much lower extent. Significant spectral changes were also detected with the appearance of two new absorption bands at 358 and 387 nm. This was accompanied by concomitant intensity decrease for the band at 314 nm. Fluoride, dihydrogen phosphate, chloride, bromide, perchlorate, and azide showed negligible color and spectral changes for the probe in aqueous solutions. On the other hand, hydrogen sulfate caused fainting of the yellow color and gave a spectrum similar to that of the sensor in polar aprotic solvents. The cyanide ion was detected at micro molar levels in aqueous solutions with a stoichiometry of 1:1 for CN: probe in acetonitrile as the solvent. Cyanide, hydroxide, acetate, fluoride and dihydrogen phosphate showed identical changes to color and spectra, indicating a hydrogen bonding and a deprotonation mechanism.


Keywords


DFT; Cyanide; Cyanohydrin; UV-vis spectroscopy; Visual molecular probe; 5-Nitro-2-hydroxybenzaldehyde

Full Text:

PDF /    /


DOI: 10.5155/eurjchem.9.4.338-346.1777

Links for Article


| | | | | | |

| | | | | | |

Related Articles




Article Metrics

This Abstract was viewed 834 times | PDF Article downloaded 143 times

Funding information


National Priority Research Program (NPRP) award [NPRP-7-495-01-094] from the Qatar National Research Fund (a member of The Qatar Foundation), Qatar

References

[1]. Gotor, R.; Costero, A. M.; Gil, S.; Parra, M.; Martinez-Manez, R.; Sancenon, F. Chem. A Eur. J. 2011, 17, 11994-11997.
https://doi.org/10.1002/chem.201102241

[2]. Sun, W.; Guo, S.; Hu, C.; Fan, J.; Peng, X. Chem. Rev. 2016, 116, 7768-7817.
https://doi.org/10.1021/acs.chemrev.6b00001

[3]. Moragues, M. E.; Martinez-Manez, R.; Sancenon, F. Chem. Soc. Rev. 2011, 40, 2593-2643.
https://doi.org/10.1039/c0cs00015a

[4]. Zang, L.; Wei, D.; Wang, S.; Jiang, S. Tetrahedron 2012, 68, 636-641.
https://doi.org/10.1016/j.tet.2011.10.105

[5]. Sun, Y.; Wang, G.; Guo, W. Tetrahedron 2009, 65, 3480-3485.
https://doi.org/10.1016/j.tet.2009.02.023

[6]. Duke, R. M.; Veale, E. B.; Pfeffer, F. M.; Kruger, P. E.; Gunnlaugsson, T. Chem. Soc. Rev. 2010, 39, 3936-3953.
https://doi.org/10.1039/b910560n

[7]. Garcia, J. M.; Garcia, F. C.; Serna, F.; De La Pena, J. L. Polymer Rev. 2011, 51, 341-390.
https://doi.org/10.1080/15583724.2011.616084

[8]. Gunnlaugsson, T.; Glynn, M.; Tocci, G. M.; Kruger, P. E.; Pfeffer, F. M. Coord. Chem. Rev. 2006, 250, 3094-3117.
https://doi.org/10.1016/j.ccr.2006.08.017

[9]. Chang, K. C.; Sun, S. S.; Odago, M. O.; Lees, A. J. Coord. Chem. Rev. 2015, 284, 111-123.
https://doi.org/10.1016/j.ccr.2014.09.009

[10]. Wu, J.; Kwon, B.; Liu, W.; Anslyn, E. V.; Wang, P.; Kim, J. S. Chem. Rev. 2015, 115(15) 7893-7943.
https://doi.org/10.1021/cr500553d

[11]. Udhayakumari, D. Sensors Actuators B: Chem. 2018, 259, 1022-1057.
https://doi.org/10.1016/j.snb.2017.12.006

[12]. Bhattacharya, R.; Flora, S. J. S. In Handbook of Toxicology of Chemical Warfare Agents (Second Edition); Gupta, R. C., Ed.; Academic Press: Boston, 2015, 301-314.
https://doi.org/10.1016/B978-0-12-800159-2.00023-3

[13]. Gilley, C.; MacDonald, M.; Nachon, F.; Schopfer, L. M.; Zhang, J.; Cashman, J. R.; Lockridge, O. Chem. Res. Toxicol. 2009, 22, 1680-1688.
https://doi.org/10.1021/tx900090m

[14]. Rhee, J.; Jung, J.; Yeom, H.; Lee, H.; Lee, S.; Park, Y.; Chung, H. Forensic Sci. Inter. 2011, 210, e12-e15.
https://doi.org/10.1016/j.forsciint.2011.04.014

[15]. Xu, Z.; Chen, X.; Kim, H. N.; Yoon, J. Chem. Soc. Rev. 2010, 39, 127-137.
https://doi.org/10.1039/B907368J

[16]. Hijji, Y. M.; Barare, B.; Kennedy, A. P.; Butcher, R. Sensors Actuators B: Chem. 2009, 136, 297-302.
https://doi.org/10.1016/j.snb.2008.11.045

[17]. Odago, M. O.; Colabello, D. M.; Lees, A. J. Tetrahedron 2010, 66, 7465-7471.
https://doi.org/10.1016/j.tet.2010.07.006

[18]. Jo, H. Y.; Lee, S. A.; Na, Y. J.; Park, G. J.; Kim, C. Inorg. Chem. Commun. 2015, 54, 73-76.
https://doi.org/10.1016/j.inoche.2015.02.014

[19]. Elsafy, A.; Al-Easa, H.; Hijji, Y. Sensors 2018, 18, 2219-2230.
https://doi.org/10.3390/s18072219

[20]. Wei, T.; Li, H.; Wang, Q.; Yan, G.; Zhu, Y.; Lu, T.; Shi, B.; Lin, Q.; Zhang, Y. Supramol. Chem. 2016, 28, 314-320.
https://doi.org/10.1080/10610278.2015.1108419

[21]. Lee, E. M.; Gwon, S. Y.; Son, Y. A.; Kim, S. H. Spectrochim. Acta A 2012, 95, 25-28.
https://doi.org/10.1016/j.saa.2012.04.080

[22]. Yu, Y.; Shu, T.; Yu, B.; Deng, Y.; Fu, C.; Gao, Y.; Dong, C.; Ruan, Y. Sensors Actuators B: Chem. 2018, 255, 3170-3178.
https://doi.org/10.1016/j.snb.2017.09.142

[23]. Zhou, C.; Sun, M.; Yan, C.; Yang, Q.; Li, Y.; Song, Y. Sensors Actuators B: Chem. 2014, 203, 382-387.
https://doi.org/10.1016/j.snb.2014.07.002

[24]. Lou, X.; Ou, D.; Li, Q.; Li, Z. Chem. Commun. 2012, 48, 8462-8477.
https://doi.org/10.1039/c2cc33158f

[25]. Tang, Y. H.; Qu, Y.; Song, Z.; He, X. P.; Xie, J.; Hua, J.; Chen, G. R. Org. Biomol. Chem. 2012, 10, 555-560.
https://doi.org/10.1039/C1OB06242E

[26]. Jung, H. S.; Han, J. H.; Kim, Z. H.; Kang, C.; Kim, J. S. Org. Lett. 2011, 13, 5056-5059.
https://doi.org/10.1021/ol2018856

[27]. Chen, H.; Liu, Z.; Cao, D.; Lu, S.; Pang, J.; Sun, Y. Sensors Actuators B: Chem. 2014, 199, 115-120.
https://doi.org/10.1016/j.snb.2014.03.106

[28]. Isaad, J.; El Achari, A. Tetrahedron 2011, 67, 4939-4947.
https://doi.org/10.1016/j.tet.2011.04.061

[29]. Lee, J. H.; Jeong, A. R.; Shin, I. S.; Kim, H. J.; Hong, J. I. Org. Lett. 2010, 12, 764-767.
https://doi.org/10.1021/ol902852g

[30]. Dong, X.; Zhou, Y.; Song, Y.; Qu, J. J. Fluor. Chem. 2015, 178, 61-67.
https://doi.org/10.1016/j.jfluchem.2015.06.025

[31]. Dong, Y. M.; Peng, Y.; Dong, M.; Wang, Y. W. J. Org. Chem. 2011, 76, 6962-6966.
https://doi.org/10.1021/jo201269e

[32]. Lin, Y. D.; Peng, Y. S.; Su, W.; Tu, C. H.; Sun, C. H.; Chow, T. J. Tetrahedron 2012, 68, 2523-2526.
https://doi.org/10.1016/j.tet.2012.01.026

[33]. Park, S.; Kim, H. J. Sensors Actuators B: Chem. 2012, 161, 317-321.
https://doi.org/10.1016/j.snb.2011.10.038

[34]. Fu, G. L.; Zhao, C. H. Tetrahedron 2013, 69, 1700-1704.
https://doi.org/10.1016/j.tet.2012.12.034

[35]. Niamnont, N.; Khumsri, A.; Promchat, A.; Tumcharern, G.; Sukwattanasinitt, M. J. Hazard. Mater. 2014, 280, 458-463.
https://doi.org/10.1016/j.jhazmat.2014.08.028

[36]. Bejoymohandas, K. S.; Kumar, A.; Sreenadh, S.; Varathan, E.; Varughese, S.; Subramanian, V.; Reddy, M. L. P. Inorg. Chem. 2016, 55, 3448-3461.
https://doi.org/10.1021/acs.inorgchem.5b02885

[37]. Huo, F.; Zhang, Y.; Yue, Y.; Chao, J.; Zhang, Y.; Yin, C. Dyes Pigments 2017, 143, 270-275.
https://doi.org/10.1016/j.dyepig.2017.04.050

[38]. Kim, D. S.; Chung, Y. M.; Jun, M.; Ahn, K. H. J. Org. Chem. 2009, 74, 4849-4854.
https://doi.org/10.1021/jo900573v

[39]. Isaad, J.; Perwuelz, A. Tetrahedron Lett. 2010, 51, 5810-5814.
https://doi.org/10.1016/j.tetlet.2010.08.098

[40]. Ding, Y.; Li, T.; Zhu, W.; Xie, Y. Org. Biomol. Chem. 2012, 10, 4201-4207.
https://doi.org/10.1039/c2ob25297j

[41]. Isaad, J.; Achari, A. E. Anal. Chim. Acta 2011, 694, 120-127.
https://doi.org/10.1016/j.aca.2011.03.032

[42]. Isaad, J.; El Achari, A. Tetrahedron 2011, 67, 4196-4201.
https://doi.org/10.1016/j.tet.2011.04.059

[43]. Goswami, S.; Manna, A.; Paul, S.; Aich, K.; Das, A. K.; Chakraborty, S. Tetrahedron Lett. 2013, 54, 1785-1789.
https://doi.org/10.1016/j.tetlet.2012.12.092

[44]. Saravanakumar, D.; Devaraj, S.; Iyyampillai, S.; Mohandoss, K.; Kandaswamy, M. Tetrahedron Lett. 2008, 49, 127-132.
https://doi.org/10.1016/j.tetlet.2007.11.006

[45]. Hijji, Y. M.; Barare, B.; Zhang, Y. Sensors Actuators, B: Chem. 2012, 169, 106-112.
https://doi.org/10.1016/j.snb.2012.03.067

[46]. Kumar, S.; Singh, P.; Hundal, G.; Singh Hundal, M. Chem. Commun. 2013, 49, 2667-2669.
https://doi.org/10.1039/c3cc40435h

[47]. Lin, Y. S.; Zheng, J. X.; Tsui, Y. K.; Yen, Y. P. Spectrochim. Acta A 2011, 79, 1552-1558.
https://doi.org/10.1016/j.saa.2011.04.087

[48]. Kang, J.; Song, E. J.; Kim, H.; Kim, Y. H.; Kim, Y.; Kim, S. J.; Kim, C. Tetrahedron Lett. 2013, 54, 1015-1019.
https://doi.org/10.1016/j.tetlet.2012.12.053

[49]. Niu, H. T.; Su, D.; Jiang, X.; Yang, W.; Yin, Z.; He, J.; Cheng, J. P. Org. Biomol. Chem. 2008, 6, 3038-3040.
https://doi.org/10.1039/b808589g

[50]. Jang, H. J.; Kang, J. H.; Lee, M.; Lim, M. H.; Kim, C. Ind. Eng. Chem. Res. 2018, 57, 54-62.
https://doi.org/10.1021/acs.iecr.7b03826

[51]. Li, H.; Li, B.; Jin, L. Y.; Kan, Y.; Yin, B. Tetrahedron 2011, 67, 7348-7353.
https://doi.org/10.1016/j.tet.2011.07.023

[52]. Yang, Y. K.; Tae, J. Organic Lett. 2006, 8, 5721-5723.
https://doi.org/10.1021/ol062323r

[53]. Guo, Y. Y.; Tang, X. L.; Hou, F. P.; Wu, J.; Dou, W.; Qin, W. W.; Ru, J. X.; Zhang, G. L.; Liu, W. S.; Yao, X. J. Sensors Actuators B: Chem. 2013, 181, 202-208.
https://doi.org/10.1016/j.snb.2013.01.053

[54]. Gaussian 03. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A. Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.;. Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T. Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Pittsburgh PA, 2003.

[55]. Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.
https://doi.org/10.1063/1.464913

[56]. Lee, C.; Yang, W.; Parr, R. G. Physical Rev. B 1988, 37, 785-789.
https://doi.org/10.1103/PhysRevB.37.785

[57]. Runge, E.; Gross, E. K. U. Phys. Rev. Lett. 1984, 52, 997-1000.
https://doi.org/10.1103/PhysRevLett.52.997

[58]. Casida, M. K.; Chong, D. P., Ed.; Recent advances in density and functional methods, World Scientific, Singapore 1995; Vol. 1, pp. 155-192.
https://doi.org/10.1142/9789812830586_0005

[59]. O'Boyle, N. M.; Tenderholt, A. L.; Langner, K. M. J. Comp. Chem. 2008, 29, 839-645.
https://doi.org/10.1002/jcc.20823

[60]. Jana, S.; Dalapati, S.; Alam, M. A.; Guchhait, N. Spectrochim. Acta A 2012, 92, 131-136.
https://doi.org/10.1016/j.saa.2012.02.028

[61]. Pati, P. B.; Zade, S. S. Eur. J. Org. Chem. 2012, 2012, 6555-6561.

How to cite


Hijji, Y.; Tabba, H.; Rajan, R.; Abdel-Halim, H.; El-Barghouthi, M.; Baker, H. Eur. J. Chem. 2018, 9(4), 338-346. doi:10.5155/eurjchem.9.4.338-346.1777
Hijji, Y.; Tabba, H.; Rajan, R.; Abdel-Halim, H.; El-Barghouthi, M.; Baker, H. Selective colorimetric molecular probe for cyanide ion detection in aqueous solution. Eur. J. Chem. 2018, 9(4), 338-346. doi:10.5155/eurjchem.9.4.338-346.1777
Hijji, Y., Tabba, H., Rajan, R., Abdel-Halim, H., El-Barghouthi, M., & Baker, H. (2018). Selective colorimetric molecular probe for cyanide ion detection in aqueous solution. European Journal of Chemistry, 9(4), 338-346. doi:10.5155/eurjchem.9.4.338-346.1777
Hijji, Yousef, Hani Darwish Tabba, Rajeesha Rajan, Hamzeh Mohammad Abdel-Halim, Musa Ibrahim El-Barghouthi, & Hutaf Mustafa Baker. "Selective colorimetric molecular probe for cyanide ion detection in aqueous solution." European Journal of Chemistry [Online], 9.4 (2018): 338-346. Web. 27 Oct. 2020
Hijji, Yousef, Tabba, Hani, Rajan, Rajeesha, Abdel-Halim, Hamzeh, El-Barghouthi, Musa, AND Baker, Hutaf. "Selective colorimetric molecular probe for cyanide ion detection in aqueous solution" European Journal of Chemistry [Online], Volume 9 Number 4 (31 December 2018)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item


DOI Link: https://doi.org/10.5155/eurjchem.9.4.338-346.1777

| | | | | | |

| | | | | |

Save to Zotero Save to Mendeley



European Journal of Chemistry 2018, 9(4), 338-346 | doi: https://doi.org/10.5155/eurjchem.9.4.338-346.1777 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2018 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).


© Copyright 2010 - 2020  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2020 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.