European Journal of Chemistry 2019, 10(3), 195-200. doi:10.5155/eurjchem.10.3.195-200.1888

Synthesis, structure and hydrogen sorption properties of a pyrazine-bridged copper(I) nitrate metal-organic framework


Emmanuel Ngwang Nfor (1,*) orcid , Andrew David Burrows (2) orcid , Bridget Ndoye Ndosiri (3) orcid , Luke Lawrence Keenan (4) orcid , Offiong Efanga Offiong (5) orcid

(1) Department of Chemistry, Faculty of Science, University of Buea, Buea, Cameroon
(2) Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
(3) Inorganic Chemistry Department, Faculty of Science, University of Yaounde 1, Yaounde, Cameroon
(4) Diamond Light Source, Didcot, Oxfordshire, OX11 0DE, United Kingdom
(5) Department of Pure and Applied Chemistry, University of Calabar, PMB 1115, Calabar, CRS, Nigeria
(*) Corresponding Author

Received: 06 May 2019, Accepted: 14 Jun 2019, Published: 30 Sep 2019

Abstract


A new copper(I) pyrazine-bridged coordination polymer [Cu2(pyz)3(NO3)2]·2DMF] (pyz = pyrazine) (1) has been synthesized and characterized by FT-IR, TG/DTG, DSC and single crystal X-ray diffraction techniques. The X-ray crystallographic result reveals a two-dimensional network structure containing hexagonal pores. Thermal analysis of compound 1 reveals it is stable to 380 °C, and gas sorption studies showed that it adsorbs 1.04 wt% hydrogen at 1 atm and 77 K. Compound 1 crystallizes in a triclinic system, space group P-1 (no. 2), a = 7.9550(2) Å, b = 7.9810(2) Å, c = 11.0660(3) Å, α = 76.328(1)°, β = 71.115(1)°, γ = 84.577(1)°, = 645.79(3) Å3, Z = 2, T = 150(2) K, μ(MoKα) = 1.709 mm-1, Dcalc = 1.639 g/cm3, 11111 reflections measured (7° ≤ 2Θ ≤ 54.96°), 2951 unique (Rint = 0.0539) which were used in all calculations. The final R1 was 0.0346 (>2σ(I)) and wR2 was 0.0727 (all data).


Keywords


Copper; Pyrazine; Hydrogen sorption; X-ray crystallography; Single crystal structure; Metal-organic framework

Full Text:

PDF /    /


DOI: 10.5155/eurjchem.10.3.195-200.1888

Article Metrics


This Abstract was viewed 73 times | PDF Article downloaded 23 times

References

[1]. Batten, S. R.; Robson, R. Angew. Chem. Int. Ed. 1998, 37, 1460-1494.
https://doi.org/10.1002/(SICI)1521-3773(19980619)37:11<1460::AID-ANIE1460>3.0.CO;2-Z

[2]. Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O'Keeffe, M.; Yaghi, O. M. Science 2002, 295, 469-472.

[3]. Farrusseng, D.; Aguado, S.; Pinel, C. Angew. Chem. Int. Ed. 2009, 48, 7502-7513.
https://doi.org/10.1002/anie.200806063

[4]. Rowsel, J. L. C.; Yaghi, O. M. Angew. Chem. Int. Ed. 2005, 44, 4670-4679.
https://doi.org/10.1002/anie.200462786

[5]. Leininger, S.; Olenyuk, B.; Stang, P. J. Chem. Rev. 2000, 100, 853-908.
https://doi.org/10.1021/cr9601324

[6]. Cheng, X.; Liu, T.; Duan, X.; Wang, F.; Meng, Q.; Lu, C.; Cryst. Eng. Comm. 2011, 13, 1314-1321.
https://doi.org/10.1039/C0CE00360C

[7]. Zang, S.; Su, Y.; Li, S.; Ni, Z.; Meng, Q. Inorg. Chem. 2006, 45(1), 174-180.
https://doi.org/10.1021/ic051502m

[8]. Hasegawa, S.; Horike, S.; Matsuda, R.; Furukawa, S.; Mochizuki, K.; Kinoshita, Y.; Kitagawa, S. J. Am. Chem. Soc. 2007, 129, 2607-2614.
https://doi.org/10.1021/ja067374y

[9]. Arici, M.; Yesilel, O. Z.; Keskin, S.; Tas, M. Polyhedron 2012, 45, 103-106.
https://doi.org/10.1016/j.poly.2012.07.060

[10]. Horcajada, P.; Serre, C.; Vallet-Regi, M.; Sebban, M.; Taulelle, F.; Ferey, G. Angew. Chem. Int. Ed. 2006, 118, 6120-6124.
https://doi.org/10.1002/ange.200601878

[11]. An, J.; Geib, S. J.; Rosi, N. L. J. Am. Chem. Soc. 2009, 131, 8376-8377.
https://doi.org/10.1021/ja902972w

[12]. Taylor-Pashow, K. M. L.; Rocca, J. D.; Xie, Z.; Tran, S.; Lin, W. J. Am. Chem. Soc. 2009, 131, 14261-14263.
https://doi.org/10.1021/ja906198y

[13]. Sethi, N. K. PhD Thesis, Preparation of Heterobimetallic catalyst, York University, 2013.

[14]. Wen, G. L.; Wang, Y. Y.; Zhang, W. H.; Ren, C.; Liu, R. T.; Shi, Q. Z. Cryst. Eng. Comm. 2010, 12, 1238-1251.
https://doi.org/10.1039/B919381M

[15]. Sun, D.; Luo, G. G.; Zhang, N.; Chen, J. H.; Huang, R. B.; Lin, L. R.; Zhang, L. S. Polyhedron 2009, 28, 2983-2988.
https://doi.org/10.1016/j.poly.2009.07.013

[16]. Munakata, M.; Wu, L. P.; Kuroda-Sowa, T.; Maekawa, M.; Moriwaki, K.; Kitagawa, S. Inorg. Chem. 1997, 36(23), 5416-5418.
https://doi.org/10.1021/ic970427f

[17]. Duren, T.; Bae, Y. S.; Snurr, R. Q. Chem. Soc. Rev. 2009, 38, 1237-1247.
https://doi.org/10.1039/b803498m

[18]. Han, S. S.; Mendoza-Cortes, J. L.; Goddard, W. A. Chem. Soc. Rev. 2009, 38, 1460-1476.
https://doi.org/10.1039/b802430h

[19]. Farha, O. K; Hupp. J. T. Accoun. Chem. Res. 2010, 43(8), 1166-1175.
https://doi.org/10.1021/ar1000617

[20]. Real, J. A.; Munno, G. D.; Munoz, M. C.; Julve, M. Inorg. Chem. 1991, 30, 2701-2704.
https://doi.org/10.1021/ic00012a026

[21]. Otieno, T.; Gipson, A. M.; Parkin, S. J. Chem. Crystallogr. 2002, 2(3-4), 81-85.
https://doi.org/10.1023/A:1015612810446

[22]. Kitagawa, S.; Kitaura, R.; Noro, S. Angew. Chem., Int. Ed. 2004, 43(18), 2334-2375.
https://doi.org/10.1002/anie.200300610

[23]. Navarro, J. A. R.; Barea, E.; Galindo, M. A.; Salas, J. M.; Romero, M. A.; Quiros, M.; Masciocchi, N.; Galli, S.; Sironi, A.; Lippert, B. J. Solid State Chem. 2005, 178, 2436-2451.
https://doi.org/10.1016/j.jssc.2005.05.011

[24]. Ruben, M.; Rojo, J.; Romero-Salquero, F. J.; Uppadine, I. H.; Lehn, J. M. Angew. Chem. Int. Ed. 2004, 43(28), 3644-3662.
https://doi.org/10.1002/anie.200300636

[25]. Lehn, J. M. Supramolecular Chemistry. Concept and Perspectives, VCH, Weinheim, Germany, 1995.
https://doi.org/10.1002/3527607439

[26]. CrysAlis Pro: Data collection and data reduction software package, Agilent Technologies.

[27]. SCALE3 ABSPACK: Empirical absorption correction using spherical harmonics.

[28]. Sheldrick, G. M. Acta Crystallogr. A 2008, 64, 112-122.
https://doi.org/10.1107/S0108767307043930

[29]. Farrugia, L. J. J. Appl. Crystallogr. 1997, 30, 565-565.
https://doi.org/10.1107/S0021889897003117

[30]. Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; Van de Streek, J.; Wood, P. A. J. Appl. Crystallogr. 2008, 411, 466-470.
https://doi.org/10.1107/S0021889807067908

[31]. Otieno, T.; Rettig, S. J.; Thompson, R. C.; Trotter, B. Can. J. Chem. 1989, 67(11), 1964-1969.
https://doi.org/10.1139/v89-306

[32]. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley-Interscience: New York, 1986.

[33]. Lo, S. M. F.; Chu, S. S. Y.; Shek, L. Y.; Lin, Z.; Zhang, X. X.; Wen, G. H.; Williams, I. D. J. Am. Chem. Soc. 2000, 122, 6293-6294.

[34]. Santoro, A.; Mighell, A. D.; Reimann, M. R. Acta Crystallogr. B 1970, 26, 979-984.
https://doi.org/10.1107/S056774087000345X

[35]. Kuhlman, R.; Sehimek, G. L.; Kolis, J. W. Polyhedron 1999, 18, 1379-1389.
https://doi.org/10.1016/S0277-5387(98)00425-2

[36]. Darriet, J.; Haddad, M. D.; Duesler, E. N.; Hendrickson, D. N. Inorg. Chem. 1979, 18(10), 2679-2682.
https://doi.org/10.1021/ic50200a008

[37]. Haynes, J. S.; Rettig, S. J.; Sams, J. R.; Thompson, R. C.; Trotter, J. Can. J. Chem. 1987, 65, 420-426.
https://doi.org/10.1139/v87-071

[38]. Belford, R. C. E.; Fenton, D. E.; Truter, M. R. J. Chem. Soc. Dalton Trans. 1974, 17-24.

[39]. The Cambridge Structural Database, Ref. code HUTWOJ; Groom, C. R.; Bruno, I. J.; Lightfoot, M. P.; Ward, S. C. Acta Crystallogr. B 2016, 72, 171-179.
https://doi.org/10.1107/S2052520616003954

[40]. Mohapatra, S.; Maji, T. K. Dalton Trans. 2010, 39, 3412-3419.
https://doi.org/10.1039/b922039a

[41]. Kong, X. J.; Ren, Y. P.; Zheng, P. Q.; Long, L. S.; Huang, R. B.; Zheng, L. S. Inorg. Chem. 2006, 45, 10702-10711.
https://doi.org/10.1021/ic061664y

[42]. Aghajanloo, M.; Rashidi, A. M.; Moosavian, M. A. J. Chem. Eng. Process. Technol. 2014, 5, 1-6.

[43]. Hulvey, Z.; Sava, D. A; Eckert, J.; Cheetham. A. K. Inorg. Chem. 2011, 50, 403-405.
https://doi.org/10.1021/ic101153c


How to cite


Nfor, E.; Burrows, A.; Ndosiri, B.; Keenan, L.; Offiong, O. Eur. J. Chem. 2019, 10(3), 195-200. doi:10.5155/eurjchem.10.3.195-200.1888
Nfor, E.; Burrows, A.; Ndosiri, B.; Keenan, L.; Offiong, O. Synthesis, structure and hydrogen sorption properties of a pyrazine-bridged copper(I) nitrate metal-organic framework. Eur. J. Chem. 2019, 10(3), 195-200. doi:10.5155/eurjchem.10.3.195-200.1888
Nfor, E., Burrows, A., Ndosiri, B., Keenan, L., & Offiong, O. (2019). Synthesis, structure and hydrogen sorption properties of a pyrazine-bridged copper(I) nitrate metal-organic framework. European Journal of Chemistry, 10(3), 195-200. doi:10.5155/eurjchem.10.3.195-200.1888
Nfor, Emmanuel, Andrew David Burrows, Bridget Ndoye Ndosiri, Luke Lawrence Keenan, & Offiong Efanga Offiong. "Synthesis, structure and hydrogen sorption properties of a pyrazine-bridged copper(I) nitrate metal-organic framework." European Journal of Chemistry [Online], 10.3 (2019): 195-200. Web. 23 Oct. 2019
Nfor, Emmanuel, Burrows, Andrew, Ndosiri, Bridget, Keenan, Luke, AND Offiong, Offiong. "Synthesis, structure and hydrogen sorption properties of a pyrazine-bridged copper(I) nitrate metal-organic framework" European Journal of Chemistry [Online], Volume 10 Number 3 (30 September 2019)

DOI Link: https://doi.org/10.5155/eurjchem.10.3.195-200.1888

Refbacks

  • There are currently no refbacks.




Copyright (c) 2019 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).


© Copyright 2019  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2019 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 4614 Lavista road, Tucker, GA, 30084, USA. Registered in USA.