European Journal of Chemistry

Molecular mechanistic vision on binding interaction of triptan drug, a serotonin (5-HT1) agonist with human serum albumin through multispectral and computational assessments

Crossmark


Main Article Content

Manjushree Makegowda
Revanasiddappa Hosakere Doddarevanna

Abstract

The triptan drug such as eletriptan in combination with hydrochloride (ETP) is a 5-HT1 receptor agonist used to treat the migraine headache. Human serum albumin (HSA), the fundamental serum protein, executes various functions, that includes transporting and binding of many ligands. HSA binding interaction with ETP is elucidated from molecular docking in composite with fluorescence (emission, 3D and synchronous), UV-vis and FT-IR spectroscopy at 296, 304 and 312 K (pH = 7.40). ETP after interaction modified the HSA secondary structure and its micro-environments. Energy transfer and thermodynamic parameters were evaluated. Various quenching and binding constants were computed for formed ETP-HSA complex. The dominant interactive forces for ETP and HSA binding are hydrogen bonds join up with van der Waals extent possibly at site III (IB). The presence of Ca2+, Co2+, Na+, Mg2+ and Fe3+ ions significantly affected binding ability of ETP towards HSA. The essentialness of this investigation is beneficial in life sciences, medicinal chemistry, pharmaceutical industry and clinical medicine.


icon graph This Abstract was viewed 1012 times | icon graph Article PDF downloaded 450 times

How to Cite
(1)
Makegowda, M.; Doddarevanna, R. H. Molecular Mechanistic Vision on Binding Interaction of Triptan Drug, a Serotonin (5-HT1) Agonist With Human Serum Albumin through Multispectral and Computational Assessments. Eur. J. Chem. 2020, 11, 145-155.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Migraine, Wikipedia, https://en.wikipedia.org/wiki/Migraine, 2020 (Accessed 11 February 2020).

[2]. Eletriptan-hydrochloride, NPS Medicinewise, https://www.nps.org.au/australian-prescriber/articles/eletriptan-hydrochloride, 2020 (Accessed 11 February 2020).

[3]. Eletriptan, Wikipedia, https://en.wikipedia.org/wiki/Eletriptan, 2020 (Accessed 11 February 2020).

[4]. Kremer, J. M.; Wilting, J.; Janssen, L. H. Pharmacol. Rev. 1988, 40, 1-47.

[5]. Ghuman, J.; Zunszain, P. A.; Petitpas, I.; Bhattacharya, A. A.; Otagiri, M.; Curry, S. J. Mol. Biol. 2005, 353, 38-52.
https://doi.org/10.1016/j.jmb.2005.07.075

[6]. Fasano, M.; Curry, S.; Terreno, E.; Galliano, M.; Fanali, G.; Narciso, P.; Notari, S.; Ascenzi, P. IUBMB Life 2005, 57, 787-796.
https://doi.org/10.1080/15216540500404093

[7]. Zolfagharzadeh, M.; Pirouzi, M.; Asoodeh, A.; Saberi, M. R.; Chamani, J. J. Biomol. Struct. Dyn. 2013, 32, 1936-1952.
https://doi.org/10.1080/07391102.2013.843062

[8]. Kamshad, M.; Shah Talab, M.; Beigoli, S.; Sharifi, R. A.; Chamani, J. J. Biomol. Struct. Dyn. 2018, 37, 2030-2040.
https://doi.org/10.1080/07391102.2018.1475258

[9]. Manjushree, M.; Revanasiddappa, H. D. Spectrochim. Acta A 2019, 209, 264-273.

[10]. Sanei, H.; Asoodeh, A.; Hamedakbari-Tusi, S.; Chamani, J. J. Solution Chem. 2011, 40, 1905-1931.
https://doi.org/10.1007/s10953-011-9766-3

[11]. Ariga, G. G.; Naik, P. N.; Nandibewoor, S. T.; Chimatadar. S. A. J. Biomol. Struct. Dyn. 2016, 35, 3161-3175.
https://doi.org/10.1080/07391102.2016.1245159

[12]. Manjushree, M.; Revanasiddappa, H. D. Bioinorg. Chem. Appl. 2018, 6954951, 1-13.
https://doi.org/10.1155/2018/6954951

[13]. Mokaberi, P.; Reyhani, V.; Amiri-Tehranizadeh, Z.; Saberi, M. R.; Beigoli, S.; Samandar, F.; Chamani, J. New J. Chem. 2019, 43, 8132-8145.
https://doi.org/10.1039/C9NJ01048C

[14]. Sharif-Barfeh, Z.; Beigoli, S.; Marouzi, S.; Rad, A. S.; Asoodeh, A.; Chamani, J. J. Solution Chem. 2017, 46, 488-504.
https://doi.org/10.1007/s10953-017-0590-2

[15]. Manjushree, M.; Revanasiddappa, H. D. Chem. Phys. 2020, 530, 110593
https://doi.org/10.1016/j.chemphys.2019.110593

[16]. Shakibapour, N.; Dehghani Sani, F.; Beigoli, S.; Sadeghian, H.; Chamani, J. J. Biomol. Struct. Dyn. 2018, 37, 359-371.
https://doi.org/10.1080/07391102.2018.1427629

[17]. Yue, Y.; Sun, Y.; Dong, Q.; Liu, R.; Yan, X.; Zhang, Y.; Liu, J. Luminescence 2016, 31, 671-681.
https://doi.org/10.1002/bio.3010

[18]. Yue, Y.; Liu, J.; Liu, R.; Sun, Y.; Li, X.; Fan, J. Food Chem. Toxicol. 2014, 71, 244-253.
https://doi.org/10.1016/j.fct.2014.06.022

[19]. Bourassa, P.; Dubeau, S.; Maharvi, G. M.; Fauq, A. H.; Thomas, T. J.; Tajmir-Riahi, H. A. Biochimie. 2011, 93, 1089-1101.
https://doi.org/10.1016/j.biochi.2011.03.006

[20]. Abdelhameed, A. S.; Alam, P.; Khan, R. H. J. Biomol. Struct. Dyn. 2016, 159, 199-208.
https://doi.org/10.1016/j.saa.2016.01.049

[21]. Sohrabi, T.; Hosseinzadeh, M.; Beigoli, S.; Saberi, M. R.; Chamani, J. J. Mol. Liq. 2018, 256, 127-138.
https://doi.org/10.1016/j.molliq.2018.02.031

[22]. Chamani, J.; Vahedian-Movahed, H.; Saberi, M. R. J. Pharmaceut. Biomed. 2011, 55, 114-124.
https://doi.org/10.1016/j.jpba.2010.12.029

[23]. Feroz, S. R.; Mohamad, S. B.; Bujang, N.; Malek, S. N.; Tayyab, S. J. Agric. Food Chem. 2012, 60, 5899-5908.
https://doi.org/10.1021/jf301139h

[24]. Dehghani Sani, F.; Shakibapour, N.; Beigoli, S.; Sadeghian, H.; Hosainzadeh, M.; Chamani, J. J. Lumin. 2018, 203, 599-608.
https://doi.org/10.1016/j.jlumin.2018.06.083

[25]. Moosavi-Movahedi, A.; Chamani, J.; Gharanfoli, M.; Hakimelahi, G. Thermochim. Acta 2004, 409, 137-144.
https://doi.org/10.1016/S0040-6031(03)00358-7

[26]. Abdelhameed, A. S.; Alanazi, A. M.; Bakheit, A. H.; Darwish, H. W.; Ghabbour, H. A.; Darwish, I. A. Spectrochim. Acta A 2017, 171, 174-182.
https://doi.org/10.1016/j.saa.2016.08.005

[27]. Jirgensons, B. J. Biol. Chem. 1965, 240, 1064-1071.

[28]. Weiss, S. Science 1999, 283(5408), 1676-1683.
https://doi.org/10.1126/science.283.5408.1676

[29]. Roy, A. S.; Tripathy, D. R.; Chatterjee, A.; Dasgupta, S. Spectrochim. Acta A 2013, 102, 393-402.
https://doi.org/10.1016/j.saa.2012.09.053

[30]. Jacobsen, J.; Brodersen, R. J. Biol. Chem. 1983, 258, 6319-6326.

[31]. Sharifi-Rad, A.; Mehrzad, J.; Darroudi, M.; Saberi, M. R.; Chamani, J. J. Biomol. Struct. Dyn. 2020, 1-27.
https://doi.org/10.1080/07391102.2020.1724568

[32]. Guo, X. J.; Sun, X. D.; Xu, S. K. J. Mol. Struct. 2009, 931, 55-59.
https://doi.org/10.1016/j.molstruc.2007.06.035

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).