Stereoselective total synthesis of pectinolide H and 4'-epi-pectinolide H

Ramesh Perla and Nitin Wasantrao Fadnavis *
Natural Products Chemistry Division, Indian Institute of Chemical Technology, Habsiguda, Hyderabad-500007, India
* Corresponding author at: Natural Products Chemistry Division, Indian Institute of Chemical Technology, Habsiguda, Hyderabad-500007, India. Tel.: +91.40.27191631. Fax: +91.40.27160512. E-mail address: fadnavis@iict.res.in (N.W. Fadnavis).

ARTICLE INFORMATION

DOI: 10.5155/eurjchem.6.1.93-97.1150
Received: 11 September 2014
Received in revised form: 13 October 2014
Accepted: 18 October 2014
Published online: 31 March 2015
Printed: 31 March 2015

KEYWORDS

Reduction
Pectinolide H
Lactonization
Swern oxidation
Wittig olefination
Grignard reaction

1. Introduction

Pectinolide H (1) (Figure 1) isolated from aerial parts of a Mexican terrestrial plant Hyptis pectinata displays significant antimicrobial activity against a panel of multidrug-resistant strains of Staphylococcus aureus [1]. The molecule possesses an α, β-unsaturated γ-lactone motif common to many natural products exhibiting antibacterial and anti-inflammatory activities. Many compounds with similar structures have also been reported to be potentially useful as anticancer agents and enzyme inhibitors [2-10]. Considering the importance of new antimicrobial agents for multidrug resistant microorganisms, synthesis of molecules such as Pectinolide H in a simple and straightforward manner is necessary.

To the best of our knowledge, two reports exist for the synthesis of pectinolide H (1) [11,12]. Herein, we report an easy approach to compound 1 carried out in nine simple steps. Our synthetic strategy also provides the epimer 4'-epipectinolide H (2).

2. Experimental

All commercially available chemicals were purchased from Sigma Aldrich and used without purification. All experiments were carried out under an inert nitrogen atmosphere.
ABSTRACT
The total synthesis of pectinolide H and 4'-epi-pectinolide H was accomplished with 27% yield
in nine steps from inexpensive and commercially available compound, (+)-diethyl tartrate
$((+) D E T))$ by employing swern oxidation, Wittig olefination, Grignard and lactonization
reactions. reactions.

2.1. Instrumentation

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker Avance 300 MHz and Bruker Avance 75 MHz spectrometers, respecttively, using CDCl_{3} as solvent and SiMe_{4} as the internal standard. FT-IR analyses were performed using Perkin Elmer RX1 FT-IR spectrophotometer. Mass spectra analyses were performed on VG Auto spec instrument. Optical rotations were determined using Jasco Dip 360 digital polarimeter.

2.2. Synthesis

2.2.1. Synthesis of diethyl (4R,5R)-2,2-dimethyl-1,3-dioxolane-4,5-dicarboxylate (7)

A solution of compound $6(10 \mathrm{~g}, 48.54 \mathrm{mmol})$, p-toluene sulfonic acid (100 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and 2,2dimethoxypropane ($12 \mathrm{~mL}, 97 \mathrm{mmol}$) was stirred at room temperature for 4 h . The reaction mixture was quenched with solid NaHCO_{3}, filtered, solvent was evaporated under vacuum. The crude product was purified by flash column chromatography (Hexane:EtOAc, 98:2, $v: v$) to give compound 7. Color: Colorless liquid. Yield: $10.75 \mathrm{~g}, 90 \%$. FT-IR (Neat, $v, \mathrm{~cm}^{-1}$): 2990, 1753, 1216. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta, \mathrm{ppm}$): 1.31 (t, $\left.6 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{O}\right), 1.50\left(\mathrm{~s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right), 4.27$ (q, 4H, CH2-OCO), 4.76 (s, 2H, CH-COO).

Pectinolide H (1)

4'-epi-Pectinolide H(2)

Pectinolide $A: R^{1}=R^{2}=A c$ (3) Pectinolide $B: R^{1}=A c, R^{2}=H(4)$ Pectinolide C: $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Ac}(5)$

Figure 1. Structure of pectinolide A-C, H and 4'-epi-pectinolide H.

Reagents and conditions: a) 2,2-DMP, PTSA(cat.) $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 4 \mathrm{~h}, 90 \%$ b) $\mathrm{LiAlH}_{4}, \mathrm{THF}, 0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 1 \mathrm{~h}, 85 \%$ c) TBDPSCl, NaH, THF, $0{ }^{\circ} \mathrm{C}$ to $\mathrm{rt}, 2 \mathrm{~h}, 90 \%$. d) (i) $(\mathrm{COCl})_{2}$, DMSO, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Et}_{3} \mathrm{~N},-78{ }^{\circ} \mathrm{C}$. (ii) $\mathrm{Ph}_{3} \mathrm{PCHCOOEt}, \mathrm{MeOH},-50^{\circ} \mathrm{C}$ to rt, (88% in two steps). e) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 30 \mathrm{~min} . \mathrm{f}$) $\mathrm{Mg}, \mathrm{nBuBr}, \mathrm{THF},(66 \% \mathrm{in}$ two steps). g) $\mathrm{Ac}_{2} \mathrm{O}$, DMAP, Pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 3 \mathrm{~h}, 99 \%$. h) TBAF, THF, rt, $5 \mathrm{~h}, 92 \%$. i) (i) (COCl) $)_{2}, \mathrm{DMSO}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Et}_{3} \mathrm{~N},-78{ }^{\circ} \mathrm{C} .(\mathrm{ii})\left(\mathrm{F}_{3} \mathrm{CCH} 2\right)_{2} \mathrm{POCH} 2 \mathrm{COOEt}^{2}, 18-$ crown ether, KHMDS, dry THF, $-78^{\circ} \mathrm{C}, 4 \mathrm{~h},(80 \%$ in two steps). j) TsOH, MeOH, $2 \mathrm{~h}, 93 \%$

Scheme 1
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta, \mathrm{ppm}$): 13.9, 26.2, 61.7, 76.9, 113.5, 169.5. ESI-MS $(m / z): 247(M+1)^{+}, 269(M+N a)^{+}$.

2.2.2. Synthesis of ((4S,5S)-2,2-dimethyl-1,3-dioxolane-4,5diyl)dimethanol (8)

A solution of compound $7(6 \mathrm{~g}, 24.4 \mathrm{mmol})$ in THF (20 mL) was slowly added to a suspension of $\mathrm{LiAlH}_{4}(3.7 \mathrm{~g}, 97.5 \mathrm{mmol})$ in THF $(100 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ over a period of 20 min under nitrogen atmosphere. After 2 h , aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \%$, $w: v, 20$ mL) was added and the reaction mixture was filtered through celite. The filtrate was dried over anhydrous MgSO_{4} and evaporated under vacuum. The crude product was purified by flash column chromatography using EtOAc as eluent to afford pure compound 8 (Scheme 1). Color: Colorless liquid. Yield: $3.35 \mathrm{~g}, 85 \%$. FT-IR (Neat, $v, \mathrm{~cm}^{-1}$): $3403 .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\mathrm{CDCl}_{3}, \delta, \mathrm{ppm}$): 1.43 (s, 6H, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}$), 2.77 (br. s, $2 \mathrm{H}, 2-\mathrm{OH}$), 3.68-3.81 (m, 4H, CH2-OH), 3.98-3.99 (m, 2H, CH-CH2-OH). ${ }^{13} \mathrm{C}$

NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta, \mathrm{ppm}$): $\delta 26.9,62.0,78.1,109.2$. ESI-MS $(m / z): 162\left(\mathrm{M}^{+}\right) .[\alpha]_{\mathrm{D}}{ }^{25}:-8.16\left(c 1, \mathrm{CHCl}_{3}\right)$.

2.2.3. Synthesis of ((4S,5S)-5-((tert-butyldiphenylsilyloxy) methyl)-2,2-dimethyl-1,3-dioxolan-4-yl) methanol (9)

To a stirred solution of diol (8) (1.62 g, 10 mmol) in anhydrous THF (50 mL), $\mathrm{NaH}(264 \mathrm{mg}, 11 \mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$ under nitrogen atmosphere and the contents were stirred for 30 min. A solution of tert-butylchlorodiphenylsilane (TBDPS-Cl) ($2.74 \mathrm{~g}, 10 \mathrm{mmol}$) dissolved in anhydrous THF (20 mL) was added and stirring was continued for 2 h at room temperature. The reaction mixture was quenched with water (40 mL) and THF was evaporated. The residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, dried over anhydrous MgSO_{4}, and concentrated under vacuum. The crude product was subjected to flash column chromatography (Hexane:EtOAc, 4:1, v:v) to afford compound 9 (Scheme 1). Color: Colorless oil. Yield: 3.6
g, 90\%. FT-IR (Neat, $v, \mathrm{~cm}^{-1}$): 3466, 2931, 1428, 1245, 1080, 702. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta, \mathrm{ppm}$): $1.06\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\right.$ Si), 1.38 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}-0$), 1.41 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}-0$), 3.63-3.84 (m, $4 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{OH}, \mathrm{CH}_{2}-\mathrm{OSi}$), 3.93-3.99 (m, $1 \mathrm{H}, \mathrm{CH}-\mathrm{CH}_{2}-\mathrm{OH}$), 4.04$4.10\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{CH}_{2}-\mathrm{OSi}\right), 7.36-7.43(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.64-7.68$ (m, 4H, Ar-H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta, \mathrm{ppm}$): 19.1, 26.7, 26.9, 27.0, 62.5, 64.1, 77.4, 79.5, 109.1, 127.7, 127.8, 129.8, 129.9, 132.8, 135.5. ESI-MS $(m / z): 423(\mathrm{M}+\mathrm{Na})^{+} .[\alpha]_{\mathrm{D}}{ }^{25}:-1.5(c$ $14.5, \mathrm{CHCl}_{3}$).

2.2.4. Synthesis of (Z)-ethyl 3-((4S,5S)-5-((tert-butyl diphenylsilyloxy)methyl)-2,2-dimethyl-1,3-dioxolan -4-yl) acrylate (10a) and (E)-ethyl 3-((4S,5S)-5-((tert-butyl diphenylsilyloxy) methyl)-2,2-dimethyl-1,3-dioxolan-4-yl) acrylate (10b)

To a solution of oxalyl chloride ($0.7 \mathrm{~mL}, 8 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, DMSO was added drop-wise $(1.14 \mathrm{~mL}, 16$ mmol) at $-78{ }^{\circ} \mathrm{C}$ over 20 min under nitrogen atmosphere and stirred for 30 min at the same temperature. To this reaction mixture, compound 9 ($1.6 \mathrm{~g}, 4 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5.0 mL) was added drop-wise over 15 min at $-78^{\circ} \mathrm{C}$, and resulting mixture was stirred for 3 h at same temperature. The reaction was quenched with $\mathrm{Et}_{3} \mathrm{~N}(5.0 \mathrm{~mL})$ and allowed to reach room temperature over 30 min . The solvent was removed on rotavapor and the residue was purified by a flash column chromatography (Hexane:EtOAc, 10:1, v:v) to obtain crude aldehyde which was employed in the next step immediately.

The solution of crude aldehyde ($1.52 \mathrm{~g}, 3.82 \mathrm{mmol}$) in $\mathrm{MeOH}(15 \mathrm{~mL})$ was added to a solution of $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCOOEt}(4 \mathrm{~g}$, $11.5 \mathrm{mmol})$ in $\mathrm{MeOH}(100 \mathrm{~mL})$ at $-50^{\circ} \mathrm{C}$ drop-wise over 30 min . The resulting solution was stirred for 1 h at same temperature, diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 25 \mathrm{~mL}$). The organic layer was dried over anhydrous MgSO_{4} and the solvent was removed under vacuum. The residue was purified by flash column chromatography (Hexane:EtOAc, 50:1, $v: v$) to obtain pure compounds 10a and 10b in 80:20 ratio (Scheme 1).
(Z)-Ethyl 3-((4S,5S)-5-((tert-butyldiphenylsilyloxy)methyl)-2,2-dimethyl-1,3-dioxolan -4-yl)acrylate (10a): Color: Colorless oil. Yield: $1.32 \mathrm{~g}, 70 \%$. FT-IR (Neat, $v, \mathrm{~cm}^{-1}$): 2932, 1720, 1111. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta, \mathrm{ppm}$): $1.04\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{Si}\right)$, $1.21\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{O}\right), 1.432\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}-\mathrm{O}\right), 1.439(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}-\mathrm{C}-\mathrm{O}\right), 3.80-3.88\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{OSi}, \mathrm{CH}-\mathrm{CH}_{2}-\mathrm{OSi}\right), 4.07(\mathrm{q}, 2 \mathrm{H}$, CH_{2}-OCO), $5.44-5.52(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{CH}=\mathrm{CH}), 5.86(\mathrm{dd}, 1 \mathrm{H}, J=10.5$, $1.5 \mathrm{~Hz}, \mathrm{HC}-\mathrm{COO}$), 6.12 (dd, $1 \mathrm{H}, J=9.0,3.0 \mathrm{~Hz}, \mathrm{HC}=\mathrm{CH}-\mathrm{COO}$), 7.32-7.43 (m, 6H, Ar-H), 7.67-7.69 (m, 4H, Ar-H). ${ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta, \mathrm{ppm}\right): 14.1,19.1,26.7,27.0,27.1,60.3,64.1$, 73.4, 82.1, 117.0, 122.9, 127.5, 127.7, 129.5, 130, 135.6, 135.7, 145.3, (C=0 not seen). ESI-MS $(m / z): 469(M+1)^{+}, 491$ $(\mathrm{M}+\mathrm{Na})^{+}$.
(E)-Ethyl 3-((4S,5S)-5-((tert-butyldiphenylsilyloxy) methyl)-2,2-dimethyl-1,3-dioxolan-4-yl)acrylate (10b): Color: Colorless oil. Yield: $0.33 \mathrm{~g}, 18 \%$. FT-IR (Neat, $v, \mathrm{~cm}^{-1}$): 2933, 1719, 1112. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta, \mathrm{ppm}$): $1.07\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{Si}\right)$, 1.29 (t, 3H, CH3 $-\mathrm{CH}_{2}-\mathrm{O}$), 1.4 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}-\mathrm{O}$), 1.44 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}-$ 0), 3.81-3.88 (m, 3H, CH2-OSi, CH-CH2-OSi), $4.20\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}-\right.$ OCO), 4.57-4.62 (m, 1H, CH-CH=CH), 6.10 (dd, 1H, $J=15.8,1.5$ $\mathrm{Hz}, \mathrm{HC}-\mathrm{COO}$), 6.93 (dd, $1 \mathrm{H}, \mathrm{J}=10.5,5.2 \mathrm{~Hz}, \mathrm{HC}=\mathrm{CH}-\mathrm{COO}$), $7.35-$ 7.43 (m, 6H, Ar-H), 7.65-7.70 (m, 4H, Ar-H). ${ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}, \delta, \mathrm{ppm}\right): 14.2,19.1,26.7,26.9,27.0,60.4,63.1,77.4$, 80.7, 109.8, 122.1, 127.5, 127.7, 129.5, 129.7, 132.8, 135.5, 135.7, 144.4, 165.9. ESI-MS $(m / z): 469(M+1)^{+}, 491(M+N a)^{+}$.

2.2.5. Synthesis of (Z)-1-((4S,5S)-5-((tert-butyldiphenylsilyl oxy)methyl)-2,2-dimethyl-1,3-dioxolan-4-yl)hept-1-en-3-ol (12)

To a stirred solution of compound $10 \mathrm{a}(2.0 \mathrm{~g}, 4.27 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$, diisobutylaluminium hydride (DIBAL-H) ($2.48 \mathrm{~mL}, 4.27 \mathrm{mmol}$) was added drop-wise at $-78^{\circ} \mathrm{C}$, and the
reaction mixture was stirred for 30 min at same temperature. The reaction was quenched with aqueous $\mathrm{MeOH}(10 \mathrm{~mL}, 50 \%$, $v: v)$ at $0{ }^{\circ} \mathrm{C}$. Saturated sodium potassium tartrate solution (10 mL) was added and the contents were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was dried over anhydrous MgSO_{4}, concentrated under vacuum to obtain the crude aldehyde 11 which was used in next step without further purification.

A solution of n-butyl bromide ($0.92 \mathrm{~mL}, 8.54 \mathrm{mmol}$) in THF (5 mL) was added to a suspension of $\mathrm{Mg}(0.2 \mathrm{~g}, 8.33 \mathrm{mmol})$ in THF (30 mL) and refluxed for 20 min . The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and solution of crude aldehyde 11 in THF $(10 \mathrm{~mL})$ was added. After 1 h the reaction was quenched with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, filtered through a celite. The filtrate was dried anhydrous MgSO_{4}, concentrated under vacuum, and purified by flash column chromatography (Hexane:EtOAc, 80:20, $v: v$) to afford diastereoisomeric mixture of compound 12 (Scheme 1). Color: Pale yellow oil. Yield: 1.36 g. 66\%. FT-IR (Neat, $v, \mathrm{~cm}^{-1}$): 3441, 2931, 1428, 1113. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta, \mathrm{ppm}$): $0.89\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{CH}_{2}-\right), 1.06\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{Si}\right), 1.23-1.37(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$), $1.43\left(\mathrm{~s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right), 1.46-1.53\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\right.$ $\left.\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{CH}_{3}\right), 3.69-3.86\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{OSi}, \mathrm{CH}-\mathrm{CH}_{2}-\mathrm{OSi}\right), 4.09(\mathrm{q}$, $1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})$), 4.43 (t, 1H, HC-CH=), $5.65(\mathrm{dd}, 1 \mathrm{H}, J=8.3,6.7 \mathrm{~Hz}$, $=\mathrm{CH}-\mathrm{CH}(\mathrm{OH})$), $5.78(\mathrm{dd}, 1 \mathrm{H}, J=9.8,6.0 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}-\mathrm{CH}(\mathrm{OH})$), 7.35-7.43 (m, 6H, Ar-H), 7.65-7.70 (m, 4H, Ar-H). ${ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta, \mathrm{ppm}\right): 13.9,19.2,22.5,26.7,26.9,27.0,27.4$, 36.6, 62.7, 71.9, 78.0, 81.4, 109.0, 127.4, 127.6, 129.6, 129.7, 133.1, 135.6, 137.5. ESI-MS $(m / z): 505(\mathrm{M}+\mathrm{Na})^{+}$. HRMS calcd. for $\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{O}_{4} \mathrm{NaSi}[\mathrm{M}+\mathrm{Na}]^{+}: 505.27446$, Found: 505.27282.

2.2.6. Synthesis of (Z)-1-((4S,5S)-5-((tert-butyldiphenylsilyl oxy)methyl)-2,2-dimethyl-1,3-dioxolan-4-yl)hept-1-en-3-yl acetate (13)

To a stirred solution of alcohol 12 ($482 \mathrm{mg}, 1.03 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{C}_{2}(10 \mathrm{~mL})$ were added catalytic amount $(5 \mathrm{mg})$ of 4 dimethylaminopyridine (DMAP) and pyridine ($0.126 \mathrm{~mL}, 1.55$ mmol) at $0^{\circ} \mathrm{C}$. Under stirring at same temperature, acetic anhydride ($0.147 \mathrm{~mL}, 1.55 \mathrm{mmol}$) was added and the resulting mixture was stirred for 3 h at room temperature. The reaction mixture was quenched with aqueous NaHCO_{3} solution $(10 \%$, $w: v, 5 \mathrm{~mL}$), and extracted with EtOAc. The organic layer was dried over anhydrous MgSO_{4}, concentrated under vacuum, and purified by flash column chromatography (Hexane:EtOAc, 9:1, $v: v$) to afford compound 13 (Scheme 1). Color: Colorless oil. Yield: $0.54 \mathrm{~g}, 99 \%$. FT-IR (Neat, $v, \mathrm{~cm}^{-1}$): 2932, 1740, 1238, 1113. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta, \mathrm{ppm}$): $0.87\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{CH}_{2}-\right.$), $1.06\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{Si}\right), 1.20-1.34\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 1.43$ $\left(\mathrm{s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right), 1.51-1.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{CH}_{3}\right), 2.05(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}-\mathrm{CO}\right), 3.68-3.84\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{OSi}, \mathrm{CH}-\mathrm{CH}_{2}-\mathrm{OSi}\right), 4.44-4.50(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{HC}-\mathrm{CH}=$), 5.21-5.27 (m, 1H, CH(OAc)), 5.68-5.72 (m, 2H, $\mathrm{CH}=\mathrm{CH}), 7.35-7.43(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.65-7.70(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta, \mathrm{ppm}$): 13.8, 19.1, 21.1, 22.3, 26.7, 26.8, 26.9, 27.1, 33.9, 62.5, 73.5, 77.8, 81.2, 109, 127.6, 129.4, 129.6, 131.9, 133.0, 135.5, 170. ESI-MS $(m / z): 547(\mathrm{M}+\mathrm{Na})^{+}$. HRMS calcd. for $\mathrm{C}_{31} \mathrm{H}_{44} \mathrm{O}_{5} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 547.2964$, Found: 547.2954.

2.2.7. Synthesis of (Z)-1-((4S,5S)-5-(hydroxymethyl)-2,2-dimethyl-1,3-dioxolan-4-yl)hept-1-en-3-yl acetate (14)

To a stirred solution of compound 13 ($945 \mathrm{mg}, 1.8 \mathrm{mmol}$) in dry THF (20 mL), TBAF ($5.45 \mathrm{~mL}, 1 \mathrm{M}$ in THF, 5.41 mmol) was added at room temperature and the resulting solution was stirred for 5 h . The solvent was evaporated under vacuum and purified by flash column chromatography (Hexane:EtOAc, 6:1, $v: v$) to afford compound 14 (Scheme 1). Color: Colorless oil. Yield: 0.493 g, 92%. FT-IR (Neat, v, cm ${ }^{-1}$): 3451, 2934, 2873, $1738,1240,1048 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta, \mathrm{ppm}$): $0.89(\mathrm{t}$, $3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{CH}_{2}$), $1.25-1.36\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 1.43(\mathrm{~s}, 6 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right), 1.59-1.63\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{CH}_{3}\right), 2.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\right.$ CO), $3.55-3.85\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{OH}, \mathrm{CH}-\mathrm{CH}_{2}-\mathrm{OH}\right), 4.32(\mathrm{~m}, 1 \mathrm{H}, \mathrm{HC}-$ $\mathrm{CH}=$), $5.25(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OAc})), 5.63-5.83(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}) .{ }^{13} \mathrm{C}$

NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta, \mathrm{ppm}$): 13.8, 21.2, 22.3, 26.90, 26.99, 27.2, 33.9, 60.5, 73.6, 77.2, 81.0, 109.3, 129.1, 133.3, 170.3. ESI-MS $(m / z): 287(M+1)^{+}, 309(M+N a)^{+}$. HRMS calcd. for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]+$: 287.1781 , Found: 287.1652.

2.2.8. Synthesis of (Z)-ethyl 3-((4S,5S)-5-((Z)-3-acetoxyhept-1-enyl)-2,2-dimethyl-1,3-dioxolan-4-yl)acrylate (15)

To a stirred solution of $(\mathrm{COCl})_{2}(0.25 \mathrm{~mL}, 2.8 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added anhydrous DMSO ($0.4 \mathrm{~mL}, 5.6$ mmol) at $-78{ }^{\circ} \mathrm{C}$ over a period of 20 min under nitrogen atmosphere, and the reaction mixture was stirred for 30 min . A solution of compound 14 ($400 \mathrm{mg}, 1.4 \mathrm{mmol}$.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added and the resulting solution was stirred for 1 h at $-78{ }^{\circ} \mathrm{C}$. The reaction was quenched with $\mathrm{Et}_{3} \mathrm{~N}(1.17 \mathrm{~mL}, 8.4 \mathrm{mmol})$, allowed to reach room temperature and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was dried over anhydrous MgSO_{4} and evaporated under vacuum to obtain crude aldehyde which was employed to the next step immediately.

To a stirred solution of $\left(\mathrm{F}_{3} \mathrm{CCH}_{2} \mathrm{O}\right)_{2} \mathrm{POCH}_{2} \mathrm{COOEt}(0.354$ $\mathrm{mL}, 1.67 \mathrm{mmol}$), 18 -crown-6 ($1.478 \mathrm{~g}, 5.6 \mathrm{mmol}$) in dry THF (2 $\mathrm{mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added KHMDS ($0.362 \mathrm{~g}, 1081 \mathrm{mmol}$) and stirred for 30 min . The solution of crude aldehyde in THF (5 mL) was added, reaction mixture was stirred for 4 h at same temperature. The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and extracted with ethyl acetate. The combined organic layers were dried over anhydrous MgSO_{4}, concentrated under vacuum, and the residue was purified by flash column chromatography (Hexane:EtOAc, 8:2, v:v) to afford compound 15 (Scheme 1). Color: Colorless oil. Yield: $0.396 \mathrm{~g}, 80 \%$. FT-IR (Neat, $v, \mathrm{~cm}^{-1}$): 2937, 1725, 1371, 1234, 1048. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta, \mathrm{ppm}$): 0.88 (t, $3 \mathrm{H}, \mathrm{CH}_{3}-$ $\left.\left(\mathrm{CH}_{2}\right)_{2}\right), 1.25-1.31\left(\mathrm{~m}, 7 \mathrm{H},\left(\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{CH}_{3}, \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{O}\right), 1.45(\mathrm{~s}, 6 \mathrm{H}\right.$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right), 1.53-1.66\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{CH}_{3}\right), 2.0\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\right.$ CO), 4.03-4.22 (m, 3H, O- $\left.\mathrm{CH}_{2}-\mathrm{CH}_{3}, \mathrm{CH}-\mathrm{CH}=\mathrm{CH}\right), 5.22-5.30(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}-\mathrm{CH}=\mathrm{CH}-\mathrm{COO}), 5.38-5.46(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OAc})$), 5.71-5.76 (m, 2H, CH=CH-CH(OAc)), $5.93(\mathrm{~d}, 1 \mathrm{H}, J=11.3 \mathrm{~Hz}, \mathrm{CH}-\mathrm{COOEt})$, 6.12 (dd, $1 \mathrm{H}, J=8.3,3.0 \mathrm{~Hz}, \mathrm{HC}=\mathrm{CH}-\mathrm{COOEt}) .{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \delta, \mathrm{ppm}\right): 13.8,14.0,21.1,22.3,26.9,27.01,27.06,33.8$, 60.2, 73.2, 75.8, 81.4, 109.8, 123.3, 127.9, 133.2, 143.8, 164.9, 170.0. ESI-MS $(m / z): 377(M+N a)^{+}$. HRMS calcd. for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{6} \mathrm{Na}$ [M+Na]+: 377.2042, Found: 377.1987.

2.2.9. Synthesis of pectinolide H (1) and 4 'epi-pectinolide H

 (2)A solution of compound 15 ($25 \mathrm{mg}, 0.706 \mathrm{mmol}$) in MeOH $(10 \mathrm{~mL})$ was stirred with a catalytic amount of PTSA $(2 \mathrm{mg})$ at room temperature. After 4 h MeOH was evaporated and the crude product was purified by preparative thin layer chromatography (Hexane: EtOAc, 1:1, v:v) to obtain pure compounds $\mathbf{1}$ and 2 in $1.2: 1$ ratio (Scheme 1).
(1S,4S,Z)-1-hydroxy-1-((S)-5-oxo-2,5-dihydrofuran-2-yl)oct-2-en-4-yl acetate (Pectinolide H) (1): Color: Colorless oil. Yield: $9.6 \mathrm{mg}, 50.8 \%$. FT-IR (Neat, $v, \mathrm{~cm}^{-1}$): 3439, 2931, 2862, 1750, 1241, 1042. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta, \mathrm{ppm}$): $0.89(\mathrm{t}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{2}\right), 1.22-1.36\left(\mathrm{~m}, 4 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{CH}_{3}\right), 1.50-1.70(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{CH}_{3}\right), 2.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{CO}\right), 3.07$ (br. $\left.1 \mathrm{H}, \mathrm{OH}\right), 4.28-$ $4.33(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{OH}), 5.00-5.04(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OAc})), 5.15-5.22$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{CH}=\mathrm{CH}-\mathrm{COO}$), $5.62-5.84(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}-\mathrm{CH}(\mathrm{OAc})$), $6.19(\mathrm{dd}, 1 \mathrm{H}, J=4.5,1.5 \mathrm{~Hz},=\mathrm{CH}-\mathrm{COO}), 7.47(\mathrm{dd}, 1 \mathrm{H}, J=6.7,1.5$ $\mathrm{Hz}, \mathrm{CH}=\mathrm{CH}-\mathrm{COO}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta, \mathrm{ppm}$): 13.8, 21.1, 22.2, 27.0, 33.7, 72.2, 73.7, 85.5, 122.9, 128.4, 133.2, 153.2, 170.5, 172.6. ESI-MS $(m / z): 291(\mathrm{M}+\mathrm{Na})^{+} .[\alpha]_{\mathrm{D}}{ }^{25}:-39.0(c 0.32$, $\left.\mathrm{CHCl}_{3}\right)$. HRMS calcd. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]+$: 291.1202; Found: 291.1200.
(1S,4R,Z)-1-hydroxy-1-((S)-5-oxo-2,5-dihydrofuran-2-yl)oct-2-en-4-yl acetate (4'epi-pectinolide H) (2): Color: Colorless oil. Yield: $8 \mathrm{mg}, 42.3 \%$. FT-IR (Neat, $v, \mathrm{~cm}^{-1}$): 3444, 2928, 2856, 1750, 1241, 1043. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta, \mathrm{ppm}$): 0.89 (t, $\left.3 \mathrm{H}, \mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{2}\right), 1.24-1.31\left(\mathrm{~m}, 4 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{CH}_{3}\right), 1.54-1.68(\mathrm{~m}$,
$\left.2 \mathrm{H}, \mathrm{CH}_{2}-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{CH}_{3}\right), 2.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{CO}\right), 2.76$ (br. $1 \mathrm{H}, \mathrm{OH}$), 4.27-4.30 (m, 1H, CH-OH), 4.99-5.01 (m, 1H, CH(OAc)), 5.18$5.24(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{CH}=\mathrm{CH}-\mathrm{COO}), 5.64-5.84(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}-$ $\mathrm{CH}(\mathrm{OAc})), 6.18(\mathrm{~d}, 1 \mathrm{H}, J=4.7 \mathrm{~Hz},=\mathrm{CH}-\mathrm{COO}), 7.43(\mathrm{dd}, 1 \mathrm{H}, J=$ $5.7,4.7 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}-\mathrm{COO}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta, \mathrm{ppm}$): 13.8, 21.2, 22.3, 27.1, 33.8, 72.5, 73.7, 85.5, 123.0, 128.3, 133.5, 153.1, 170.5, 172.5. ESI-MS $(m / z): 291(M+N a)^{+} .[\alpha]_{\mathrm{D}^{25}}:+21.9$ (c 0.1, CHCl_{3}). HRMS calcd. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]+: 291.1202$, Found: 291.1188.

3. Results and discussion

A cursory look at the structure of compound 1 shows that $(+)$-diethyl L-tartrate (6) possesses the required $(2 S, 3 S)$ stereochemistry. Protection of the vicinal hydroxy groups as an acetonide and reduction of compound 7 with LiAlH_{4} gave the corresponding diol (8) in 85% yield. Selective monoprotection of compound 8 was achieved with 1 equiv. of (tertbutyl diphenylsilyl chloride (TBDPSCl) in presence of NaH in THF. The mono protected alcohol (9) was oxidized to the corresponding aldehyde by Swern oxidation. The crude aldehyde was subjected to Wittig olefination in methanol to obtain a mixture of E and Z-alkene (10) with E to Z ratio of $20: 80$. The isomers were easily separated by column chromatography [13]. Reduction of the ester group of $Z-(\mathbf{1 0 a})$ with DIBAL- H in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and Grignard reaction of the aldehyde (11) with n-butyl magnesium bromide gave a diastereoisomeric mixture of secondary alcohols (12). Acetylation with $\mathrm{Ac}_{2} \mathrm{O}$ in pyridine provided a mixture of diastereomers (13). Deprotection of the primary alcohol with TBAF followed by Swern oxidation of the alcohol (14) gave an intermediate aldehyde which was subjected to Still-Gennari olefination reaction $[14,15]$ without isolation to afford the corresponding α, β-unsaturated ester (15) in 80% yield. Deprotection of the acetonide and subsequent in situ lactonization of ester (15) with p-toluenesulfonic acid in MeOH afforded a diastereomeric mixture of pectinolide H (1) and 4'-epi-pectinolide H (2) in 98% yield (Scheme 1). Both the diastereomers were separated by preparative TLC. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data and optical rotation of pectinolide H were in excellent agreement with the data previously reported in literature [11,12].

4. Conclusion

In conclusion, a simple stereoselective total synthesis of pectinolide H and 4 'eppi-pectinolide H have been achieved from (+)-DET in nine steps with 27% overall yield. Our synthetic strategy provides pectinolide H and the epimer 4'-epi-pectinolide H .

Acknowledgements

The authors thank University Grants Commission for grant of Senior Research Fellowship to PR and Council of Scientific and Industrial Research, New Delhi for financial assistance under XII 5 year plan CSC0108-ORIGIN.

References

1]. Fragoso-Serrano, M.; Gibbons, S.; Perda-Miranda, R. Planta Med. 2005, 71, 278-280.
[2]. Hentzer, M.; Eberl, L.; Nielsen, J.; Giviskov, M. Biodrugs 2003, 17, 241250.
[3]. Hjelmgaard, T.; Persson, T.; Rasmussen, T. B.; Givskov, M.; Nielsen. J. Bioorg. Med. Chem. 2003, 11, 3261-3271.
[4]. Fusetani, N. Nat. Prod. Rep. 2004, 21, 94-104.
[5]. Cateni, F.; Zillic, J.; Zacchigna, M.; Bonivento, P.; Frausin, F.; Carcia, V. Eur. J. Med. Chem. 2006, 41, 192-200.
[6]. Marcos, I. S.; Escola, M. A.; Moro, R. F.; Basabe, P.; Diez, D.; Sanz, F.; Mollinedo, F.; Dela Iglesia-Vicente, J.; Sierrac, B. G.; Urones, J. G. Bioorg. Med. Chem. 2007, 15, 5719-5737.
[7]. Takahashi, M.; Dodo, K.; Sugimoto, Y.; Aoyagi, Y.; Yamada, Y.; Hashimoto, Y.; Shirai, R. Bioorg. Med. Chem. Lett. 2000, 10, 25712574.
[8]. Brohm, D.; Philippe, N.; Metzger, S.; Bhargava, A.; Muller, O.; Lieb, F.; Waldmann, H. J. Am. Chem. Soc. 2002, 124, 13171-13178.
[9]. Li, D. H.; Zhu, T. J.; Liu, H. B.; Fang, C. Y.; Gu, Q. Q.; Zhu, W. M. Arch. Pharm. Res. 2006, 29, 624-626.
[10]. Ma, S.; Shi, Z.; Yu, Z. Tetrahedron 1999, 55, 12137-12148.
[11]. Ramesh, D.; Shekhar, V.; Chantibabu, D.; Rajaram, S.; Ramulu, U.; Venkateswarlu Y. Tetrahedron Lett. 2012, 53, 1258-1260.
[12]. Sabitha, G.; Anki Reddy, P.; Kishore Das, S.; Yadav, J. S. Synthesis 2013, 45, 651-654.
[13]. Subhash, P. C.; Kishor, R. H.; Nilesh B. D.; Uttam, R. K. Tetrahedron Asymm. 2011, 22, 587-590.
[14]. Still, W. C.; Gennari, C. Tetrahedron Lett. 1983, 24, 4405-4408.
[15]. Krishna, P. R.; Reddy, P. S. Tetrahedron 2007, 63, 3995-3999.

