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An analytic perturbation theory has been developed for screened Coulomb radial wave
functions by interpolating the screened Coulomb potential of McEnnan for elements
lanthanum to uranium and was used to calculate alignment of vacancies in L3 sub shell. To
check the authenticity of the present method of calculation, the intermediate steps are

compared with our earlier formulation of point Coulomb potential for the calculations. A
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threshold to 60 keV.

close agreement has been obtained among the values of intermediate steps involved in both
the formulations that proved the reliability of present calculations and prompted us to
extend the calculations for the elements lanthanum to uranium in the energy region

1. Introduction

For photon induced atomic processes, Fliigge et al. [1] were
the first to explore the alignment of atomic inner shell
vacancies. Calculations of vacancy alignment with different
approaches have been performed by different workers, but
some systematic numerical calculations were provided by
Berezhko et al. [2] and Kleiman and Lohmann [3]. Up to date,
the survey of literature reveals that, since eighties, the
experimental measurements on alignment of photon induced
L3 vacancies from anisotropic distribution of fluorescent X-rays
in some rare earth and high Z elements are available from the
work of eight different groups [4] those predicted
contradictory results. To check the discrepancies of the results
from different experimental groups and the results from
experiment and theory as pointed out above, the effect of
electron screening potential on the alignment calculations are
undertaken in the present paper. Our earlier theoretical
calculations [5] are treated as reference to observe the impact
of screening on the alignment and are refined by applying
screening correction [6]. In addition, an analytic perturbation
theory has been developed for screened Coulomb radial wave
function by interpolating the screened Coulomb potential of
McEnnan et al. [7] for the elements La to U in the energy region
threshold to 60 keV.

2. Formulation

The L shell electrons being next to those in K shell are likely
to be under screened potential. Therefore, each L electron
seems to move in a screened Coulomb field, (Z-s).e/r? of the
nucleus that modifies the earlier considered potential energy.
L3 vacancy alignment is accounted in term of alignment
parameter A; that is fractional difference in ionization cross-

sections of L3 magnetic sub-states. The present Z region for
which Az has been generated is prone to screening and two
different attempts have been made to study the effect of
screening by;

(i) Accommodating effect of screened Coulomb potential on
the earlier generated alignment parameter A; data [5]
and

(ii) Developing an analytic perturbation theory [7] for
screened Coulomb wave functions in a non-relativistic
dipole approximation which, in turn, is used for the
calculation of Az for photon induced L3 vacancies in high
Z elements, 57 <Z <92.

3. Effect of screened Coulomb potential

To treat the L shell electrons under the screening nuclear
pull, a screened Coulomb potential, (Z-s)e/r, of the nucleus is
considered [8] instead of Ze/r in the case of ordinary point
Coulomb potential where s is the screening constant. Slater [6]
has suggested the rules in order to decide the value of the
screening constant s and for a 2s or 2p electron, s value comes
as;

s =2(0.85) + 7(0.35) = 4.15 (1)

Therefore, in a screened Coulomb potential the value a= Za
is to be modified as, a* = (Z - s) o., where a is fine structure
constant. The modified value a* affects equations of formulation
[5], which in turn modified single particle radial integrals R2*
for the bound (L=1) and continuum (¢'= 2) states and Ro* for
bound (L=1) and continuum (¢'= 0) as;

European Journal of Chemistry
ISSN 2153-2249 (Print) / ISSN 2153-2257 (Online) © 2010 EURJCHEM

DOI:10.5155/eurjchem.1.4.381-384.121



382 Sharmaa and Mittal / European Journal of Chemistry 1 (4) (2010) 381-384

x (2)

* *5/2 2 * *
R2 =0.0068(a )p“exp(1.57(a /p))]‘l‘(3+i(a /' p))

*
a

0
| {ré[exp(ip —-a* /2)1‘].1F1 3 —i[ J,é;(—2ipr) Ldr
0 p

x (3)

5/2
RO* =02041a" " p2[exp(1.57a™ / p)]‘r(l +i(a” / p))

0 *
j{r4[exp(ipfa*/2)}’]1F1 3—1] a? ,0;(=2ipr) |}dr
0

Thus, for 2ps/2 state, the modified alignment parameter (A2*)
under screened Coulomb potential is

2 2
* *
Ax¥= ‘RO +g‘R2 4)

*2 *

Z‘R 5

+4‘R

0

In this paper, the screened alignment parameter A2" has
been calculated for the elements 57 <Z <92 at incident photon
energy varying from L3 threshold to 60 keV. The calculated
results are illustrated in Figure 1-5.
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Figure 1. Plots of alignment parameter (Az) without screening and (Az*,
A2**) with screening at photon energies threshold to 60 keV for La.
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Figure 2. Plots of alignment parameter (Az) without screening and (Az*,
A2**) with screening at photon energies threshold to 60 keV for Gd.

4. Analytic perturbation theory for screening effect
For a non-relativistic radial wave function in a screened

Coulomb potential, the potential inside an atom, according to
analytic perturbation theory, is [7]

V(r):(a)[l V() + V() +V,(Ar) ] (5)
r

Here a=Za
Coefficients Vi's are of the order of unity. Vi's are alternate in
sign and decrease with increasing k and the equation (4)
converge in the region Ar<1.

and 1 =q@Z'’characterize the screening.
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Figure 3. Plots of alignment parameter (Az) without screening and (Az*,
A2**) with screening at photon energies threshold to 60 keV for W.
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Figure 4. Plots of alignment parameter (Az) without screening and (Az*,
A2**) with screening at photon energies threshold to 60 keV for Au.

0.50

0.45

0.40 4

035

0.30

0.25

0.20

Alignment parameter

015 4

010

0.05 T T T T T
10 20 30 40 50 60
Photon Energy (keV)

Figure 5. Plots of alignment parameter (Az) without screening and (Az*,
A2**) with screening at photon energies threshold to 60 keV for Th.

In non-relativistic dipole approximation for this type of
potential, the formulation [5] changes as under;

(i) Bound state wave function R , () is modified as
R™u(r)=N,, r'e 8" u(r) (6)

The term S™:(r) replaces the confluent hypergeometric
function used in the previous formulation [5]. Here N*, is the
modified normalization constant and for the bound state and
for 2p state (for /=1), it becomes
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N1 =N, (1-30A, —=320A,) (7
1/2
where No. = (0)5/2 [E] is the point Coulomb normalization
21 7
6 2

for the 2p state and
A, =Vk(ﬂ/a)kEVk(l.l3272/3)k (8)

The values of Vi's, for k=2 and 3 and for the elements Z=57 to
92, are obtained by interpolating [9] the screened Coulomb
potentials of McEnnan et al. [7].

The radial wave function S»,”(r) is a polynomial in r and, for
2p state, it becomes

1
S;k(r) =1+ A, (ar)* + 2A3(ar)2(3+§ar) ©)

Thus, the final form of the bound state wave function for n=2
and /=11is

a5/2[3

1/2
R ()= 2 [1—30/\ ~320A }e“”/z
207 6 |2 2 3

(10)

{1 +Ay(ar)? +2A4(ar)? 3+ ;ar)}

Screening also affects the binding energy of the L3 electron and

the modified binding energy becomes [10]

e

BE =—éa2(1+8/\1 +40A, +240A,) (11

(ii) The continuum states ¢' =/+1 i. e. ({' = 2 and 0), the
modified radial wave function is

*ox

ok 0 i o
iRp'e, =N, eS8, (pr) (12)
where p' is the magnitude of the asymptotic momentum for

screened wave function [9];

2(BE™ — BE) (13)

p'=p+ap and Ap—
511

1, S [0 +DQE+D) =3 + (0 +1)+3n* — £ +1)]
L Y
. Vs [2¢ Pr
N,‘/:N,‘(i 2 _ vl _ 2 2
e §£'(€,+1)(2€,+D7{5v 14300 +1)—(n* /v )}
7/\3\/ 3 [5n* +1=30(¢+1)]
[20+1-p,]
(14)
is the screened Coulomb normalization constant [9] and
O +1+iv
N ' :(2p)/ ‘ ( )‘em//2 (15)
pl e +2)

is the point Coulomb normalization constant for the continuum
stateand v = a/p.

202 2zv  and 2v? 212

Py =Py +—— Po=l=— P2 +
A ) 0 ™ -1 v 4P (16)

Thus, the screened continuum radial function is

517 (pr) =5, (pr)+ A2 Ay (O pry+ B Ayl pr)+ ... (17)
where s (pr)=M (' +1+iv,20'+2,2ipr) (18)
is the usual point Coulomb radial wave function and

Ak(f',pr):séik ak iv, M 1+ iv 5,20+ 2,2ipr) + (19)

BE (v, )L M 14 iv.20 +2,2ipr)
ov

Here M(f,g,z)= F,(f,g,z)/T(g)is the regular confluent

hyper-geometric expression and is evaluated from its series
expression with argument parameters f, gand z as [11]

[(fw—n!
(f-1!

(g+k—1) {?{ T(g)
(g-1 20)

(ii) a. For the continuum state /' = 2, the normalization constant
becomes [9]

1+0.25A,V* 303 +16][5— p, 21
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and
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Similarly,
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Thus, the screened continuum radial function for the state ¢' = 2
becomes

sy (pr) =M +iv,6.2ipr) + 4, (2, pr)+ 2 4,2, pr) +..... (25)
and the final form of the continuum wave function is

ok , ok iy %
R (P r)=Np,2rze "5, (pr) (26)
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(ii) b. Similarly, for the continuum state ¢' = 0, the
normalization constant becomes [9];

1+0.25A2v2¥[3v2 +10][1- po]} 27)

o pl? La+iv) zvi 5 )
PO 032 T _0.25/\3‘/4 —{5v" -1-4/v7[135]}
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Therefore, the screened continuum radial function for the state
/' =0 becomes

5o (pr)=M(1+iv,22ipr) + 24,0, pr)+ 2 4,(0, pr) + ... (31)

and the final form of the continuum wave function for /' = 0

%

sk , 5 i W
ERpo(p r)=pr0€ "y (pr) (32)

The single particle radial integral for bound (L=1) and
continuum (/'=2) state reduces as

Hox

R i =[5 o] 5, (0 (33)

Similarly, for L=1 and ¢' = 0 state

ok

R o= |, [ (o] s ()l (34)

Thus, for 2ps/2 state the screened alignment parameter

Ap7= | matrix0 + g‘ matrix2 (35)
ok 2 ok 2
2‘Rmatrixo + 4‘Rmatrix2

To check the authenticity of the present method of
calculation of A2**, the intermediate steps are compared with
our earlier formulation [5] of point Coulomb calculations. A
close agreement has been obtained among the values of
intermediate steps involved in both the formulations that
proved the reliability of these calculations and prompted us to
extend our calculations for elements La to U in the energy

region threshold to 60 keV. The calculations are performed in
mathematica 5.1 and the results are illustrated in Figure 1-5.

5. Results and discussion

The results show that screening has no effect on the shape
of plots of Az* at the lower end of energies but the values are
lowered by 4 to 10 % of the earlier values. For the elements
57 <Z <79 in the energy region 43 to 55 keV like the earlier
results [5] on Az, again the peak structures in A2* plots appear.
For elements 57 <Z < 63 the peak structure is distorted and the
gap between two groups of peaks increases, one group shifts
comparatively to lower energy and other shifts to higher
energy side (Figure 1). For the elements 64 < Z < 73, the peak
shifting is less but the peak becomes more prominent as
compared to the case of without screening (Figure 2). The peak
structure in Figure 3 for W shows the pattern similar to shifting
of lower group of peaks in case of La and the trend remains the
same up to Pt. For Au slight peak structure in A2* appears at the
high energies that was almost absent for Az in the same energy
region (Figure 4).

Similar A.* peaks, though low in intensity, appear for
elements Z=81 to 83. All this confirms that peak structures
have shifted to lower energy side. For elements Z>83 there is
smooth fall in A2* with energy (Figure 5). The peak structures
may be due to some disturbance of the point Coulomb potential
with the starting of the K shell ionization and the explanation
[5] still holds with screening effects though there is shift in
energy.

Alignment parameter A2” takes maximum value (~0.5) in
the regions starting from L3 threshold energy to about 30 to 45
keV for all the elements. The range shifts to higher energy side
for increasing Z'’s. For the elements with Z varying from 57 to
70 a decrease in the alignment value exists at ~30 keV (Figure
1-4).This downfall in the alignment also increases with Z’s and
attains its least value ~ 0.05 for the most of the elements.
Moreover, this down fall is in the form of peak structure in the
energy region 40 to 50 keV. The alignment remains almost
constant (~0.5) for all the high Z elements in the range 81 to 92
with a very small variation at the third decimal place
throughout whole energy range (Figure 5). The alignment
parameter values being > 0.1 at energies < 20 keV are certainly
higher than 5 to 8% uncertainties quoted in experimental
results. The presence of energy pockets where the alignment is
comparatively prominent requires further exploration either
with the precise measurements of low intensity L x-rays (L, and
La2) or by modifications of theoretical calculations. In Figures
1-5, A2 looks just as reflection or complement of variations in
Az and A;" values. Therefore, the explanation for the peak
structure [5] may still be appreciable for the screening effect
derived through analytical perturbation theory.
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