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been	introduced	as	surface	groups	either	within	the	dendritic	
branches	 or	 spread	 throughout	 the	 entire	 molecule	
architecture	 [11‐12].	 Porphyrin	 dendrimers	 are	 hybrid	
molecules	to	be	used	in	biomimetics,	artificial	photosynthesis,	
catalysis	 with	 biomedical	 applications	 and	 optoelectronics	
[13].	 Recent	 studies	 include	 the	 appendage	 of	 metal	 redox	
centers,	which	 are	 important	 for	 some	 regiospecific	 catalytic	
properties;	on	the	other	hand,	the	incorporation	of	porphyrins	
into	 dendrimers	 has	 shown	 an	 unusual	 photophysical	 and	
electrochemical	redox	behavior	[14‐15].	

The	 porphyrin‐core	 dendrimers	 have	 been	 studied	
because	 the	 terminal	 substituent	 groups	 on	 the	 photoactive	
core	can	modulate	their	physicochemical	properties.	This	fact	
has	been	extensively	studied	for	a	number	of	different	applica‐
tions	 such	 as	 catalysts,	 organic	 solar	 cells,	 photoelectron‐
chemical	 devices,	 light‐emitting	 diodes,	 and	 photodynamic	
therapy	[16].	Different	classes	of	dendrimers	bearing	8	and	32	
fluorene	 donor	 groups	 have	 been	 synthetized,	 and	 UV‐vis	
spectra	have	confirmed	that	the	individual	properties	of	donor	
and	 acceptor	moieties	 are	 preserved;	on	 the	 other	 hand,	 the	
efficient	energy	transfer	shown	by	these	dendrimers	has	been	
evidenced	by	fluorescence	spectroscopy	studies	[17].	

PAMAM	 dendrimers	 have	 been	 functionalized	 using	 a	
resorcinarene	 core,	 and	 it	 has	 been	 found	 that	 by	 this	
functionalization,	 it	 is	 possible	 to	 obtain	 nickel	 and	 copper	
retentions	of	35	and	70	%,	respectively,	in	neutral‐pH	aqueous	
solutions	 at	 room	 temperature.	 In	 addition,	 a	 study	 of	
trialkylamine	 compounds	 has	 shown	 that	 the	 retention	 of	
metal	cations	such	as	nickel,	copper,	lead,	zinc,	and	cobalt	from	
an	aqueous	solution	with	an	initial	concentration	of	25 ppm	at	
room	temperature	and	neutral	pH	can	be	highly	efficient:	 for	
Ni	(II),	 the	efficiency	was	up	to	96.00 %;	 for	Pb	(II),	 it	 ranged	
from	93.00	to	99.00 %;	and	for	Cu	(II),	it	almost	reached	100 %	
[18‐19].	The	use	of	dendrimers	as	templates	for	the	synthesis	
of	 metal	 particles	 is	 a	 promising	 methodology	 with	 applica‐
tions	in	either	the	catalysis	field	or	as	chemical	sensors	due	to	
the	globular	and	controlled	 structure	of	 these	molecules	 [20‐
22].	PAMAM	dendrimers	are	the	most	widely	used	compounds	
for	 these	 purposes	 because	 their	 structure	 and	 composition	
are	 uniform,	 so	 the	 obtained	 metallic	 particles	 are	
encapsulated	 inside	 the	 dendrimer	 and	 kept	 stable	 due	 to	 a	
steric	impediment	without	being	passivated	[23].		

The	method	 for	obtaining	metal	particles	encapsulated	 in	
dendrimers	consists	of	two	steps:	the	addition	of	metal	cations	
to	the	dendrimer	structure	and	the	chemical	reduction	of	these	
cations	to	obtain	neutral	metal	atoms.	The	synthesis	of	Au,	Pd,	
Pt	and	Ag	particles	has	been	reported	for	this	method	[24‐25].	
In	this	sense,	metallic	silver	particles	are	of	great	interest	due	
to	their	good	conductivity,	chemical	stability	and	catalytic	and	
antibacterial	 activity	 in	 addition	 to	 other	 biomedical	 applica‐
tions	 such	 as	 antivirals	 and	 fungicides	 [26‐27];	 furthermore,	
silver	 particles	 are	 important	 catalysts	 in	 the	 production	 of	
major	industrial	chemicals	because	these	metal	atoms	are	not	
affected	 by	 the	 reaction,	 and	 they	 are	 almost	 completely	
recovered	after	being	used	[28].		
	
2.	Experimental	
	
2.1.	Instrumentation	
	

Solvents	 and	 reagents	 were	 purchased	 from	 Aldrich	 and	
used	 without	 further	 purification.	 Infrared	 spectra	 were	
recorded	on	a	Nicolet	FT‐IR	Magna	700	spectrometer.	1H	(300	
MHz)	and	13C	NMR	(75	MHz)	spectra	were	recorded	on	a	JEOL	
Eclipse‐300	 equipment	 in	 CDCl3,	 and	 chemical	 shifts	 are	
expressed	 in	 ppm	 relative	 to	 tetramethylsilane	 used	 as	
internal	standard.	Mass	spectra	were	recorded	on	a	Micromass	
TofSpec	(MALDI‐TOF)	using	2,5‐dihydroxybenzoic	acid	(DHB)	
as	 matrix.	 The	 X‐ray	 photoelectron	 spectroscopy	 allowed	 to	
perform	 a	 surface‐sensitive‐quantitative‐spectroscopic	 and	

elemental	 analysis.	 The	 same	 reactions	were	performed	by	 a	
microwave	device	Monowave	300	Anton	PARR.	
	
2.2.	Synthesis	
	
2.2.1.	Tetraphenyl	porphyrin	with	four	active	points	(3a	
and	4a)	
	

Compound	 3a:	 2‐Methoxy	 benzaldehyde	 (0.6856	 g,	 5	
mmol)	was	added	to	pyrrole	(0.3354	g,	5	mmol)	at	70	°C,	using	
a	microwave	reactor	Monowave	300	with	constant	stirring	for	
2	 h.	 The	 presence	 of	 porphyrin	 (3a)	 was	 corroborated	 by	
means	of	 thin	 layer	chromatography	and	 it	was	continued	by	
column	 chromatography	 purification.	 An	 intense	 purple	
powder	was	 obtained	 (Scheme	 1).	 Color:	 Deep	 purple.	 Yield:	
10%.	FT‐IR	(KBr,	,	cm‐1):	3330,	1603,	1501,	1240,	1170,	998,	
750.	UV/Vis	 (CH3OH,	λmax,	nm):	230,	420,	525,	550,	600,	650.	
1H	 NMR	 (300	 MHz,	 DMSO‐d6,	 δ,	 ppm):	 ‐2.82	 (s,	 2H,	 pyrrole	
int.),	3.83	(s,	12H,	OCH3),	6.94‐7.27	(m,	8H,	Ar‐H),	8.01	(br,	8H,	
Ar‐H),	 8.34	 (br,	 8H,	 pyrrole).	 13C	 NMR	 (75	MHz,	 DMSO‐d6,	 δ,	
ppm):	 56.2	 (O‐CH3),	 99.13	 (methine),	 111.4	 (Ar),	 119.9	 (Ar),	
120.7	(pyrrole),	120.9	(Ar),	128.9	(Ar),	142.1	(pyrrole),	156.65	
(Ar‐porphyrin),	161.1	(pyrrole).	MALDI‐TOF	(m/z):	734.	Anal.	
calcd.	 for	 C48H38N4O4:	 C,	 78.45;	 H,	 5.21;	 N,	 7.62.	 Found:	 C,	
77.29;	H,	5.67;	N,	7.47%.	

Compound	 4a:	 Afterwards,	 porphyrin	 3a	 (0.1	 g,	 0.136	
mmol)	 was	 added	 to	 50	 mL	 of	 dichloromethane	 at	 100	 °C,	
obtaining	a	homogeneous	solution.	Later,	it	was	cooled	at	0	°C	
to	 add	BBr3	 (0.1363	 g,	 0.5443	mmol).	 The	 reaction	was	 kept	
under	 constant	 stirring	 for	 24	h.	 The	product	was	 dried	 in	 a	
rotary	 evaporator	 and	 later,	 it	 was	 precipitated	 using	 a	
dichloromethane‐hexane	 solution	 (1:1,	 v:v),	 obtaining	 the	
unprotected	 porphyrin	 4a	 (Scheme	 1).	 Color:	 Deep	 purple.	
Yield:	97%.	UV/Vis	(CH3OH,	λmax,	nm):	200,	230,	420,	525,	550,	
600,	650.	FT‐IR	(KBr,	,	cm‐1):	3580,	1603,	1501,	1240,	1070,	
998,	 750.	 1H	 NMR	 (300	 MHz,	 CDCl3,	 δ,	 ppm):	 ‐2.82	 (s,	 2H,	
pyrrole	 int.),	 5.35	 (s,	 4H,	 O‐CH3),	 6.94‐7.27	 (m,	 8H,	 Ar),	 8.01	
(br,	8H,	Ar),	8.34	(a,	8H,	pyrrole).	13C	NMR	(75	MHz,	CDCl3,	δ,	
ppm):	99.13	(methine),	111.4	(Ar),	119.9	(Ar),	120.7	(pyrrole),	
120.9	(Ar),	128.9	(Ar),	142.1	(pyrrole),	156.65	(Ar‐porphyrin),	
161.1	 (pyrrole).	 MALDI‐TOF	 (m/z):	 678.23.	 Anal.	 calcd.	 for	
C44H30N4O4:	C,	77.86;	H,	4.46;	N,	8.25.	Found:	C,	77.63;	H,	5.11;	
N,	8.29%.	
	
2.2.2.	Tetraphenyl	porphyrin	with	twelve	active	points	(3b	
and	4b)	
	

2,4,6‐Trimethoxy	 benzaldehyde	 (0.1	 g,	 5	 mmol)	 and	
trifluoroacetic	acid	(0.149	g,	1.3067	mmol)	were	added	to	50	
mL	 of	 dichloromethane	 at	 70	 °C	 and	 constant	 stirring.	
Afterwards,	 pyrrole	 (0.3354	 g,	 5	 mmol)	 was	 added	 and	 the	
reaction	continued	at	room	temperature	for	72	h.	Finally,	2,3‐
dichloro‐5,6‐dicyano‐1,4‐benzoquinone	(1.135	g,	5	mmol)	was	
added	at	 room	temperature	and	 the	 reaction	was	carried	out	
for	24	h	more.	The	presence	of	porphyrin	was	corroborated	by	
thin	 layer	 chromatography	 and	 it	 was	 purified	 by	 column	
chromatography	(Scheme	1).	

Compound	3b:	Color:	Reddish	powder.	Yield:	13	%.	UV/Vis	
(CH3OH,	 λmax,	 nm):	 220,	 301,	 418,	 518,	 545,	 589,	 657.	 FT‐IR	
(KBr,	,	cm‐1):	3118,	1673,	1200,	1090,	820,	730.	1H	NMR	(300	
MHz,	CDCl3,	δ,	ppm):	‐2.84	(s,	2H,	pyrrole	int.),	3.68	(s,	36H,	O‐
CH3),	 7.15‐7.24	 (m,	 8H,	 Ar),	 8.01	 (br,	 4H,	 Ar),	 8.17	 (br,	 4H,	
pyrrole).	13C	NMR	(75	MHz,	CDCl3,	δ,	ppm):	56.2	(O‐CH3),	90.8	
(Ar),	 91.1	 (Ar),	 102.6	 (Ar‐ring),	 103.1	 (methine),	 122.7	
(pyrrole),	132.1	(pyrrole),	142.33	(pyrrole),	158.9	(Ar),	159.6	
(Ar),	162.41	(pyrrole).	MALDI‐TOF	(m/z):	974.37.	Anal.	calcd.	
for	C56H54N4O12:	C,	68.98;	H,	5.58;	N,	5.75.	Found:	C,	69.11;	H,	
5.73;	N,	5.81%.	

Compound	 4b:	 Porphyrin	 3b	 (0.1	 g,	 0.1025	 mmol)	 was	
added	to	50	mL	of	dichloromethane	at	100	°C	until	obtaining	a	
homogenous	solution.		
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Scheme	1
	
	
Later,	 it	was	cooled	at	0	°C	 to	add	BBr3	(0.3082	g,	1.2306	

mmol).	The	reaction	was	kept	under	constant	stirring	for	24	h.	
The	 product	 was	 dried	 in	 a	 rotary	 evaporator	 and	 later	
precipitated	 with	 a	 dichloromethane‐hexane	 solution,	
obtaining	the	unprotected	porphyrin‐2,	4b	(Scheme	1).	Color:	
Purple.	Yield:	91%.	UV/Vis	 (CH3OH,	 λmax,	nm):	220,	301,	418,	
518,	 545,	 589,	 657.	 FT‐IR	 (KBr,	 ,	 cm‐1):	 3638,	 1673,	 1200,	
1010,	820,	730.	1H	NMR	(300	MHz,	CDCl3,	δ,	ppm):	‐2.84	(s,	2H,	
pyrrole	int.),	5.89	(s,	12H,	OH),	7.15‐7.24	(m,	8H,	Ar),	8.01	(br,	
4H,	 Ar),	 8.17	 (br,	 4H,	 pyrrole).	 	 13C	 NMR	 (75	MHz,	 CDCl3,	 δ,	
ppm):	91.04	(Ar),	91.78	(Ar),	102.6	(Ar‐ring),	103.1	(methine),	
122.7	(pyrrole),	132.1	(pyrrole),	142.33	(pyrrole),	158.9	(Ar),	
159.6	(Ar),	162.41	(pyrrole).	MALDI‐TOF	(m/z):	806.19.	Anal.	
calcd.	 for	 C44H30N4O12:	 C,	 65.51;	 H,	 3.75;	 N,	 6.94.	 Found:	 C,	
65.23;	H,	4.13;	N,	7.04%.	
	
2.2.3.	Synthesis	of	0.5	generation	dendrimers	(6a,	6b)	
	

Separately,	 cesium	 carbonate	 (0.1920	 g,	 0.5893	 mmol;	
0.4846	 g,	 1.4874	mmol)	 and	 unprotected	 porphyrins	4a,	4b	
(0.1	g,	0.1473	mmol;	0.1	g,	0.1239	mmol)	were	added	to	70	mL	
of	acetone	at	110	°C	for	1	h.	Finally,	methyl	bromo	acetate	(0.9	
g,	 0.5893	 mmol;	 0.2275	 g,	 1.4874	 mmol)	 was	 added.	 The	
reaction	was	kept	for	11	h	more	under	constant	stirring	at	the	
same	 temperature.	 The	 presence	 of	 the	 product	 was	
corroborated	 by	 thin	 layer	 chromatography	 and	 it	 was	
purified	 by	 filtering	 the	 solution	 in	 order	 to	 eliminate	 the	
cesium	 carbonate	 and	 later	 drying	 it	 in	 a	 rotary	 evaporator,	
finishing	with	a	precipitation	using	a	dichloromethane‐hexane	
solution	(1:1,	v:v),	obtaining	the	0.5	generation	dendrimer	6a,	
6b	as	an	intense	purple	powder	(Scheme	2).	

	

Compound	 6a:	 Color:	 Metallic	 purple.	 Yield:	 90%.	 UV/Vis	
(CH3OH,	 λmax,	 nm):	 220,	 255,	 421,	 522,	 568,	 597,	 679.	 FT‐IR	
(KBr,	 ,	 cm‐1):	 3448,	 3314,	 2986,	 2851,	 1754,	 1603,	 1509,	
1223,	1168.	 1H	NMR	(300	MHz,	CD3OD,	δ,	ppm):	 ‐2.88	(s,	2H,	
pyrrole	int.),	3.94	(s,	12H,	O‐CH3),	4.91	(s,	8H,	CH2‐C=O)	7.24‐
7.28	 (m,	 8H,	Ar),	 8.09‐8.10	 (m,	8H,	Ar),	 8.12	 (s,	 8H,	pyrrole).	
13C	 NMR	 (75	 MHz,	 CD3OD,	 δ,	 ppm):	 51.9	 (O‐CH3),	 64.89	 (O‐
C*H2‐C=O),	 99.3	 (Ar‐ring),	 114.36	 (Ar),	 118.87	 (pyrrole),	
119.21	 (Ar‐ring),	 120.64	 (Ar),	 127.67	 (Ar),	 142.13	 (pyrrole),	
155.7	 (pyrrole),	 157.82	 (Ar),	 162.31	 (pyrrole),	 170.12	 (C=O).	
MALDI‐TOF	 (m/z):	 966.31.	 Anal.	 calcd.	 for	 C56H46N4O12	 :	 C,	
69.56;	H,	4.79;	N,	5.79.	Found:	C,	69.98;	H,	4.81;	N,	5.27%.	

Compound	 6b:	 Color:	 Metallic	 purple.	 Yield:	 57%.	 UV/Vis	
(CH3OH,	 λmax,	 nm):	 209,	 351,	 418,	 518,	 555,	 596,	 653.	 FT‐IR	
(KBr,	 ,	 cm‐1):	 2945,	 2852,	 1731,	 1648,	 1605,	 1539,	 1505,	
1221,	 1176.	 1H	NMR	 (300	MHz,	 CDCl3,	 δ,	 ppm):	 ‐2.79	 (s,	 2H,	
pyrrole	 int.),	 3.46	 (br,	 36H,	 O‐CH3),	 4.79	 (s,	 24H,	 CH2C=O),	
7.18‐7.37	(m,	8H,	Ar),	8.16	(br,	4H,	Ar),	8.85	(br,	4H,	pyrrole).	
13C	NMR	(75	MHz,	CDCl3,	δ,	ppm):	51.9	(O‐CH3),	64.89	(O‐C*H2‐
C=O),	 99.3	 (Ar‐ring),	 114.36	 (Ar),	 118.87	 (pyrrole),	 119.21	
(Ar‐ring),	 120.64	 (Ar),	 127.67	 (Ar),	 142.13	 (pyrrole),	 155.7	
(pyrrole),	157.82	(Ar),	162.31	(pyrrole),	170.12	(C=O).	MALDI‐
TOF	(m/z):	1481.34.	Anal.	calcd.	 for	C80H78N4O24	 :	C,	64.95;	H,	
5.31;	N,	3.79.	Found:	C,	67.34;	H,	5.77;	N,	3.56.	
	
2.2.4.	Synthesis	of	generation	1	dendrimers	(8a,	8b)	
	

Separately,	 solutions	 adding	 ethylendiamine	 (0.024	 g,	
0.4136	mmol;	 0.043	 g,	 0.7179	mmol)	 to	50	mL	of	 a	1:1	 (v:v)	
methanol:benzene	 mixture	 of	 compounds	 6a	 and	 6b	 (0.1	 g,	
0.1034	 mmol;	 0.1	 g,	 0.0598	 mmol)	 were	 prepared	 at	 80	 °C	
with	constant	stirring	for	36	h.		
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Scheme	2
	
	
The	 formation	 of	 the	 product	 was	 corroborated	 by	 thin	

layer	 chromatography	 and	 it	 was	 purified	 by	 drying	 the	
solution	 in	 a	 rotary	 evaporator	 and	 precipitating	 it	 with	 a	
dichlorometane:hexane	 (1:1,	 v:v)	 solution,	 obtaining	 the	
generation	 1	 dendrimer	8a,	8b	 as	 a	 purple	 powder	 (Scheme	
2).	

Compound	8a:	Color:	Purple.	Yield:	94%.	UV/Vis	(CH3OH+	
CH2Cl2,	 λmax,	 nm):	 233,	 267,	 433,	 556,	 596,	 654,	 716.	 FT‐IR	
(KBr,	 ,	 cm‐1):	 3360,	 3316,	 2948,	 1671,	 1603,	 1504,	 1239,	
1169,	1059.	1H	NMR	(300	MHz,	DMSO‐d6,	δ,	ppm):	‐2.64	(s,	2H,	
pyrrole	 int.),	 1.96	 (t,	 8H,	 NH2),	 2.99	 (br,	 8H,	 CH*2‐NH2),	 3.54	
(br,	8H,	NH‐CH2*),	4.01	(s,	8H,	CH2‐C=O),	7.17‐7.21	(m,	8H,	Ar),	
7.37	 (s,	 8H,	Ar),	 8.04	 (br,	 4H,	NH),	8.80	 (br,	 8H,	pyrrole).	 13C	
NMR	(75	MHz,	DMSO‐d6,	δ,	ppm):	38.74	(CH2‐NH2),	48.97	(NH‐
CH2),	67.41	(C*H2‐C=O),	102.44	(methine),	116.72	(Ar),	118.97	
(pyrrole),	 122.14	 (Ar),	 123.41	 (Ar‐ring),	 127.26	 (Ar),	 130.79	
(Ar),	 143.32	 (pyrrole),	 159.48	 (Ar‐ring),	 163.16	 (pyrrole),	
173.49	 (C=O).	 MALDI‐TOF	 (m/z):	 1080.88.	 Anal.	 calcd.	 for	
C60H62N12O8	 :	 C,	 66.77;	 H,	 5.79;	 N,	 15.57.	 Found:	 C,	 67.02;	 H,	
5.76;	N,	15.32%.	

Compound	8b:	Color:	Purple.	Yield:	34%.	UV/Vis	(CH3OH+	
CH2Cl2,	 λmax,	 nm):	 204,	 317,	 418,	 527,	 561,	 599,	 687.	 FT‐IR	
(KBr,	 ,	 cm‐1):	 3249,	 2945,	 2871,	 1657,	 1602,	 1532,	 1503,	
1224,	1173.	1H	NMR	(300	MHz,	DMSO‐d6,	δ,	ppm):	‐2.91	(s,	2H,	
pyrrole	int.),	2.84	(br,	24H,	NH2),	3.12	(s,	48H,	NH‐CH*2‐CH*2‐
NH2),	4.82	(br,	24H,	CH2‐C=O),	7.43	(br,	8H,	Ar),	8.12‐8.21	(m,	
8H,	pyrrole),	8.84	(br,	12H,	NH).	13C	NMR	(75	MHz,	DMSO‐d6,	δ,	
ppm):	 38.74	 (CH2‐NH2),	 48.97	 (NH‐CH2),	 67.41	 (C*H2‐C=O),	
102.44	(methine),	116.72	(Ar),	118.97	(pyrrole),	122.14	(Ar),	
123.41	 (Ar‐ring),	 127.26	 (Ar),	 130.79	 (Ar),	 143.32	 (pyrrole),	
159.48	(Ar‐ring),	163.16	(pyrrole),	173.49	(C=O).	MALDI‐TOF	
(m/z):	2007.95.	Anal.	calcd.	for	C92H126N28O24:	C,	55.02;	H,	6.32;	
N,	19.53.	Found:	C,	54.81;	H,	6.64;	N,	19.67%.	
	
2.2.5.	Synthesis	of	the	functionalized	generation	1	
dendrimer	(10a)	
	

Generation	1	dendrimer	8a	(0.1	g,	0.0926	mmol)	and	ethyl	
2‐(2‐chloroacetamido)‐4‐thiazole	acetate	(0.3715	mmol)	were	

added	to	20	mL	of	benzene.	The	reaction	was	cooled	down	at	
room	 temperature	 with	 constant	 stirring.	 The	 coupling	 was	
instantaneous,	 obtaining	 compound	 10a	 (Scheme	 3).	 Color:	
Pink.	Yield:	91%.	1H	NMR	(300	MHz,	CDCl3+DMSO‐d6,	δ,	ppm):	
‐2.74	(s,	2H,	pyrrole	 int.),	1.28	(s,	12H,	CH2‐CH3*),	2.58	(s,	8H,	
NH‐CH2),	 2.86	 (br,	 8H	CH2‐C=O),	 3.68	 (s,	 16H,	 CH2‐C=O,	 CH2‐
NH),	4.13	(s,	8H,	CH2*‐CH3),	4.86	(s,	8H,	CH2‐C=O),	6.67	(s,	4H,	
thiazole	 ring),	6.82	 (s,	4H,	NH‐thiazole	 ring),	7.31	 (s,	8H,	Ar),	
7.51	 (s,	 8H,	 Ar),	 7.97	 (s,	 8H,	 pyrrole),	 9.81	 (br,	 8H,	 NH).	 13C	
NMR	(75	MHz,	CDCl3+DMSO‐d6,	δ,	ppm):	13.59	(CH2‐CH3),	36.6	
(CH2C=O),	 39.77	 (NH‐CH2),	 40.05	 (CH2‐NH),	 51.4	 (CH2‐C=O),	
60.2	(CH2‐CH3),	66	(CH2‐C=O),	112.4	(methine),	122	(CH,	ring‐
CH2),	128	(Ar),	134.6	(CH=CH,	ring),	143.8	(pyrrole),	145	(Ar),	
151	(pyrrole)	157.03	(C‐O),	161	(N‐CH‐S,	ring),	164.24	(C=O),	
169.55	 (C=O),	 173	 (C=O).	 MALDI‐TOF	 (m/z):	 1997.67.	 Anal.	
calcd.	for	C97H104N20O20S4	:	C,	58.30;	H,	5.25;	N,	14.02.	Found:	C,	
58.45;	H,	5.41;	N,	13.71%.	
	
3.	Results	and	discussion		
	
3.1.	Synthesis	
	

Porphyrin‐3a	and	3b	were	synthesized	by	a	condensation	
reaction	 between	 pyrrole	 (1)	 and	 2‐methoxybenzaldehyde	
(2a)	 and	 2,4,6‐trimethoxybenzaldehyde	 (2b).	 The	 reaction	
was	performed	for	35	min	at	80	°C	by	means	of	a	microwave	
reactor	Monowave	300.	Compounds	3a	and	3b	were	obtained	
as	very	 intense	purple	powders	with	an	approximate	yield	of	
3%,	Scheme	1.	

The	 obtained	 porphyrins	 (compounds	 3a	 and	 3b)	 were	
characterized	 firstly	 by	 UV‐vis	 spectrometry,	 finding	 five	
typical	 porphyrin	 bands:	 a	 high	 intensity	 band	 known	 as	 the	
Soret	 band	 appears	 at	 420	nm	 and	 four	 low	 intensity	 bands,	
known	as	the	Q	bands,	are	located	between	500	and	700	nm;	
at	200	and	230	nm,	two	bands	can	be	seen,	which	correspond	
to	 the	 aliphatic	 chains	 for	 both	 compounds.	 The	 structures	
were	confirmed	by	1H	and	13C	NMR,	where	the	most	important	
signals	for	internal	protons	in	the	porphyrine	group	appeared	
at	 δ	 ‐2.82	 ppm	 for	 compound	 3a,	 and	 at	 δ	 ‐2.84	 ppm	 for	
compound	3b.		
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