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Figure	1.	General	synthetic	strategies	of	pyridazine	ring	systems.	
	
	
2.2.	Synthesis	
	

Azaenamines	1a,b	were	prepared	in	a	similar	procedure	to	
that	 reported	 by	 Reynolds	 et	 al.	 [24].	 All	 α‐cyanoacrylamide	
derivatives	 (2a‐e	 and	16)	 in	 this	 paper	were	 prepared	 via	 a	
typical	 Knoevenagel	 condensation	 procedure	 [25].	 The	
synthetic	 strategies,	 physical	 data	 and	 spectral	 characteri‐
zation	of	the	newly	synthesized	products	are	stated	below.	
	
2.2.1.	Synthesis	of	6‐acetyl‐3‐amino‐N,2,5‐triphenyl‐2,5‐
dihydropyridazine‐4‐carboxamide	(8a)	
	

A	 mixture	 of	 azaenamine	 1a	 (162	 mg,	 1	 mmol)	 and	
activated	 cyanoacrylamide	 derivative	 2a	 (248	 mg,	 1	 mmol)	
was	 heated	 at	 reflux	 in	 dioxane	 (10	 mL)	 in	 the	 presence	 of	
piperidine	 (0.2	 mL,	 2	 mmol)	 for	 5	 h.	 The	 solvent	 was	
evaporated	 under	 reduced	 pressure	 and	 the	 collected	 solid	
was	 crystallized	 from	 ethanol:dioxane	 mixture	 (5:1,	 v:v,	 10	
mL)	 to	 give	 compound	 8a	 (Scheme	 1).	 Yield:	 375	 mg,	 915	
mmol,	91%.	Color:	Bright	yellow	crystals.	M.p.:	190‐192	°C.	FT‐
IR	(KBr,	ν,	cm‐1):	3360,	3181	(NH)	(br,	CONH	and	NH2),	1673	
(CO)	(COCH3),	1634	(CO)	(CONH).	 1H	NMR	(400	MHz,	DMSO‐
d6,	δ,	ppm):	2.39	(s,	3H,	CH3),	5.72	(s,	1H,	pyridazine‐H),	6.96‐
7.59	(m,	17H,	Ar‐H	and	NH2),	9.05	(br	s,	1H,	NH).	13C	NMR	(100	
MHz,	DMSO‐d6,	 δ,	 ppm):	 25.6	 (CH3),	 33.4	 (CH),	66.6	 (C),	 78.4	
(C),	 121.4	 (CH),	 123.1	 (CH),	 126.2	 (CH),	 127.2	 (CH),	 127.7	
(CH),	 128.1	 (CH),	 128.6	 (CH),	 129.1	 (CH),	 130.0	 (CH),	 140.1	
(C),	143.3	(C),	146.5	(C),	151.2	(C),	167.9	(C),	196.9	(C).	MS	(EI,	
m/z	(%)):	411	[(M+1)+]	(1),	410	[M+]	(2),	366	(1),	333	(8),	318	
(10),	291	(100),	248	(22),	93	(7),	77	(23).	HRMS	(EI)	calcd.	for	
C25H22N4O2:	 410.1743;	 found:	 410.1766.	 Anal.	 calcd.	 for	
C25H22N4O2:	 C,	 73.15;	 H,	 5.40;	 N,	 13.65.	 Found:	 C,	 73.09;	 H,	
5.36;	N,	13.42%.	
	
2.2.2.	Synthesis	of	6‐acetyl‐3‐amino‐2,5‐diphenyl‐N‐(p‐tolyl)	
‐2,5‐dihydropyridazine‐4‐carboxamide	(8b)	
	

Following	 the	 procedure	 given	 for	 compound	 8a,	
azaenamine	 1a	 (162	 mg,	 1	 mmol)	 and	 cyanoacrylamide	
derivative	2b	 (262	mg,	1	mmol)	were	reacted	 in	dioxane	(10	
mL)	in	presence	of	piperidine	(0.2	mL,	2	mmol).	Crystallization	
of	the	isolated	product	from	ethanol:dioxane	mixture	(5:1,	v:v,	
10	mL)	afforded	the	compound	8b	(Scheme	1).	Yield:	382	mg,	
901	mmol,	90%.	Color:	Golden	yellow	crystals.	M.p.:	198‐200	
°C.	IR	(KBr,	ν,	cm‐1):	3392	(NH)	(br,	CONH	and	NH2),	1631	(CO)	
(br,	COCH3	and	CONH).	1H	NMR	(400	MHz,	DMSO‐d6,	δ,	ppm):	

2.23	(s,	3H,	CH3),	2.36	(s,	3H,	CH3CO),	5.65	(s,	1H,	pyridazine‐
H),	7.03‐7.56	(m,	16H,	Ar‐H	and	NH2),	8.95	(br	s,	1H,	NH).	13C	
NMR	(100	MHz,	DMSO‐d6,	δ,	ppm):	20.9	(CH3),	25.3	(CH3),	33.4	
(CH),	78.4	(C),	121.4	(CH),	126.1	(CH),	127.2	(CH),	127.7	(CH),	
128.1	 (CH),	 128.9	 (CH),	 129.0	 (CH),	 129.9	 (CH),	 132.0	 (C),	
137.4	 (C),	 140.7	 (C),	 143.3	 (C),	 146.5	 (C),	 150.7	 (C),	 167.9	
(CONH),	 196.5	 (COCH3).	MS	 (EI,	m/z	 (%)):	 424	 [M+]	 (5),	 318	
(10),	290	(100),	248	(15),	214	(4),	106	(5),	77	(21).	HRMS	(EI)	
calcd.	 for	C26H24N4O2:	424.1899;	 found:	424.1876.	Anal.	calcd.	
for	C26H24N4O2:	C,	73.56;	H,	5.70;	N,	13.20.	Found:	C,	73.49;	H,	
5.66;	N,	13.18%.	
	
2.2.3.	Synthesis	of	6‐acetyl‐3‐amino‐N‐(4‐nitrophenyl)‐2,5‐
diphenyl‐2,5‐dihydropyridazine‐4‐carboxamide	(8c)	
	

Following	 the	 procedure	 given	 for	 compound	 8a,	
azaenamine	 1a	 (162	 mg,	 1	 mmol)	 and	 cyanoacrylamide	
derivative	2c	 (293	mg,	1	mmol)	were	 reacted	 in	dioxane	 (10	
mL)	in	presence	of	piperidine	(0.2	mL,	2	mmol).	Crystallization	
of	the	isolated	product	from	ethanol:dioxane	mixture	(5:1,	v:v,	
10	mL)	afforded	the	compound	8c	(Scheme	1).	Yield:	398	mg,	
877	mmol,	88%.	Color:	Orange	solid.	M.p.:	192‐194	°C.	IR	(KBr,	
ν,	cm‐1):	3460	(NH)	(br,	CONH	and	NH2),	1684	(CO)	 (COCH3),	
1644	(CO)	(CONH).	1H	NMR	(400	MHz,	DMSO‐d6,	δ,	ppm):	2.37	
(s,	3H,	CH3CO),	5.76	 (s,	1H,	pyridazine‐H),	7.17‐8.16	 (m,	16H,	
Ar‐H	and	NH2),	9.56	(br	s,	1H,	NH).	13C	NMR	(100	MHz,	DMSO‐
d6,	δ,	ppm):	25.3	(CH3),	33.2	(CH),	77.9	(C),	120.0	(CH),	124.9	
(CH),	 126.3	 (CH),	 127.3	 (CH),	 127.6	 (CH),	 128.4	 (CH),	 129.1	
(CH),	 130.1	 (CH),	 140.5	 (C),	 141.7	 (C),	 143.2	 (C),	 147.0	 (C),	
151.9	(C),	168.1	(C),	196.7	(C).	MS	(EI,	m/z	(%)):	455	[M+]	(3),	
409	(9),	318	(12),	290	(100),	248	(13),	92	(27),	77	(30).	HRMS	
(EI)	 calcd.	 for	 C25H21N5O4:	 455.1594;	 found:	 455.1578.	 Anal.	
calcd.	 for	 C25H21N5O4:	 C,	 65.93;	 H,	 4.65;	 N,	 15.38.	 Found:	 C,	
65.88;	H,	4.63;	N,	15.36%.	
	
2.2.4.	Synthesis	of	6‐acetyl‐3‐amino‐2‐(4‐chlorophenyl)‐N,5‐
diphenyl‐2,5‐dihydropyridazine‐4‐carboxamide	(8d)	
	

Following	 the	 procedure	 given	 for	 compound	 8a,	
azaenamine	 1b	 (196	 mg,	 1	 mmol)	 and	 cyanoacrylamide	
derivative	2a	 (248	mg,	1	mmol)	were	reacted	 in	dioxane	(10	
mL)	in	presence	of	piperidine	(0.2	mL,	2	mmol).	Crystallization	
of	the	isolated	product	from	ethanol:dioxane	mixture	(5:1,	v:v,	
10	mL)	afforded	the	compound	8d	(Scheme	1).	Yield:	414	mg,	
932	mmol,	93%.	Color:	Pale	yellow	solid.	M.p.:	194‐196	°C.		
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Scheme	1
	
	
IR	 (KBr,	 ν,	 cm‐1):	 3321	 (NH)	 (br,	 CONH	 and	 NH2),	 1649	

(CO)	(COCH3),	1625	(CO)	(CONH).	 1H	NMR	(400	MHz,	DMSO‐
d6,	 δ,	 ppm):	 2.36	 (s,	 3H,	 CH3CO),	 5.67	 (s,	 1H,	 pyridazine‐H),	
6.97‐7.58	(m,	16H,	Ar‐H	and	NH2),	9.03	(br	s,	1H,	NH).	MS	(EI,	
m/z	(%)):	447	(1)	[(M+2)+],	446	(1),	445	[M+]	(4),	409	(8),	430	
(12),	368	(23),	318	(34),	290	(100),	186	(14),	77	(53).	HRMS	
(EI)	 calcd.	 for	 C25H21ClN4O2:	 446.1324	 [(M+2)+],	 444.1353	
[M+];	found:	446.1315	[(M+2)+],	444.1346	[M+].	Anal.	calcd.	for	
C25H21ClN4O2:	 C,	 67.49;	H,	 4.76;	N,	 12.59.	 Found:	 C,	 67.47;	H,	
4.73;	N,	12.58%.	
	
2.2.5.	Synthesis	of	6‐acetyl‐3‐amino‐2‐(4‐chlorophenyl)‐5‐
phenyl‐N‐(p‐tolyl)‐2,5‐dihydropyridazine‐4‐carboxamide	
(8e)	
	

Following	 the	 procedure	 given	 for	 compound	 8a,	
azaenamine	 1b	 (196	 mg,	 1	 mmol)	 and	 cyanoacrylamide	
derivative	2b	 (262	mg,	1	mmol)	were	reacted	 in	dioxane	(10	
mL)	in	presence	of	piperidine	(0.2	mL,	2	mmol).	Crystallization	
of	the	isolated	product	from	ethanol:dioxane	mixture	(5:1,	v:v,	
10	mL)	afforded	the	compound	8e	(Scheme	1).	Yield:	403	mg,	

880	mmol,	88%.	Color:	Beige	solid.	M.p.:	186‐188	°C.	IR	(KBr,	
ν,	cm‐1):	3410	(NH)	(br,	CONH	and	NH2),	1678	(CO)	 (COCH3),	
1662	(CO)	(CONH).	1H	NMR	(400	MHz,	DMSO‐d6,	δ,	ppm):	2.22	
(s,	 3H,	 CH3),	 2.36	 (s,	 3H,	 CH3CO),	 5.64	 (s,	 1H,	 pyridazine‐H),	
7.02‐7.58	(m,	15H,	Ar‐H	and	NH2),	8.96	(br	s,	1H,	NH).	MS	(EI,	
m/z	 (%)):	461	(2),	460	(1),	459	[M+]	(5),	444	(17),	424	(23),	
416	(12),	401	(26),	380	(19),	318	(36),	290	(100),	166	(13),	92	
(54),	 77	 (62).	 HRMS	 (EI)	 calcd.	 for	 C26H23ClN4O2:	 460.1480	
[(M+2)+],	458.1510	[M+];	found:	460.1522	[(M+2)+],	458.1502	
[M+].	Anal.	calcd.	 for	C26H23ClN4O2:	C,	68.04;	H,	5.05;	N,	12.21.	
Found:	C,	68.06;	H,	5.02;	N,	12.17%.	
	
2.2.6.	Synthesis	of	methyl	2‐(6‐acetyl‐3‐amino‐2,5‐diphenyl‐
2,5‐dihydropyridazine‐4‐carboxamido)benzoate	(8f)	
	

Following	 the	 procedure	 given	 for	 compound	 8a,	
azaenamine	 1a	 (162	 mg,	 1	 mmol)	 and	 cyanoacrylamide	
derivative	2d	 (306	mg,	1	mmol)	were	reacted	 in	dioxane	(10	
mL)	in	presence	of	piperidine	(0.2	mL,	2	mmol).	Crystallization	
of	the	isolated	product	from	ethanol:dioxane	mixture	(5:1,	v:v,	
10	mL)	afforded	the	compound	8f	(Scheme	1).		
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Scheme	2
	
	
Yield:	 399	 mg,	 853	 mmol,	 85%.	 Color:	 Bright	 yellow	

crystals.	M.p.:	206‐208	°C.	 IR	 (KBr,	ν,	 cm‐1):	3410,	3307	(NH)	
(br,	 CONH	 and	 NH2),	 1685	 (CO)	 (COOCH3),	 1644	 (CO)	 (br,	
COCH3	and	CONH).	1H	NMR	(400	MHz,	DMSO‐d6,	δ,	ppm):	2.09	
(s,	3H,	CH3CO),	3.91	 (s,	3H,	COOCH3),	5.47	 (s,	1H,	pyridazine‐
H),	7.06‐8.59	(m,	16H,	Ar‐H	and	NH2),	10.91	(br	s,	1H,	NH).	13C	
NMR	(100	MHz,	DMSO‐d6,	δ,	ppm):	25.3	(CH3),	34.2	(CH),	53.3	
(CH3),	77.9	(C),	115.4	(C),	120.7	(CH),	122.2	(CH),	126.2	(CH),	
127.5	 (CH),	 128.0	 (CH),	 128.3	 (CH),	 129.2	 (CH),	 130.2	 (CH),	
131.2	 (CH),	134.7	 (CH),	140.5	 (C),	142.1	 (C),	142.2	 (C),	146.5	
(C),	151.8	(C),	167.8	(C),	168.5	(C),	196.7	(C).	MS	(EI,	m/z	(%)):	
468	[M+]	(3),	453	(5),	425	(11),	440	(19),	409	(37),	394	(43),	
360	 (22),	 318	 (36),	 290	 (100),	 248	 (22),	 146	 (19),	 77	 (28).	
HRMS	 (EI)	 calcd.	 for	 C27H24N4O4:	 468.1798;	 found:	 468.1778.	
Anal.	calcd.	for	C27H24N4O4:	C,	69.22;	H,	5.16;	N,	11.96.	Found:	
C,	69.18;	H,	5.13;	N,	11.98%.	
	
2.2.7.	Synthesis	of	6‐acetyl‐3‐amino‐N‐butyl‐2,5‐diphenyl‐
2,5‐dihydropyridazine‐4‐carboxamide	(8g)	
	

Following	 the	 procedure	 given	 for	 compound	 8a,	
azaenamine	 1a	 (162	 mg,	 1	 mmol)	 and	 cyanoacrylamide	
derivative	2e	 (228	mg,	1	mmol)	were	 reacted	 in	dioxane	(10	
mL)	in	presence	of	piperidine	(0.2	mL,	2	mmol).	Crystallization	
of	the	isolated	product	from	ethanol:dioxane	mixture	(5:1,	v:v,	
10	mL)	afforded	the	compound	8g	(Scheme	1).	Yield:	349	mg,	
895	mmol,	89%.	Color:	Yellowish‐white	crystals.	M.p.:	158‐160	
°C.	 IR	 (KBr,	 ν,	 cm‐1):	 3411,	 3173	 (NH)	 (br,	 CONH	 and	 NH2),	
1678	 (CO)	 (COCH3),	 1632	 (CO)	 (CONH).	 1H	 NMR	 (400	 MHz,	
DMSO‐d6,	 δ,	 ppm):	 0.81	 (t,	 3H,	 CH3CH2),	 1.13	 (m,	 2H,	
CH3CH2CH2),	1.33	(m,	2H,	CH3CH2CH2CH2),	2.34	(s,	3H,	CH3CO),	
3.06	(m,	2H,	CH2CH2NH),	5.28	(s,	1H,	pyridazine‐H),	7.03	(br	s,	
2H	 ,	 NH2),	 7.05‐7.53	 (m,	 11H,	 Ar‐H	 and	 NH).	 13C	 NMR	 (100	
MHz,	 DMSO‐d6,	 δ,	 ppm):	 14.6	 (CH3),	 19.9	 (CH2),	 25.3	 (CH3),	
32.0	 (CH2),	 33.5	 (CH),	38.8	 (CH2),	 78.6	 (C),	126.0	 (CH),	127.1	
(CH),	 127.7	 (CH),	 127.6	 (CH),	 128.8	 (CH),	 129.8	 (CH),	 140.9	
(C),	143.2	(C),	145.8	(C),	149.4	(C),	168.8	(C),	196.6	(C).	MS	(EI,	
m/z	(%)):	390	[M+]	(2);	347	(4),	313	(5),	290	(100),	248	(28),	
231	 (3),	 77	 (26).	HRMS	 (EI)	 calcd.	 for	C23H26N4O2:	 390.2056;	
found:	390.2034.	Anal.	calcd.	for	C23H26N4O2:	C,	70.75;	H,	6.71;	
N,	14.35.	Found:	C,	70.77;	H,	6.68;	N,	14.34%.	
	
2.2.8.	Synthesis	of	3‐acetyl‐7‐methyl‐1,4,6‐triphenyl‐4,6‐
dihydropyrimido[4,5‐c]pyridazin‐5(1H)‐one	(11)	
	

Compound	 8a	 (0.41	 g,	 1	 mmol)	 was	 heated	 at	 reflux	 in	
acetic	anhydride	(10	mL,	106	mmol)	for	5	h.	The	solvent	was	
evaporated	 under	 reduced	 pressure	 and	 the	 residue	 was	

washed	with	 25%	 aq.	 ammonia	 solution	 (10	mL,	 260	mmol)	
then	 filtered	 and	 washed	 with	 distilled	 water	 (20	 mL).	 The	
crude	dry	product	was	crystallized	from	ethanol:dioxane	(5:1,	
v:v,	 10	mL)	 to	 give	 compound	11	 (Scheme	2).	Yield:	 332	mg,	
765	mmol,	76%.	Color:	Deep	yellow	solid.	M.p.:	268‐270	°C.	IR	
(KBr,	ν,	cm‐1):	1664	(CO)	(COCH3),	1638	(CO)	(CONH).	1H	NMR	
(400	MHz,	 DMSO‐d6,	 δ,	 ppm):	 1.65	 (s,	 3H,	 CH3),	 2.42	 (s,	 3H,	
CH3CO),	 5.36	 (s,	 1H,	 pyridazine‐H),	 7.22‐7.64	 (m,	 15H,	Ar‐H).	
13C	NMR	(100	MHz,	DMSO‐d6,	δ,	ppm):	24.5	(CH3),	25.0	(CH3),	
34.0	(CH),	98.0	(C),	125.8	(CH),	127.3	(CH),	127.6	(CH),	127.9	
(CH),	 128.2	 (CH),	 128.7	 (CH),	 129.1	 (CH),	 129.3	 (CH),	 130.0	
(CH),	137.7	(C),	141.7	(C),	141.9	(C),	144.2	(C),	150.2	(C),	158.7	
(C),	161.4	(C),	196.2	(C).	MS	(EI,	m/z	 (%)):	434	[M+]	(6),	420	
(11),	 391	 (35),	 357	 (19),	 318	 (27),	 290	 (100),	 168	 (13),	 91	
(63),	 77	 (72).	 HRMS	 (EI)	 calcd.	 for	 C27H22N4O2:	 434.1743;	
found:	434.1719.	Anal.	calcd.	for	C27H22N4O2:	C,	74.64;	H,	5.10;	
N,	12.89.	Found:	C,	74.61;	H,	5.07;	N,	12.90%.	
	
2.2.9.	Synthesis	of	6‐acetyl‐2,5‐diphenyl‐4,5‐dihydro	
pyridazin‐3(2H)‐one	(15)	
	

Compound	 8a	 (0.41	 g,	 1	 mmol)	 was	 heated	 at	 reflux	 in	
formic	acid	(10	mL,	265	mmol)	for	3	h.	The	excess	solvent	was	
removed	 at	 reduced	 pressure	 and	 the	 crude	 substance	 was	
treated	with	 25%	 aq.	 ammonia	 solution	 (10	mL,	 260	mmol)	
then	 filtered	 and	washed	with	water	 (20	mL).	 The	 dry	 solid	
was	 crystallized	 from	 ethanol	 (10	mL)	 to	 give	 compound	15	
(Scheme	 3).	 Yield:	 212	mg,	 726	mmol,	 63%.	 Color:	 Colorless	
crystals.	 M.p.:	 122‐124	 °C.	 IR	 (KBr,	 ν,	 cm‐1):	 1705	 (CO)	
(COCH3),	 1687	 (CO)	 (CONPh).	 1H	 NMR	 (400	 MHz,	 CDCl3,	 δ,	
ppm):	2.50	(s,	3H,	CH3CO),	3.05	(m,	2H,	CHCH2),	4.71	 (m,	1H,	
CHCH2),	7.22‐7.57	(m,	10H,	Ar‐H).	13C	NMR	(100	MHz,	CDCl3,	δ,	
ppm):	24.8	 (CH3CO),	35.0	 (CHCH2),	35.4	 (CHCH2),	124.8	 (CH),	
126.9	 (CH),	 127.4	 (CH),	 127.9	 (CH),	 128.8	 (CH),	 129.3	 (CH),	
137.5	(C),	140.4	(C),	150.4	(C),	164.8	(CONPh),	196.0	(COCH3).	
MS	(EI,	m/z	(%)):	292	[M+]	(15),	277	(10),	249	(35),	215	(22),	
172	(14),	77	(100).	HRMS	(EI)	calcd.	for	C18H16N2O2:	292.1212;	
found:	292.1123.	Anal.	calcd.	for	C18H16N2O2:	C,	73.95;	H,	5.52;	
N,	9.58.	Found:	C,	73.88;	H,	5.48;	N,	9.63%.		
	
2.2.10.	Synthesis	of	3‐Acetyl‐1,4‐diphenyl‐6,8‐dihydro	
pyrimido[4,5‐c]pyridazine‐5,7(1H,4H)‐dione	(19)	
	

Following	 the	 procedure	 given	 for	 compound	 8a,	
azaenamine	1a	(162	mg,	1	mmol)	and	N‐carbamoyl‐2‐cyano‐3‐
phenylacrylamide	 16	 (0.22	 g,	 1.0	 mmol)	 were	 reacted	 in	
dioxane	(10	mL)	in	presence	of	piperidine	(0.2	mL,	2	mmol).		

	



Abdelmoniem	et	al.	/	European	Journal	of	Chemistry	7	(1)	(2016)	73‐80	 77	
 

	

	

Scheme	3	
	
	

 
	

Mechanistic	pathway	for	the	reaction	of	azaenamine	1a	with	(E)‐N‐carbamoyl‐2‐cyano‐3‐phenylacrylamide	2.	
	

Scheme	4
	
	
Crystallization	 of	 the	 isolated	 product	 from	

ethanol:dioxane	 mixture	 (5:1,	 v:v,	 10	 mL)	 afforded	 the	
compound	 19	 (Scheme	 4).	 Yield:	 319	 mg,	 886	 mmol,	 89%.	
Color:	Canary‐yellow	crystals.	M.p.:	290‐292	°C.	IR	(KBr,	ν,	cm‐

1):	1681	(CO)	(COCH3),	1619	(CO)	(br,	CONH	and	NHCONH).	1H	
NMR	(400	MHz,	DMSO‐d6,	δ,	ppm):	2.36	(s,	3H,	CH3CO),	5.18	(s,	
1H,	pyridazine‐H),	7.11‐7.53	(m,	12H,	Ar‐H	and	2NH).	13C	NMR	
(100	MHz,	DMSO‐d6,	 δ,	ppm):	25.1	 (CH3),	33.3	 (CH),	85.5	 (C),	
125.8	 (CH),	 126.0	 (CH),	 126.6	 (CH),	 127.7	 (CH),	 128.5	 (CH),	
128.7	(CH),	143.3	(C),	144.3	(C),	144.5	(C),	155.4	(C),	157.9	(C),	
165.4	(C),	196.6	(C).	MS	(EI,	m/z	(%)):	360	[M+]	(13),	345	(24),	
317	 (47),	 290	 (100),	 184	 (16),	 77	 (72).	HRMS	 (EI)	 calcd.	 for	
C20H16N4O3:	 360.1222;	 found:	 360.1188.	 Anal.	 calcd.	 for	
C20H16N4O3:	 C,	 66.66;	 H,	 4.48;	 N,	 15.55.	 Found:	 C,	 66.67;	 H,	
4.50;	N,	15.53%.	
	
3.	Results	and	discussion	
	

As	 a	 part	 of	 sequential	 work	 aimed	 at	 manifesting	 the	
proper	 pattern	 of	 the	 azaenamine	 reactivity	 as	 nucleophilic	

carbon	species	towards	activated	cinnamonitriles	[17‐21],	we	
report	here	the	aza‐Michael	addition	of	azaenamines	1a,b	with	
α‐cyano‐N‐arylacrylamide	derivatives	2a‐e.	The	 reaction	may	
proceed	 through	one	of	 three	 reasonable	pathways	A,	B	 or	C	
(Scheme	1).	Pathway	A,	 involving	 the	Michael	addition	of	 the	
nucleophilic	 acyl	 methyl	 carbon	 to	 activated	 acrylonitrile	
followed	 by	 ring	 closure	 caused	 by	 the	 attack	 of	 azomethine	
carbon	 to	 give	 4	 (I)	 and	 their	 tautomeric	 forms	 4	 (II)	 was	
readily	 excluded	 as	 the	 1H	 NMR	 spectrum	 revealed	 a	
characteristic	peak	at	δ	2.39	ppm	corresponding	to	the	acetyl	
protons	 (Scheme	 1).	 Thus,	 the	 reaction	 can	 take	 place	
according	 to	 either	 pathway	 B,	 that	 comprises	 the	 first	
addition	of	hydrazone	 lone	pair	 to	 the	activated	double	bond	
followed	 by	 azomethine	 carbon	 attack	 forming	 5‐amino‐2,3‐
dihydropyridazines	6,	or	pathway	C,	 that	employs	a	 lone	pair	
resonance	 causing	 the	 azomethine	 carbon	 to	 be	 nucleophilic	
and	consequently,	attack	the	activated	acylonitriles	to	yield	3‐
amino‐2,5‐dihydropyridazines	8.		
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