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Scheme	1
	
	
However,	 trans‐palladium‐NHC	 complexes	 found	 more	

effective	 than	 their	 cis‐counterparts,	 whose	 mode	 of	 action	
cannot	 be	 explained	 on	 the	 basis	 of	 platinum	 complexes.	
Recently,	 we	 have	 reported	 that	 silver	 and	 palladium‐NHC	
complexes	can	serve	as	excellent	antibacterial	and	anticancer	
agents	 against	 E.	 coli	 and	 S.	 aureus	 strains	 and	 human	
colorectal	 cancer	 (HCT	 116)	 cell	 line,	 respectively	 [11,12].	
Herein,	 we	 report	 the	 synthesis,	 molecular	 structures	 and	
anticancer	 efficiencies	 of	 both	 silver	 and	 palladium‐NHC	
complexes.	Furthermore,	two	of	the	reported	complexes	have	
been	 characterized	 by	 single	 crystal	 X‐ray	 diffraction	
technique.	
	
2.	Experimental		
	
2.1.	Materials	and	instrumentation	
	

All	chemicals	and	solvents	were	obtained	from	commercial	
sources	and	all	reagents	and	solvents	were	of	analytical	grade	
and	used	without	further	purifications.	NHC	precursors	1	and	
2,	and	silver	complex	4	were	reported	in	our	previous	reports	
[13,14].	 NMR	 spectra	 were	 recorded	 using	 Bruker	 400	 MHz	
Ultrashield	TM	and	Bruker	Avance	300	MHz	spectrometers	at	
ambient	temperature.	The	1H	and	13CNMR	peaks	were	labeled	
as	 singlet	 (s),	 doublet	 (d),	 triplet	 (t),	 and	 multiplet	 (m).	
Chemical	 shifts	 were	 referenced	 with	 respect	 to	 solvent	
signals.	Elemental	analysis	was	carried	out	on	a	Perkin‐Elmer	
Series	II,	2400	microanalyzer.	The	X‐ray	diffraction	data	were	
collected	 using	 a	 Bruker	 SMART	 APEX2	 CCD	 area‐detector	
diffractometer.	 The	 above‐mentioned	 instruments	 are	
available	at	the	School	of	Chemical	Sciences	and	the	School	of	
Physics,	Universiti	Sains	Malaysia	(USM).		
	
2.2.	Synthesis	of	Ag(I)	and	Pd(II)‐NHC	complexes	
	
2.2.1.	Synthesis	of	complex	3	 	
	

Ag2O	 (0.4	 g,	 1.7	 mmol)	 was	 added	 to	 a	 solution	 of	
compound	1	 (0.5	 g,	 2.4	mmol)	 in	30	mL	of	 dichloromethane.	
The	 reaction	mixture	was	stirred	 for	12	h	 in	a	round	bottom	
flask	 in	 dark	 to	 exclude	 light.	 Colorless	 solution	with	 a	 black	

suspension	was	obtained,	which	was	filtered	through	a	pad	of	
celite.	 The	 solvent	 was	 removed	 under	 reduced	 pressure	 to	
afford	 a	 grey	 precipitate,	 which	 was	 recrystallized	 several	
times	 using	 dichloromethane	 to	 produce	 light‐grey	 solid	 3	
(Scheme	 1)	 9.	 Yield:	 71.5%.	 M.p.:	 142‐143	 °C.	 1H	 NMR	 (300	
MHz,	 DMSO‐d6,	 δ,	 ppm):	 3.77	 (s,	 18H,	 N‐CH3),	 5.31	 (s,	 12H,	
benzylic	CH2),	7.29‐7.35	 (m,	30H,	10	×	Ar‐H),	7.45	 (d,	6H,	 J	=	
5.2	 Hz,	 imidazolium	 H5’)	 and	 7.53	 (d,	 6H,	 J	 =	 5.2	 Hz	
imidazolium	H4’).	 13C	NMR	 (75	MHz,	DMSO‐d6,	 δ,	 ppm):	 39.0	
(N‐CH3),	54.9	(benzylic	CH2)	123.0,	124.2	(imidazolium	C5’	and	
C4’),	128.5,	128.8,	129.6,	138.2	(4	×	Ar‐CH)	and	179.9	(C2'‐Ag).	
	
2.2.2.	Synthesis	of	complex	4	
	

To	a	stirred	solution	of	compound	2	(0.5	g,	1.57	mmol)	in	
acetonitrile	(40	mL),	Ag2O	(0.37	g,	1.6	mmol)	was	added.	The	
mixture	was	refluxed	at	70	°C	for	18	h	 in	dark	to	exclude	the	
light.	Resultant	solution	was	passed	through	a	bed	of	celite	to	
remove	unreacted	Ag2O	and	the	solvent	was	evaporated	under	
reduced	pressure.	So	obtained	white	residue	of	complex	4	was	
washed	with	 diethyl	 ether	 (2	 ×	 3	mL)	 to	 afford	 an	 off‐white	
powder	 (Scheme	 1).	 Yield:	 70.3%.	M.p.:	 148‐149	 °C.	 1H	NMR	
(300	MHz,	DMSO‐d6,	δ,	ppm):	3.76	(s,	6H,	2	×	CH3),	5.31	(s,	4H,	
2	×	benzylic	CH2),	7.26‐7.33	(m,	10H,	10	×	Ar‐H),	7.44	(d,	2H,	J	
=	 5.8	 Hz,	 2	 ×	 imidazolium	H5′),	 7.54	 (d,	 2H,	 J	 =	 5.8	 Hz,	 2	 ×	
imidazolium	H4′).	 13C	NMR	 (75	MHz,	DMSO‐d6,	 δ,	 ppm):	 39.0	
(CH3),	 54.8	 (benzylic	 CH2)	 123.2,	 124.1	 (imidazolium	 C5′	 &	
C4′),	128.4	(2	×	Ar‐CH),	128.9	(4	×	Ar‐CH),	129.6	(4	×	Ar‐CH),	
138.2	(2	×	Ar‐CH)	and	180.6	(C2′‐Ag).	
	
2.2.3.	Synthesis	of	complexes	5	
	

To	a	 stirred	 solution	of	 compound	3	or	4	 (0.05	mmol)	 in	
15	 mL	 of	 dichloromethane,	 [PdCl2(CH3CN)2]	 (27	 mg,	 0.102	
mmol)	was	added	and	was	stirred	overnight.	A	yellow	solution	
with	 black	 precipitate	 was	 obtained,	 which	 was	 filtered	 off	
through	 a	 bed	 of	 celite	 to	 give	 a	 clear	 yellow	 solution.	 This	
filtrate	 was	 concentrated	 to	 3	 mL	 under	 vacuum,	 and	 then	
petroleum	 ether	 20	 mL	 was	 added.	 The	 resulted	 precipitate	
was	isolated	by	decantation	and	washed	with	petroleum	ether	
(2	×	5	mL)	to	give	a	pale‐yellow	solid	which	was	recrystallized	
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using	 dichloromethane	 several	 times	 (Scheme	 1).	 Yield	 =	
69.0%	 from	compound	3	 and	71.7%	from	compound	4.	M.p.:	
189‐190	°C.	1H	NMR	(400	MHz,	CDCl3,	δ,	ppm):	4.06	(s,	3H,	N‐
CH3),	4.21	(s,	3H,	N‐CH3),	5.65	(s,	2H,	benzylic	CH2),	5.84	(s,	2H,	
benzylic	CH2),	6.68	(s,	br,	2H,	 imidazolium	H5′	and	H4′),	6.81	
(d,	2H,	J	=	8.0	Hz,	imidazolium	H5′	and	H4′),	7.28	(t,	2H,	J	=	7.5	
Hz,	ArH),	7.40	(t,	4H,	J	=	7.2	Hz,	2	×	ArH),	7.56	(d,	4H,	J	=	7.2,	2	
×	 ArH).	 13C	NMR	 (100	MHz,	 CDCl3,	 δ,	 ppm):	 38.3	 (CH3),	 54.6	
(benzylic	CH2)	120.9,	 122.8	 (imidazolium	C5′	 and	C4′),	 128.5	
(2	×	Ar‐CH),	129.1	 (4	×	Ar‐CH)	129.6	 (4	×	Ar‐CH),	136.8	 (2	×	
Ar‐CH)	 and	 170.1	 (C2′‐Pd).	 Anal.	 cald.	 for	 C22H24Cl2N4Pd:	 C,	
50.6;	H,	4.6;	N,	10.7.	Found:	C,	51.2;	H,	4.3;	N,	10.5%.	
	
2.3.	Anticancer	activity		
	
2.3.1.	Cell	culture		
	

Initially,	 HCT	 116	 cells	 were	 allowed	 to	 grow	 under	
optimal	 incubator	 conditions.	Cells	 that	 reached	a	 confluence	
of	 70‐80%	 were	 chosen	 for	 cell	 plating	 purposes.	 The	 old	
medium	 was	 carefully	 aspirated	 out	 of	 the	 plate.	 Next,	 cells	
were	 washed	 twice	 using	 sterile	 phosphate	 buffered	 saline	
(PBS)	with	a	pH	of	7.4.	The	PBS	was	completely	discarded	after	
washing,	 and	 then	 trypsin	was	 added	 and	distributed	 evenly	
onto	the	cell	surfaces.	The	cells	were	incubated	at	37	°C	in	5%	
CO2	for	1	min.	Then,	the	flasks	containing	the	cells	were	gently	
tapped	 to	 aid	 cell	 segregation	 and	 then	 observed	 under	 an	
inverted	microscope	(if	cell	segregation	was	not	sufficient,	the	
cells	were	incubated	for	another	minute).	Trypsin	activity	was	
inhibited	by	adding	5	mL	of	fresh	complete	media	of	10%	fetal	
bovine	serum	(FBS).	The	cells	were	counted,	diluted	to	obtain	
a	final	concentration	of	2.5	×	105	cells/mL,	and	inoculated	into	
wells	(100	mL	cells	per	well).	Finally,	the	plates	containing	the	
cells	were	 incubated	at	37	 °C	with	an	 internal	atmosphere	of	
5%	CO2.	
	
2.3.2.	MTT	assay		
	

The	cancer	cells	(100	mL	cells	per	well,	1.5	×	105	cells/mL)	
were	 inoculated	 in	 wells	 of	 a	 microtiter	 plate,	 which	 was	
incubated	 in	 a	 CO2	 incubator	 overnight	 to	 facilitate	 cell	
attachment.	 A	 total	 of	 100	mL	of	 test	 complexes	were	 added	
into	 each	well	 containing	 the	 cells.	 The	 test	 complexes	were	
diluted	with	media	 into	 the	 desired	 concentrations	 from	 the	
stock.	 The	 plates	 were	 incubated	 at	 37	 °C	 with	 an	 internal	
atmosphere	 of	 5%	 CO2	 for	 72	 h.	 A	 20	 mL	 MTT	 [3‐(4,5‐
dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium	 bromide]	 rea‐
gent	was	added	into	each	well,	which	was	incubated	again	for	
4	h.	Next,	50	mL	MTT	lysis	solution	(DMSO)	was	added	into	the	
wells.	 The	 plates	 were	 further	 incubated	 for	 5	 min	 in	 a	 CO2	
incubator.	 Finally,	 the	 plates	 were	 read	 at	 570	 and	 620	 nm	
wavelengths	 using	 a	 standard	 ELISA	 microplate	 reader	
(Ascent	Multiskan).	Data	were	 recorded	and	analyzed	 for	 the	
assessment	of	the	effects	of	the	test	complexes	on	cell	viability	
and	 growth	 inhibition.	 The	 percentage	 of	 growth	 inhibition	
was	 calculated	 from	 the	 optical	 density	 (OD),	 which	 was	
obtained	from	the	MTT	assay.	5‐FU	was	used	as	 the	standard	
reference	drug.	The	formula	used	for	the	calculation	of	growth	
inhibition	was	carried	out	using	the	following	equation.		
	
%	 Growth	 inhibition	 =	 {OD(control)‐OD(survived)/OD(control)}	 ×	 100
	 	 	 	 	 	 (1)	
3.	Results	and	discussion		
	
3.1.	Synthesis	and	characterization		
	

In	 analogy	 to	 the	 potent	 anticancer	 activity	 of	 cis‐platin	
and	its	analogues,	cis‐palladium‐NHC	complexes	having	varied	
ancillary	 ligands	 were	 targeted.	 The	 synthetic	 route	 for	 the	
preparation	of	NHC	precursors	and	their	silver	and	palladium	
complexes	 is	 outlined	 in	 Scheme	 1.	 Synthesis,	 structural	 and	
detailed	spectral	and	analytical	characterizations	of	compound	

3,	 4	 and	 5	 are	 presented	 in	 the	 present	 work	 along	 with	
biological	activates	of	compound	1‐5.	Compound	1	was	easily	
generated	 by	 treatment	 of	 1‐methylimidazole	 with	 benzyl	
chloride	 in	 dioxane	 at	 refluxing	 temperature	 for	 12	 h.	 This	
compound	 was	 converted	 into	 its	 hexafluorophosphate	
counterpart	 2	 following	 standard	 procedures	 for	 the	 salt	
metathesis	 reactions	 [15].	 To	 better	 understand	 the	 effect	 of	
counter	 ions	 on	 the	 structure	 of	 silver	 complexes	 and	 their	
reactivity	 in	 the	 formation	 of	 corresponding	 palladium	
complexes,	 therefore,	 compound	 1	 and	 2	 were	 treated	 with	
half	 an	 equivalent	 of	 Ag2O	 to	 get	 corresponding	 silver	
complexes	3	and	4,	 respectively,	 in	good	yields.	Further,	both	
the	 silver	 complexes	 (3	 and	 4)	 were	 stirred	 with	 one	
equivalent	 of	 [PdCl2(MeCN)2]	 for	 12	 h	 in	 DCM	 to	 yield	 cis‐
palladium‐NHC	 complex	 5	 via	 the	 technique	 of	 trans‐
metallation.	From	both	reactions,	cis‐palladium	complex	5	was	
isolated	as	a	pale	yellow	solid	in	appreciable	yields.	

Both,	 NHC	 proligands	 and	 their	 carbene	 complexes	were	
fully	characterized	by	1H	and	13C	NMR	and	elemental	analysis.	
The	1H	and	13C	NMR	spectra	of	compound	1	and	2	showed	the	
diagnostic	C2'	proton/carbon	resonances	at	downfield	regions	
δ	8.58,	9.2	 and	133.9	and	137.5	ppm,	 respectively,	 indicating	
the	formation	of	desired	salts.	The	most	significant	resonance	
spectroscopic	feature	of	carbene	complexes	3‐5	is	the	absence	
of	 C2'	 proton	 resonance	 in	 their	 1H	 NMR	 spectra	 and	 the	
presence	of	a	distinguished	singlet	at	δ	179.9,	180.6	and	170.1	
ppm	corresponding	 to	 the	carbenic	carbon	nuclei	 in	 their	 13C	
NMR	 spectra.	 These	 observations	 are	 well	 within	 the	 range	
reported	 for	 the	 similar	 silver	 and	palladium‐NHC	complexes	
[16,17].	 Interestingly,	 a	mixture	 of	 two	 palladium	 complexes	
was	observed	with	similar	proton	NMR	resonance	patterns	in	
the	spectrum	of	complex	5.	These	two	conformers	of	complex	
5	are	indicative	of	the	presence	of	high	degree	of	flexibility	of	
the	 NHC	 ligand	 system.	 This	 observation	 has	 been	 noted	
previously	 for	 numerous	 palladium‐NHC	 complexes	 having	
analogues	ligand	architectures	and	is	assigned	to	the	existence	
of	 isomeric	 complexes	 in	 solution	 [18].	 Therefore,	 it	 can	 be	
concluded	 that	 the	 carbene	 ligand	 in	 complex	 5	 is	 non‐
equivalent,	which	 is	due	 to	 the	bulkier	 hindrance	around	 the	
Pd‐C	bond	arising	from	the	phenyl	substitution.	
	
3.2.	Crystallographic	determination		
	

Single	 crystal	 X‐ray	 diffraction	 studies	 of	 carbene	
complexes	 confirmed	 the	 above	 structural	 assignments.	
Crystals	 of	 these	 complexes	 suitable	 for	 X‐ray	 diffraction	
studies	were	 grown	at	 low	 temperature	by	 slow	evaporation	
for	compound	3	in	DCM,	and	slow	evaporation	of	compound	5	
in	 dichloromethane:diethyl	 ether	 (3:1,	 v:v).	 The	 crystallo‐
graphic	 data	 and	 selected	 bond	 lengths	 and	 angles	 of	
complexes	 are	 presented	 in	 Table	 1‐4.	 Silver	 complex	 3	 is	
crystallized	in	trigonal	space	group	R‐3c,	as	an	unsymmetrical	
trinuclear	 compound	 having	 a	 triply	 bridged	 chloride	 anion	
bonded	 to	 the	 three	 silver	 centers.	A	perspective	view	of	 the	
complex	 is	 shown	 in	 Figure	 1.	 This	 is	 a	 rare	 example	 of	 a	
trinuclear	 cationic	 silver	 carbene	 complex	 having	 triply	
bridged	chloride.	

The	 bond	 angles	 between	 the	 silver	 centers	 through	
bridging	 chloride	 anion	 and	 the	 bond	 distances	 of	 silver	
centers	with	bridged	chloride	anion	are	120	°	and	2.9956(1)	Å,	
respectively,	and	are	almost	identical	to	each	other.	The	bond	
distance	between	 triply	bridged	chloride	and	 the	 three	 silver	
centers	 is	 much	 longer	 than	 those	 of	 the	 non‐bridged	 and	
doubly	bridged	Ag‐Cl	bonds,	indicating	the	presence	of	a	weak	
bonding.	 These	 bond	 distances	 and	 angles	 are	 well	 in	 the	
range	compared	 to	a	similar	 trinuclear	 silver	complex	having	
triply	 bridged	 iodide	 anion	 [19].	 In	 each	 silver	 complex	 unit,	
the	metal	center	is	coordinated	by	two	carbene	carbon	atoms	
of	 the	 two	 NHC	 ligands	 in	 highly	 distorted	 linear	 geometry	
[C(1)‐Ag(1)‐C(1a)	 =	 167.06	 (7)	 °]	with	 the	bond	distances	 of	
Ag(1)‐C(1)	and	Ag(1)‐C(1a)	are	2.1046(13)	Å.		
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