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Table	 1.	 Values	 of	 rate	 constants	 (ko×106)	 for	 the	 aquation	 of	 [Co(NH3)5Cl]2+	 in	 the	 absence	 of	 dicarboxylate	 ion‐pairing	 tert‐butanol	 (30%)	 at	 different	
temperatures.	
T	(°C)	 30	 35	 40 50 60	
ko×106	(1/sec)	 0.51	 1.80	 3.56 30.40 37.80	

	
Table	 2.	 Values	 of	 rate	 constants	 (kobs×106	 (1/sec))	 for	 the	 aquation	 of	 [Co(NH3)5Cl]2+	 in	 malate	 media	 (m1)	 containing	 tert‐butanol	 (30%)	 at	 different	
temperatures.	
m1	(mol/L)	 T	(°C)	

30	 35	 40 50 60	
0.008	 0.78	 3.39	 14.47	 39.95	 61.20	
0.016	 0.74	 3.43	 13.83 38.32 57.61	
0.024	 0.76	 3.71	 11.35	 21.46	 55.97	
0.032	 0.78	 3.59	 6.86	 11.38	 54.80	
0.040	 0.65	 3.90	 7.31 10.43 32.89	

	
Table	3.	 Values	 of	 rate	 constants	 (kobs×106	 (1/sec))	 for	 the	 aquation	 of	 [Co(NH3)5Cl]2+	 in	malonate	media	 (m1)	 containing	 tert‐butanol	 (30%)	 at	 different	
temperatures.	
m1	(mol/L)	 T	(°C)	

30	 35	 40	 50	 60	
0.008	 2.65	 5.02	 6.82 31.36 50.24	
0.016	 2.83	 4.27	 7.51 29.67 55.52	
0.024	 1.69	 2.20	 7.24 32.49 53.84	
0.032	 0.87	 5.83	 7.42 29.68 51.65	
0.040	 1.26	 5.09	 5.26	 40.33	 56.27	

	
Table	 4.	 Values	 of	 rate	 constants	 (kobs×106	 (1/sec))	 for	 the	 aquation	 of	 [Co(NH3)5Cl]2+	 in	 tartrate	 media	 (m1)	 containing	 tert‐butanol	 (30%)	 at	 different	
temperatures.	
m1	(mol/L)	 T	(°C)	

30	 35	 40 50 60	
0.008	 0.57	 4.13	 5.84	 18.60	 47.23	
0.016	 2.24	 3.25	 6.52	 17.58	 45.90	
0.024	 2.45	 2.95	 4.22	 16.14	 44.42	
0.032	 0.74	 2.79	 20.74 35.29 67.13	
0.040	 0.83	 3.33	 12.06 26.70 60.80	

	
Table	5.	 Values	 of	 rate	 constants	 (kobs×106	 (1/sec))	 for	 the	 aquation	 of	 [Co(NH3)5Cl]2+	 in	 succinate	media	 (m1)	 containing	 tert‐butanol	 (30%)	 at	 different	
temperatures.	
m1	(mol/L)	 T	(°C)	

30	 35	 40	
0.008	 1.51	 2.01 5.34	
0.016	 1.05	 1.51 2.31	
0.024	 0.85	 2.20 3.20	
0.032	 1.27	 3.09 3.02	
0.040	 1.35	 2.31 3.93	
	

	
Cobalt(II)	carbonate,	ammonia,	malonic	acid,	succinic	acid,	

tartaric	 acid,	 malic	 acid,	 sodium	 carbonate	 and	 tert‐butanol	
were	purchased	from	Fluka	Chemika.	Hydrogen	peroxide	was	
purchased	 from	 Riedel‐de	 Haën.	 Hydrochloric	 acid	 was	
purchased	 from	Chemical	Management	Consulting.	Perchloric	
acid	 was	 purchased	 from	 Merck.	 The	 chloropentaammine	
cobalt(III)	 perchlorate	 complex	 was	 prepared	 by	 using	 the	
method	of	Hynes	[14].		
	
2.2.	Procedure	
	

The	 rate	 of	 aquation	 of	 [Co(NH3)5Cl](ClO4)2	 complex	was	
followed	 spectrophotometrically	 by	 using	 Unicam	 Helios	
Alpha	and	Beta	spectrophotometer	at	λ	=	240	nm,	in	30%	(v:v)	
tert‐butanol	 in	 different	 dicarboxylate	 media	 (Malonate,	
succinate,	malate	and	 tartarate)	 (0.008‐0.040	mol/L	at	30‐60	
°C).	Knowing	that,	the	buffer	solution	was	prepared	from	0.1	M	
of	 the	dicarboxylic	acid	and	0.08	M	of	sodium	carbonate.	The	
spectrophotometer	was	fitted	with	thermostated	cell	holders,	
heated	by	water	circulating	from	a	Heto	HMT	200	thermostat.	
	
3.	Results	and	discussion	
	

The	observed	 first	 order	 rate	 constant	 in	 the	presence	of	
dicarboxylate	 buffers	 for	different	 temperatures	 in	30%	 (v:v)	
tert‐butanol	were	computed	from	the	slopes	of	the	good	linear	
least	 squared	 first	 order	 plots	 of	 log	 (At‐A∞)	 against	 time	
depending	on	the	first	order	Equation	(1)	[15].	Where	At	is	the	

absorbance	 at	 different	 time	 and	A∞	 is	 the	 absorbance	 at	 the	
infinite	time.		
	
Ln	(a0/a0‐x)	=	k×t		 	 	 	 	 (1)		
	

The	observed	rate	 constants	 (kobs)	 are	 collected	 in	Tables	
1‐5.	The	ion‐pair	rate	coefficient	(kip)	was	calculated	according	
to	the	following	Wyatt	and	Davis	equation	[16].	
	
kobs.m3	=	k0	×[CpX2+]	+	kip	×	[CpXL]	 	 	 (2)	
	
where	 k0,	 the	 observed	 rate	 constant	 in	 the	 absence	 of	
dicarboxylate	 ion;	 kobs,	 the	 observed	 rate	 constant	 in	 the	
presence	 of	 dicarboxylate	 ion;	 m3,	 the	 stoichiometric	
concentration	 of	 the	 complex	 salt;	 [CpX2+],	 the	 free	 complex	
ion	concentration	and	[CpXL],	the	ion‐pair	concentration.		

[CpXL]	 was	 calculated	 with	 the	 aid	 of	 the	 following	
Equations:	
	
CpXL	⇌	CpX2+	+	L2‐KD	 	 	 	 	 (3)	
	
NaL‐	⇌	Na+	+	L2‐KNaL‐	 	 	 	 	 (4)	
	
H2L	⇌	HL‐	+	H+K1	 	 	 	 	 	 (5)	
	
HL‐	⇌	L2‐	+	H+K2	 	 	 	 	 	 (6)	
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Table	 6.	 Calculated	 values	 of	 rate	 constants	 (kip×105,	 1/sec)	 for	 the	 aquation	 of	 [Co(NH3)5Cl]2+in	 dicarboxylate	 buffer	 containing	 30%	 of	 tert‐butanol	 at	
different	temperatures.	
T	(°C)	 Malate	 Malonate Tartrate Succinate	
30	 0.38	 0.835 0.30 0.21	
35	 1.95	 1.23 0.42 0.22	
40	 6.02	 1.32 0.925 0.33	
50	 8.49	 3.14	 2.30	 	
60	 21.10	 7.68	 4.95	 	

	
Table	7.	Values	of	the	thermodynamic	parameters:	Enthalpy	of	activation	Δܪ୧୮

∗ , entropy	of	activation	Δ ୧ܵ୮
∗ 	and	Gibbs	of	free	energy	of	activation	Δܩ୧୮

∗ of	the	ion‐
pairing	aquation	of	[Co(NH3)5Cl]2+in	different	buffers	containing	30%	of	tert‐butanol	at40	°C.	
T	(°C)	 Buffer	 ઢܘܑࡴ

∗ 	(kJ/mole) ઢܘܑࡿ
∗ (J/K.mole) ઢܘܑࡳ

∗ (kJ/mole)	
40	 malate	 98.25	 ‐18.74 104.11	
40	 malonate	 52.49	 ‐168.50	 105.22	
40	 tartrate	 72.48	 ‐112.11 107.57	
40	 succinate	 22.18	 ‐280.11	 109.86	
	
	
Where;	
	
KD	=	[CpX2+][L2‐]ߛଶ

ଶ/[CpXL]	 	 	 	 	 		(7)	
(L2‐	represents	the	dicarboxylate	anion)	
	
K1	=	[H+][HL‐]	ߛଵ

ଶ	/[H2L]	 	 	 	 	 		(8)	
	
K2	=	[H+]	[L2‐]	γ2	/	[HL‐]	 	 	 	 	 		(9)	
	
KNaL‐=	[Na+]	[L2‐]	γ2	/	[NaL‐]		 	 	 																		(10)	
	
Log	γi	=	‐A×(I1/2	/	(1+1.3×I1/2)‐0.3×I)	 	 																		(11)		
(Debye‐Hückel	equation)	(Log	γ2	=	4	Log	γ1)	
	

I	is	the	ionic	strength	γ1	and	γ2	are	the	activity	coefficients	
of	the	univalent	and	divalent	ions,	respectively.		
	
I	=	0.5×([H+]	+	[HL‐]	+	4×[L2‐]	+	4×[CpX2+]	+		
										2×m3	+	[Na+]	+	[NaL2‐])	 	 	 																		(12)	
	
m1	=	[H2L]	+	[HL‐]	+	[CpXL]	+	[NaL‐]	 	 																		(13)	
	
m3	=	[CpX2+]	+	[CpXL]	 	 	 	 																		(14)	
	

The	 principle	 of	 calculations	 performed	 by	 computer	
programs	 can	 be	 summarized	 as:	 for	 the	 first	 cycle	 [H+]	 =	 0,	
[CpXL]	=	0,	 [NaL‐]	=	0,	 [CpX2+]	=	m3	–	 [CpXL],	 [HL‐]	=	0.5×m2,	
[H2L]	=	0.3×m1,	[L2‐]	=	m1	–	[HL‐]	–	[CpXL]	–	[NaL‐]	–	[H2L]	and	
[Na+]	 =	 2×m2	 –	 [	 NaL‐].	 Where,	 m2	 is	 the	 concentration	 of	
sodium	carbonate.	

Then	the	 ionic	strength	takes	 its	first	approximated	value	
and	 then	γ1	and	γ2	after	which	 the	 following	 terms	 take	 their	
new	value		
	
[H+]	=	K2	[HL‐]	/	[L2‐]	γ2	 	 	 	 																		(15)	
	
[H2L]	=	[HL‐][H+]	ߛଵ

ଶ	/	K1	 	 	 	 																													(16)	
	
[HL‐]	=	2×m1	‐2×m2	–	2×[H2L]	–	[H+]	 	 																		(17)	
	
[L2‐]	=	m1	–	[HL‐]	–	[H2L]	–	[CpXL]	–	[NaL‐]	 																		(18)	
	
[NaL‐]	=	[Na+]	[L2‐]	γ2	/	KNaL‐	 	 	 																		(19)	
	
[CpXL]	=	m3/[(KD/ߛଶ

ଶ ൈ[L2‐])	+1]	 	 																		(20)	
	
[CpX2+]	=	m3	–	[CpXL]	 	 	 	 																		(21)	
	
then	I,	γ1	and	γ2	recalculated	again.	These	steps	of	calculations	
were	 repeated	many	 times	 until	 the	 difference	 between	 two	
successive	 values	 of	 [CpXL]	 becomes	 equal	 to	 or	 less	 than	
1×10‐7.	

The	calculated	average	values	of	kip	in	dicarboxylate	buffer	
containing	 30%	of	 tert‐butanol	 at	 different	 temperatures	 are	
collected	in	Table	6.	
	
3.1.	Variation	of	ion‐pair	coefficients	(kip)	with	different	
buffers	
	

Various	 studies	 [17]	 found	 that	 the	 rate	 of	 aquation	 of	
chloropentaammine	 chromium(III)	 ion	 is	 accelerated	 by	
nitrate,	sulphate,	malonate,	tartrate	and	phthalate	ions.	These	
effects	were	 attributed	 to	 the	more	 reactive	 ion‐pairs.	 These	
studies	 clearly	 show	 the	 ion‐pairs	 formed	 between	 some	
bivalent	 anions	 and	 halopentaammine	 cobalt(III)	 or	
chromium(III)	 cations	 undergo	 aquation	 at	 a	 faster	 rate	 as	
compared	 to	 the	 free	 cations.	 Thus,	 by	 comparing	 kobs	 of	 all	
buffers	with	respect	to	ko	(in	the	absence	of	buffer)	at	30%	of	
tert‐butanol	 (see	Tables	1‐5),	 it	was	 seen	 that	kobs	 values	 are	
greater	 than	 the	 ko	 values.	 The	 rate	 of	 the	 acid	hydrolysis	 of	
chloropentaammine	 cobalt(III)	 ion	 had	 been	 shown	 to	 be	
independent	of	hydrogen	ion	concentration	below	pH	=	7	[18].	
For	 that	 reason,	 the	 values	 of	 ion‐pair	 rate	 constant	 kip	 are	
approximately	 the	 same	at	different	 concentration	of	buffers.	
Table	6	shows	the	average	values	of	kip	for	the	different	buffers	
at	 different	 temperatures	 containing	 30%	of	 tert‐butanol.	 By	
comparing	 the	 kip	 values	 with	 respect	 to	 different	 buffers,	 it	
was	 seen	 that	 the	 values	 of	 kip	 are	 of	 decreasing	 order:	 kip	
malonate	>	kip	malate	>	kip	tartrate	>	kip	succinate	at	different	
temperature.	Knowing	that	pK1	succinate	>	pK1	tartrate	>	pK1	
malate	>	pK1	malonate.	 This	means	 that	malonate	will	 disso‐
ciate	 more	 than	 the	 other	 buffers	 causing	 more	 anions	 of	
malonate	in	solution,	thus	helping	in	the	formation	of	ion‐pair.	
Furthermore,	 the	 solute‐solvent	 and	 the	 solvent‐solvent	
interactions	must	be	considered	resulting	from	the	presence	of	
hydroxyl	groups	in	both	solvent	components	(water	and	tert‐
butanol)	 and	 the	 carbonyl	 oxygens	 group	 in	 the	 malate,	
malonate,	 tartrate	and	succinate	buffers	besides	 the	hydroxyl	
groups	in	tartrate	and	malate	in	the	formed	ion‐pairs.	So,	tert‐
butanol	 has	 special	 effect	 on	 the	 formation	 of	 ion‐pair.	 This	
fact	was	also	proven	in	previous	studies	[19‐21].	
	
3.2.	Thermodynamic	parameters	of	the	ion‐pair	aquation	
reaction	
	

The	 thermodynamic	parameters	of	 the	 activated	 complex	
at	40	°C	were	collected	in	Table	7.	A	useful	comparison	can	be	
made	with	Δܩ୧୮

∗ 	values	among	the	studied	dicarboxylates.	The	
most	positive	values	of	Δܩ୧୮

∗ 	were	found	for	succinic	buffer	as	
shown	in	Table	7.	The	trend	of	stability	of	ion‐pairs	is	based	on	
the	 ring	 size	 formed	 between	 the	 complex	 cation	 and	
dicarboxylate	 anion	 in	 which	 the	 stability	 increases	 with	
decreasing	 ring	 size	 [22].	 Accordingly,	 malonate	 is	 the	 most	
stable	 one.	 The	 stability	 of	 tartrate	 and	 malate	 ion‐pairs	 is	
higher	than	succinate	(same	chain	length)	due	to	the	presence	
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