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 Emergence of multi-drug resistant strains of Mycobacterium tuberculosis to the available drugs has 
demanded for the development of more potent anti-tubercular agents with efficient pharmacological 
activities. Time consumed and expenses in discovering and synthesizing new drug targets with improved 
biological activity have been a major challenge toward the treatment of multi-drug resistance strain M. 
tuberculosis. To solve the above problem, Quantitative Structure Activity Relationship (QSAR) is a recent 
approach developed to discover a novel drug with a better biological against M. Tuberculosis. A validated 
QSAR model developed in this study to predict the biological activities of some anti-tubercular 
compounds and to design new hypothetical drugs is influenced with the molecular descriptors; AATS7s, 
VR1-Dzi, VR1-Dzs, SpMin7-Bhe and RDF110i. The internal validation test for the derived model was found 
to have correlation coefficient (R2) of 0.8875, adjusted correlation coefficient (R2adj) value of 0.8234 and 
leave one out cross validation coefficient (Qcv2) value of 0.8012 while the external validation test was 
found to have (R2test) of 0.7961 and Y-randomization Coefficient (cRp2) of 0.6832. Molecular docking 
shows that ligand 13 of 2,4-disubstituted quinoline derivatives have promising higher binding score of -
18.8 kcal/mol compared to the recommended drugs; isoniazid -14.6 kcal/mol. The proposed QSAR model 
and molecular docking studies will provides valuable approach for the modification of the lead 
compound, designing and synthesis more potent anti-tubercular agents. 
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1. Introduction 
 

Over the years, tuberculosis has been a serious threat to 
mankind which is caused by specie of bacteria known as 
Mycobacterium Tuberculosis (TB). World Health Organization 
in 2018, has reported 9.0 million people infected with 
tuberculosis, 360,000 HIV patient whom were leaving with 
tuberculosis, death of 230,000 children and death of 1.6 
million people worldwide [1]. Tuberculosis may infect any 
part of the body, but most commonly occurs in the lungs 
(known as pulmonary tuberculosis). Extra-pulmonary TB 
occurs when tuberculosis develops outside of the lungs, 
although extra-pulmonary TB may coexist with pulmonary TB. 
Some of the notable commercial sold drugs administered to 
people infected with tuberculosis are isoniazide (INH), 
pyrazinamide (PZA), rifampicin (RMP) and para-amino 
salicylic acid (PAS). The emergence of multi-drug resistance 
strain of M. tuberculosis toward the aforementioned drugs has 

led to advances in searching for new and better approach that 
is precise and fast in developing a novel compound with 
improved biological activity against M. tuberculosis.  

For the time being, QSAR is a theoretical approach with 
widely used computational method in predicting and 
designing new hypothetical drug candidate [2]. Multi-variant 
QSAR model is expressed mathematically to relates the 
biological activity of each compound with its respective 
molecular structures. Meanwhile, some prominent researchers 
[3-7] have successful established QSAR models to show the 
relationship between some anti-M. tuberculosis inhibitor’s 
such as; chalcone, quinolone, 7-methyijuglone, pyrrole and 
their respective biological activities using QSAR approach. 
However, QSAR alongside with molecular docking simulation 
study have not been fully established to relate the structures 
and activities of the inhibitory compounds as well as the 
interaction mode with the receptor (DNA gyrase). Hence, this 
research  was  aimed  to  build a robust QSAR model  with  high  
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Table 1. Molecular structures of inhibitory compounds and their derivatives as anti-tubercular agents. 
S/N* Molecular structure Observed  

activity (pA) 
Calculated 

activity (pA) 
Residual 

1a 2-(2-(4-Methoxybenzylidene)hydrazinyl)-N-phenylquinoline-4-carboxamide 9.4979 9.731930 -0.234030 
2 2-(2-(4-Methoxybenzylidene)hydrazinyl)-N-phenylquinoline-4-carboxamide 6.9772 6.896778 0.080422 
3 a N-Benzyl-2-(2-(pyridin-3-ylmethylene)hydrazinyl)quinoline-4-carboxamide 7.2608 6.510442 0.750358 
4 N-Benzyl-2-(2-(furan-2-ylmethylene)hydrazinyl)quinoline-4-carboxamide 7.1707 6.972982 0.197718 
5 a N-Benzyl-2-(2-(thiophen-2-ylmethylene)hydrazinyl)quinoline-4-carboxamide 7.4233 7.152527 0.270773 
6 2-(2-(Anthracen-9-ylmethylene)hydrazinyl)-N-benzylquinoline-4-carboxamide 7.2838 6.985668 0.298132 
7 a N-Benzyl-2-(2-((4-methoxynaphthalen-1-yl)methylene)hydrazinyl)quinoline-4-carboxamide 7.1472 7.478650 -0.531450 
8 a N-Benzyl-2-(2-(2-methylpropylidene)hydrazinyl)quinoline-4-carboxamide 7.6035 7.712630 -0.109130 
9 a N-Benzyl-2-(2-propylidenehydrazinyl)quinoline-4-carboxamide 7.2938 6.495725 0.898075 
10 N-Benzyl-2-(2-(4-methoxybenzylidene)hydrazinyl)quinoline-4-carboxamide 7.2630 7.786450 -0.623450 
11 N-(5-Phenylpentyl)-2-(2-(pyridin-4-ylmethylene)hydrazinyl)quinoline-4-carboxamide 7.4772 7.411826 0.065374 
12 2-(2-(Furan-2-ylmethylene)hydrazinyl)-N-(5-phenylpentyl)quinoline-4-carboxamide 7.0807 7.172820 -0.092120 
13 N-Benzyl-2-(2-benzylidenehydrazinyl)quinoline-4-carboxamide 9.6090 9.627790 -0.018790 
14 N-(5-Phenylpentyl)-2-(2-(thiophen-2-ylmethylene)hydrazinyl)quinoline-4-carboxamide 7.2747 7.224153 0.050547 
15 a 2-(2-(Anthracen-9-ylmethylene)hydrazinyl)-N-(5-phenylpentyl)quinoline-4-carboxamide 7.4091 7.674090 -0.264990 
16 2-(2-((4-Methoxynaphthalen-1-yl)methylene)hydrazinyl)-N-(5-phenylpentyl)quinoline-4-carboxamide 7.7412 7.318700 0.422500 
17 2-(2-(2-Methylpropylidene)hydrazinyl)-N-(5-phenylpentyl)quinoline-4-carboxamide 7.6688 7.273758 0.395042 
18 2-(2-Benzylidenehydrazinyl)-N-(5-phenylpentyl)quinoline-4-carboxamide 6.2688 6.325600 -0.056800 
19 2-(2-(4-Methoxybenzylidene)hydrazinyl)-N-(5-phenylpentyl)quinoline-4-carboxamide 7.6970 7.737650 -0.040650 
20 (2-(2-(4-Methoxybenzylidene)hydrazinyl)quinolin-4-yl)(morpholino)methanone 6.8414 6.809542 0.031858 
21 (4-Methylpiperazin-1-yl)(2-(2-(pyridin-4-ylmethylene)hydrazinyl)quinolin-4-yl)methanone 7.3673 7.357741 0.009559 
22 (2-(2-(Furan-2-ylmethylene)hydrazinyl)quinolin-4-yl)(4-methylpiperazin-1-yl)methanone 7.1891 7.392020 -0.202920 
23 a (2-(2-((4-Methoxynaphthalen-1-yl)methylene)hydrazinyl)quinolin-4-yl)(4-methylpiperazin-1-yl)methanone 7.2022 7.500520 -0.298320 
24 (4-Methylpiperazin-1-yl)(2-(2-(2-methylpropylidene)hydrazinyl)quinolin-4-yl)methanone 7.7696 7.486908 0.282692 
25 (2-(2-Benzylidenehydrazinyl)quinolin-4-yl)(4-methylpiperazin-1-yl)methanone 6.7716 6.752730 -0.481130 
26 (2-(2-(4-Methoxybenzylidene)hydrazinyl)quinolin-4-yl)(4-methylpiperazin-1-yl)methanone 7.4420 7.492240 -0.050240 
27 N-Phenyl-2-(2-(thiophen-2-ylmethylene)hydrazinyl)quinoline-4-carboxamide 7.3209 7.025132 0.295768 
* Superscript a represent the test set. 

 
predictability and molecular docking study against M-
tuberculosis.  
 
2. Experimental 
 
2.1. Data set 
 

The molecules comprising the derivatives of 2,4-disubsti-
tuted quinoline reported as anti-mycobacterium tuberculosis 
that were used in this study were obtained from the literature 
[8]. The biological activities of these compounds and the list of 
the compounds were presented in Table 1. The observed 
structures and the biological activities of these compounds 
were presented in Table 1. 
 
2.2. Geometrical optimization 
 

Spartan 14 software version 1.1.4 was used to optimize all 
the inhibitory compounds in order for the compounds to attain 
stable conformation at a minimal energy. The strain energy 
from the molecules were removed by employing Molecular 
Mechanics Force Field (MMFF) and complete optimization was 
achieved with the aid of Density Functional Theory (DFT) by 
utilizing the B3LYP basic set [3,7].  
 
2.3. Calculation of descriptor 
 

A descriptor is a mathematical logic that defines the 
properties of a molecule in a numeral term based on the 
connection between the biological activity of each molecule 
and its molecular structure. Descriptors for all the inhibitory 
molecules were calculated with the aid of PaDEL descriptor 
software version 2.20 [9] and a total of 1879 molecular 
descriptors were generated.  
 
2.4. Normalization and pretreatment of data  
 

For each of the variable (descriptor) to have the same 
chance at the inception so as to influence the QSAR model, the 
descriptors values generated from PaDEL descriptor software 
version 2.20 [9] were subjected to normalization using 
Equation (1) [8].  

1  
 

D  
 
min

max min

d d
d d

−
−

=       (1) 

 
where dmax and dmin are the maximum and minimum value for 
each descriptors column of D. d1 is the descriptor value for 
each of the molecule. Immediately after the data have been 
normalized, the normalized data were then subjected to 
pretreatment so as to remove redundant descriptors. 
 
2.5. Splitting of data set  
 

The whole compounds that made up the data set was 
divided into training and test set in proportion of 70 to 30% 
using Kennard and Stone’s algorithm which was incorporated 
in DTC lab software [http://teqip.jdvu.ac.in/QSAR_Tools/]. 
The development of the QSAR model and internal validation 
test were performed on the training set while the confirmation 
of the developed model was performed on test set [3].  
 
2.6. Building of QSAR Models and internal validation  
 

The QSAR models were built by adopting the Genetic 
Function Approximation (GFA) technique incorporated in the 
Material Studio software version 8.0 [https://www.3ds 
biovia.com/products/collaborative-science/biovia-materials-
studio/] to select the optimum descriptors for the training set. 
Meanwhile, Multi-linear regression Approach (MLR) [7] was 
used as a modelling tool to develop the multi-variant 
equations by placing the activity data in the last column of 
Microsoft Excel 2013 spread sheet which was later imported 
into the Material Studio software version 8.0 to generate the 
QSAR model. The internal validation test to affirm the built 
model is robust and also have a high predictability was also 
performed in Material Studio software version 8.0 and 
reported. 
 
2.7. Applicability domain 
 

Influential and outlier molecule present in the both the 
training and test set were determined by employing the 
applicability domain approach. The leverage hi approach as 
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defined in Equation (2) was used define applicability domain 
space ±3 for outlier molecule [10,11].  
 

1( )T T
i i ih M M M M−=     (2) 

 
where Mi represent the matrix of i for the training set. M 
represent the n × d descriptor matrix for the training set and 
MT is the transpose of the training set (M). T

iM  represent the 
transpose matrix Mi. Meanwhile, the warning leverage h* 
defined in Equation (3) is the limit boundary to check for an 
influential molecule.  
 

( )*  1
 3 

d
h

N
+

=      (3) 

 
where d is the total number of descriptors present in the built 
model and N is the total number of compounds that made up 
the training set. 
 
2.8. Y-Randomization validation test 
 

Y-Randomization test is one of the external validation 
criteria which has to be considered in order to ascertain that 
the developed model is not built by chance [11,12]. Random 
shuffling of the data was performed on the training set 
following the principle laid by [12]. The activity data 
(dependent variable) were shuffled while the descriptors 
(independent variables) were kept unchanged in order to 
generate the Multi-linear regression (MLR) model. For the 
developed QSAR to pass the Y-Randomization test, the R2 and 
Q2 values for the model must be significantly low for numbers 
of trials while Y-randomization Coefficient ( 2

pcR  ) shown in 
Equation (4) must be ≥ 0.5 in order to establish the robustness 
of the model. 
 

( )
222 2    p rcR R R R = × − 

    (4) 

 
 where, 2

pcR  is Y-randomization Coefficient, R is correlation 
coefficient and Rr is average ‘R’ of random models. 
 
2.9. Assertion of the build model 
 

The internal and external validation criteria for both test 
and training set reported were compared with the generally 
accepted threshold value for any QSAR model [11,13-15] in 
order to affirm the reliability, fitting, stability, robustness and 
predictability of the developed models. 
 
2.10. Docking studies 
 
2.10.1. Preparation of receptor  
 

The crystal structure of DNA gyrase used in the study was 
obtained from protein data bank with PDB code 31FZ [16]. 
Crystal structure of DNA gyrase was prepared by removing all 
bound substances (ligands and cofactors) and solvent 
molecules associated with the receptor. DNA gyrase 
preparation was done by launching the Discovery Studio 
Visualizer software. The prepared receptor was then saved in 
PDB file format which is the recommended input format in 
Pyrx and Discovery Studio Visualizer software [https://www. 
3dsbiovia.com/products/collaborative-science/biovia-
discovery-studio/]. The prepared receptor was transported 
into the Pyrx software in order to make it a macro molecule. 
 

2.10.2. Preparation of the optimum ligand 
 

The optimum ligand was geometry optimized with Spartan 
14 software at Density Functional Theory (DFT) level in order 
to attain the most stable conformer of the inhibitor at 
minimum energy [4]. The optimized molecule/ligand was 
saved as a pdb file in a folder. The optimized structure was 
then saved in PDB file format and transported into the Pyrx 
software in order to make the inhibitor as a micro molecule 
(ligand) [17]. 
  
2.10.3. Receptor-ligand docking with PyRx virtual screening 
software 
 

PyRx [https://pyrx.sourceforge.io/], is an open source 
software for performing virtual screening. PyRx uses 
AutoDock Vina [http://vina.scripps.edu/] and AutoDock 4.2 
[http://autodock.scripps.edu/] as docking softwares. In this 
study, AutoDock Vina was only used to carry out the molecular 
docking. In order to perform protein-ligand docking, both the 
ligand and receptor (DNA gyrase) was converted from pdb 
files to pdbqt (protein data bank, partial charge and atom 
type) files (Vina input file format). The conversion of pdb files 
to pdbqt files (Vina input file format) was done by launching 
the PyRx virtual screening software in order compute the 
Binding Score (kcal/mol). The more the negative the binding 
score, the better the orientation of the ligand in the binding 
site of DNA gyrase. The docked results were compiled, 
visualized and analyzed using Discovery Studio Visualizer [17]. 
 
3. Results and discussion 
 
3.1. QSAR studies 
 

Optimum QSAR model for predicting the derivatives of 2,4-
disubstituted quinoline against M. tuberculosis was success-
fully achieved by adopting the combination of computational 
and theoretical method. Data set comprises of 27 compounds 
was partitioned into 19 training set and 7 test set using 
Kennard and Stone algorithm method [4]. The 20 training set 
compounds were used to derive QSAR model using Multi-
linear regression technique which also served as data set for 
internal validation test while the external validation test for 
the derived model was conducted on the test set. 

The observed activities reported in literature and the 
calculated activities calculated for all the anti-tubercular 
compounds were presented in Table 1. The difference between 
the observed activities and calculated activities is the residual 
values which were observed to be significant low. The low 
residual value indicates that the model built has a good 
predictive ability.  

The optimum (2D and 3D) descriptors that efficiently 
describe the anti-tubercular compounds in relation to their 
biological activities selected by Genetic Function Approxi-
mation (GFA) approach were reported in Table 2.  

Various statistical analyses were conducted on the 
calculated descriptors in order to check the validity of the built 
model as reported in Table 3. Variance inflation factor (VIF) 
was evaluated for all the descriptors in order to determine the 
degree of correlation between each the descriptor. Generally, 
VIF value equal to 1 or falls with 1 and 5 signify non-existence 
of inter-correlation among the descriptors. However, if the VIF 
value is greater than 10, it signify that the model developed is 
unstable hence, the model should be re-checked if necessary. 
Regarding the VIF values for each the descriptors which were 
found to be less than 5 as reported in Table 3 affirm that the 
descriptors were significantly orthogonal to each order since 
there is no inter-correlation between them.  
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Table 2. List of some descriptors used in the QSAR optimization model. 
No Descriptors 

symbols 
Name of descriptor(s) Class 

1 AATS7s Average Broto-Moreau autocorrelation - lag 7/weighted by I-state 2D 
2 VR1-Dzi Randic-like eigenvector-based index from Barysz matrix/weighted by first ionization potential 2D 
3 VR1-Dzs Randic-like eigenvector-based index from Barysz matrix/weighted by I-state 2D 
4 SpMin7-Bhe Smallest absolute eigenvalue of Burden modified matrix - n7/weighted by relative Sanderson electronegativities 2D 
5 RDF110i Radial distribution function - 110 / weighted by relative I-state 3D 

 
Table 3. Statistical parameters that influence the model. 
Descriptor Standard regression coefficient (bj) Mean effect (ME) p-value (Confidence interval) VIF Standard error 
AATS7s -0.4082 -0.4178 2.38×10-5 1.3429 0.0067 
VR1-Dzi 0.2248 0.2233 6.19×10-4 3.8139 0.0298 
VR1-Dzs 0.3393 0.3478 4.34×10-6 1.9125 0.0984 
SpMin7-Bhe  -0.6830 -0.6922 2.72×10-5 1.6912 0.0049 
RDF110i 0.8528 0.8847 5.02×10-3 2.2013 0.0054 

 
Table 4. Pearson’s correlation coefficient for the descriptor used in the QSAR model. 
Inter-correlation AATS5e VR1-Dzs SpMin7-Bhe TDB9e RDF110i 
AATS7s 1.0000     
VR1-Dzi 0.4112 1.0000    
VR1-Dzs 0.3315 0.2833 1.0000   
SpMin7-Bhe 0.1395 -0.5232 -0.3092 1.0000  
RDF110i 0.0719 -0.0831 0.0384 0.0943 1.0000 

 
The degree of contribution that each descriptor plays in 

the built model was evaluated by determining the standard 
regression coefficient (  

s
jb ) and mean effect (ME). The 

magnitude and signs for  
s
jb and ME values reported in Table 3 

indicate strength and direction with which each descriptor 
influence the activity model. The relationship between the 
descriptors and biological activity of each compound was 
determined by one way Analysis of variance (ANOVA). The 
probability value of each of the descriptor at 95% confidence 
level was found to be (p < 0.05) as presented in Table 3. 
Therefore, this signify that the alternative hypothesis that says 
there is a direct relationship between the biological activity of 
each compound and the descriptor swaying the built model is 
accepted thus; null hypothesis proposing no direct relation-
ship between biological activity of each compound and the 
descriptor swaying the built model is rejected [17]. To further 
justify the validation of the descriptors in the activity model, 
Pearson correlation statistic was conducted to also check 
whether there is inter-correlation between each descriptor. 
The correlation coefficient between each descriptors reported 
in Table 4 were all < ±0.8. Hence this implies that all the 
descriptors were void of multicollinearity. 

Validation results for both the external and internal 
assessment to assure that the built model is reliable and 
robust were presented in Table 5. These results were all in full 
agreement with general validation criteria resented in Table 5 
to truly indorse that the stability and robustness of the model 
is valid.  
 
3.2. Model built 
 

The coefficient of Y-Randomization ( 2
pcR ) with significant 

value of 0.6832 greater than threshold value of 0.5 reported in 
Table 6 provide a reasonable supports that the model built is 
robust and not just by chance. 
 
pBA = - 6.631974301 × AATS7s + 0.001749220 × VR1_Dzi  
  + 0.060901621× VR1_Dzs - 6.088397140× SpMin7_Bhe  
  + 0.097016191× RDF90i + 21.24098010  (5) 
 
3.3. Mechanistic information of the selected descriptors in 
built  
 

AATS7s is Average Broto-Moreau autocorrelation – lag 7/ 
weighted by I-state auto-correlation descriptor. The negative 

mean effect of this descriptor indicates that the inhibitory 
activity will decrease with hydrogen bonds of path length 3. 
VR1-Dzi is Randic-like eigenvector-based index from Barysz 
matrix/weighted by first ionization potential while VR1-Dzs is 
Randic-like eigenvector-based index from Barysz 
matrix/weighted by I-state. From the model generated in this 
study, these descriptors have positive coefficient and positive 
mean effect value. SpMin7-Bhe descriptors have been 
proposed as chemical structure descriptors derived from a 
new representation of molecular structure. The Sign of the 
coefficient of this descriptor is negative implying that groups 
having more branching are diminishes the activities of the 
active compounds toward Mycobacterium tuberculosis. 
RDF90i is 3D radial distribution function at 2.5 inter-atomic 
distance weighted by atomic masses. RDF90i with positive 
mean effect (MF) indicates positive impact on the activity. 

The graphical representation to show the degree of 
correlation between the calculated activities and observed 
activities of the training and test set were shown in Figure 1 
The correlation coefficient (R2) value of 0.8875 and 0.7961 for 
both the training set and test set shows that there is a high 
correlation existing between the calculated activities and 
observed activities of the training and test set which were also 
in agreement with the accepted QSAR threshold values 
reported in Table 5.  

The residual plot shown in Figure 2 signify that there is no 
indication of computational incompetency and inaccuracy in 
the QSAR model derived as all the standard residual values for 
both training and test set were found within the defined 
boundary of ±2 on the standard residual activity axis. 

The Williams plot to show the Applicability Domain space 
(AD) is shown in Figure 3. It is also observed that all the 
compounds fall within the defined space of ±3 which indicates 
that no compound is said to be outlier. Also all the compounds 
fall within the defined warning leverage (h* = 0.95). Therefore 
no compound is said to be an influential molecule. 
 
3.4. Docking studies 
 
3.4.1. Evaluation binding score 
 

Elucidation of interaction type and the binding mode 
between the inhibitory compound and target (DNA gyrase) 
was achieved via molecular docking studies.  
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Table 5. Validation parameters for each model using Multi-linear Regression (MLR). 
No Validation parameters Formula Threshold Model 
Internal validation  
1 Friedman LOF 

2   1  

SEE
C d p

M
+ × − 

 

  
Significantly low 0.0484 

2 R-squared ( )
( )

2

  

2

  

1  pred

training

exp Y

exp Y

Y

Y

−

−

 ∑ −  
∑  

  
R2 > 6 0.8823 

3 Adjusted 
R-squared ( )2    1

  1
R P n

n p
− −
− +

  
2
adjR 0.6>   0.8234 

4 Cross validated R-squared ( 2
cvQ ) 

 ( )
( )

2

  

2

  

1  exp

training

pred Y

exp Y

Y

Y

−

−

 ∑ −  
∑  

 
Q2 > 6 0.8012 

5 Significant Regression   Yes 
6 Critical SOR F-value (95%) ( ) ( )2 2

    
/

p N p 1
exp exppred Y pred YY Y− −∑ ∑

− −
  

F(test) > 2.09 3.4528 

7 Replicate points  0 0 
8 Computed observed error  0 0 
9 Min expt. error for non-significant LOF (95%)  Significantly low 0.0983 
Model randomization  
10 Average of the correlation coefficient for randomized data (

rR )  R 0.5<   0.4543 

11 Average of determination coefficient for randomized data ( 2
rR )  2 0.5rR <  0.2841 

12 Average of leave one out cross-validated determination coefficient for 
randomized data ( 2

rQ ) ( )
( )

2

  2
2

  

 1  exp

training

pred Y

cv

exp Y

Y
Q

Y

−

−

 ∑ = −  
∑  

   
2 0.5rQ <  -1.4322 

13 Coefficient for Y-randomization ( 2
pcR ) ( )2 2 2

rR  1 R R  × − −   
2
pcR 0.6>  0.6832 

External validation  
14 Slope of the plot of Observed activity against Calculated activity values at 

zero intercept (K) Obs

cal

Y
Y

∆
∆

  0.85 < k < 1.15 1.019 

15 Slope of the plot of Calculated against Observed activity at zero intercept 
(k′) Obs

cal

Y
Y

∆
∆

 0.85 < k < 1.15 0.8034 

16 2 2
0 0/ /r r′−   

 

 <0.3 0.0152 

17 2 2
0

2

r r
r
−   

 <0.1 0.0021 

18 2 2
0

2

r r
r

′−    <0.1 0.0543 

19 2
testR   ( )

( )

2

ext ext

2
ext

Y Y
1  

Y Y

ˆ∑ −
−

∑ −

  
2
predR 0.6>   0.7954 

 
Table 6. Y-Randomization parameters test. 
Model  R R2 Q2 
Original 0.8823 0.8234 0.8012 
Random 1 0.5451 0.2647 -1.0792 
Random 2 0.4764 0.2696 -0.2065 
Random 3 0.8381 0.4868 0.0145 
Random 4 0.5734 0.3321 -0.0964 
Random 5 0.3525 0.1261 -0.8451 
Random 6 0.6987 0.2545 0.0231 
Random 7 0.4447 0.1635 -0.9035 
Random 8 0.5351 0.2688 -0.6712 
Random 9 0.4466 0.2656 -0.6872 
Random 10 0.6956 0.3963 -0.0026 
Random models parameters  
Average r 0.4543   
Average r2 0.2841   
Average Q2 -1.4322   
cRp2 0.6832   
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Figure 1. (a) The plot of calculated activity against observed activity of training set, (b) The plot of calculated activity against observed activity of test set. 
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Figure 2. Plot of standardized residual activity versus observed activity. 
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Figure 3. The Williams plot of the standardized residuals versus the leverage value. 
 
The docking results clearly show that the binding score for 

the optimum compound number 13 correlates with its activity 
value. For target enzyme, binding score was found to be -18.8 
kcal/mol as reported in Table 7. The binding score of 
recommended drugs; isoniazid (-14.6 kcal/mol) was found to 
be lesser than the binding score of the compound 13. This 

indicate that this compounds could serve as better anti-
tubercular drug and can be improve by structure base design.  
 
3.4.2. Determination of bond type and bond length  
 

Discovery Studio Visualizer software was used to show the 
bond length and type of interaction (bond) that exist between 
the optimum compound and the target site.  
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Table 7. Binding score, hydrogen bond and hydrophobic interaction of the optimum ligands with M. tuberculosis target (DNA gyrase). 
Ligand Binding score (BA) 

Kcal/mol 
Target Hydrogen bond hydrophobic interaction 

Amino acid Bond length (Å) Amino acid 
13 -18.8 DNA gyrase ARG98 

SER118 
GLY120 
GLY120 

3.3701 
2.8704 
1.9128 
3.2821 

VAL97, PRO124, VAL97, ASP94, ASP122, PRO123 

 

(a) 
 

 (b) 
 

Figure 4. (a) The 2D interactions between DNA gyrase and ligand 13 of 2,4-diquiloline derivatives, (b) The 2D interactions between DNA gyrase and isoniazid. 
 

 
 

Figure 5. H-bond interaction between the ligand 13 of 2,4-disubstituted quinoline derivatives and M. tuberculosis target (DNA gyrase). 
 

The 3D and 2D interaction of ligand 13 was shown in 
Figure 4. Ligand 13 formed four hydrogen bonds (3.3701, 
2.8704, 1.9128 and 3.2821 Å) with ARG98, SER118, GLY120 
and GLY120 of the target while hydrophobic interactions were 
observed with VAL97, PRO124, VAL97, ASP94, ASP122 and 
PRO123 of the target site.  

Ligand 13 formed a total of four hydrogen bonds with 
target site of DNA gyrase. The C=O of the ligand acts as 
hydrogen acceptor and formed one hydrogen bond with 
ARG98 of the target. The N-H group (hydropyridine) of the 
ligand acts as hydrogen donor and formed two hydrogen 
bonds with GLY120 of the target. The N-H group (hydrazine) 
of the ligand also acts as hydrogen donor and formed a 

hydrogen bond with SER118 of the target site. The hydrogen 
bond formations alongside with the hydrophobic interaction 
provide evidence that ligand 13 of 2,4-disubstituted quinolone 
derivatives is a potent inhibitors against DNA gyrase receptor. 
Elucidations of hydrogen donor and hydrogen acceptor region 
were shown in Figure 5. 
 
3.4.3. Determination of bond type and bond length between 
recommended anti-tubercular drug (isoniazid) and DNA 
gyrase 

 
The 2D interaction of the recommended anti-tubercular 

drugs (isoniazid) with the DNA gyrase target site were in 
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Figure 4. Isoniazid formed three hydrogen bonds (2.29943, 
2.52954 and 2.24657 Å) with SER279, ALA337 and ALA337 
while hydrophobic bonds were observed with CYS345 of the 
target site. It is an evidence that increase in number of 
hydrogen bonds observed in ligand 13 of 2, 4-disubstituted 
quinoline derivatives account for its higher binding score -18.8 
kcal/mol compared to the recommended drugs; ‘‘Isoniazid -
14.6 kcal/mol’’. 
 
4. Conclusion 
 

QSAR generated models was able to predict the activity of 
2,4-disubstituted derivatives as a potent anti-tubercular agent 
and molecular docking studies carry out help to understand 
and elucidate the interaction between the inhibitor com-
pounds and the target site of M. tuberculosis (DNA gyrase). The 
model derived was subjected to internal and external 
validation test to confirm that the built QSAR model is 
significant, robust, and reliable. From the results, it is 
concluded that 2,4-disubstituted quinoline derivatives can be 
modelled using molecular descriptors; AATS7s, VR1-Dzi, VR1-
Dzs, SpMin7-Bhe and RDF110i. Molecular docking simulation 
shows that ligand 13 of 2,4-disubstituted quinoline derivatives 
have promising higher binding score of -18.8 kcal/mol 
compared to the recommended drugs; Isoniazid -14.6 
kcal/mol. The built QSAR model and docking studies could 
serve as a vital tool for pharmaceutical as well as medicinal 
chemists to design and synthesis novel anti-tubercular drugs 
with better activities against M. tuberculosis. 
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