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Pharmaceutical chemistry deals with the process of isolating organic compounds from 
natural sources or chemically synthesizing them in order to explore potential drugs. Drugs 
are small molecules, used to prevent or treat various diseases. Of several lead molecules, 
only few of them reach clinical trial phases and emerge as effective drugs, whereas the 
majority will be eliminated at different stages. On the other hand, due to the lack of proper 
identification of their pharmacokinetic properties and biological potential, many small 
molecules fail to reach this stage. This could be because of the fact that it is either time 
consuming and costly or there is full of uncertainty due to lack of analyses that are necessary 
for the confirmation. In the post-genomic era, computational methods have been 
implemented in almost all stages of drug research and development owing to the drastic 
increase in the available knowledge about small molecules and the target biomacromolecule. 
This includes identifying the suitable and specific targets for drug candidates, lead discovery, 
lead optimization and ultimately preclinical phases. In this context, numerous websites have 
become highly valuable and influence the drug development and discovery process. Here, 
we have attempted to bring together some of the online computational approaches and tools 
that are available to facilitate research efforts in the field of drug discovery and drug design. 
The output information from these tools is extremely helpful in selecting and deciding about 
the future direction or specific path needed to be followed by the researchers. These 
computational methods are indeed help to focus the intended research in the right direction. 
As detailed in this review, the information provided about the servers and methods should 
be useful throughout the process of screening of synthesized or chemical database 
originated small molecules to find the appropriate targets along with the active sites without 
depending on any commercial tools or time-consuming and costly assays. It should however 
be remembered that the bioinformatics-based prediction cannot completely replace the wet 
lab data of chemical compounds or specific assays. 
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1. Introduction 
 

Molecular modeling is a computer-based tool for the 
creation, representation and transformation of small molecule 
drug candidates into active or efficient drugs. The search for a 
potential drug begins from a large repository of synthetic 
molecules which undergoes the elimination process at different 
steps of drug discovery process. Thus, the number of bioactive 
drug molecules will be very small as compared to a vast 
collection of candidate compounds [1].  

In computational drug discovery, there are several 
parameters that are needed to be evaluated to check drug 
likeliness of molecules, as shown in Figure 1. These include 

structural, molecular and physico-chemical properties of a 
small molecule, such as their molecular weight, hydrogen 
bonding ability, polarity, lipophilicity and structural adaptation 
to increase their drug likeliness. In addition, prediction of 
toxicity and their binding capacity with the appropriate target 
are also important parameters. All these multiple criteria 
should be fulfilled by a molecule for it to qualify as a hit or lead 
candidate in the area of computational drug design pipeline. 

It is very important that drug-like properties of compounds 
as identified in the virtual screening must agree with the labora-
tory assays involving the specific target in order to become a 
potent drug.  
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Structural and molecular properties 
 

 - Molecular weight 
- Hydrogen bonding 
- Polarity 
- Structural modification to increase the oral bio-availability 

⇓   
Physicochemical properties 

 - Solubility and distribution 
- Permeability and lipophilicity 
- Stability 
- pKa 

⇓   
Biological properties 

 - Adsorption, distribution, metabolism and excretion (ADME) 
- Transporters, plasma protein binding and CYP inhibition 
- Toxicity and safety 

   
Figure 1. Schematic representation of pharmaceutical profiling and drug discovery stages and their associated parameters. 

 
A drug target is usually a main molecule that involves 

particular metabolic or signaling pathways that are unique to a 
state of the disease. 

In this manuscript, we have presented a compilation of 
some of the freely accessible online resources that are frequ-
ently used in drug discovery. For the purpose of demonstration, 
a common drug molecule such as doxorubicin has been selected 
from ZINC database, which is a collection of commercially 
produced substances designed for virtual screening. The 
specific characteristic properties of this drug molecule were 
evaluated using the available online tools. The target was 
identified, binding pockets analyzed, virtual testing and 
compound profiling were performed to highlight the 
importance of in silico drug design tools. Although various 
docking algorithms-based tools are available online, an 
understanding of each method’s advantages and limitations is 
of fundamental importance in designing successful strategies 
and obtaining the expected results. Thus, the aim of this study 
was to compare some of the currently available online 
accessible tools for the pharmacokinetic evaluation and 
molecular docking studies utilized in drug discovery and 
medicinal chemistry.  
 
2. Online resources for drug discovery and development  

 
Over the last few years, plenty of free online tools are 

available to encourage and promote drug development 
research. These sites assist withdrawing and converting of the 
chemical structures into appropriate formats, including MDL 
MOL, SMILES, SDF and several other formats which are 
compatible inputs for the selected web tools. Marvin Suite is a 
smart online toolkit designed to help editing the skeleton of a 
molecule (https://academia.chemaxon.com) [2]. This program 
has a function that automatically detects the structure of a 
chemical molecule from any input format. ChemDraw JS, a web 
version of ChemDraw helps to build JavaScript and HTML5 web 
applications (https://chemdrawdirect.perkinelmer.cloud/ 
rest/) [3]. All kinds of scientific template inputs can be made 
into a better presentation in this web tool with modeling of 
small molecules. MolView v2.4 is a program that allows the user 
to analyze and display molecular structure in any format [4]. 
This program can read small molecules in any format including 
PDB structure files such as American Standard Code for 
Information Interchange (ASCII). The structure can further be 
screened and analyzed by showing hydrogen bonds, construc-
ting Ramachandran plots for favorable residues, marking the 
atoms, calculating the distance between atoms and finding 
adjacent atoms. This program also helps to carry out structural 

analysis by updating their database interlinked with PubChem 
molecules, RCSB protein database and crystallographic 
database. By the help of these tools, once the lead molecule is in 
hand, it is very important to find out ways to transform these 
molecules to improve the desired pharmacological properties. 
The reason why many drug molecules fail to develop into lead 
molecules is because of exhibition of weak drug-like properties 
which could be improved by increasing its binding affinity to a 
receptor or target. For this, it is critical to know the structural 
or molecular, physicochemical and biological properties of any 
potential small molecule in the process of drug discovery 
(Figure 1). 
 
3. Structural and molecular properties 
 
3.1. Molecular weight 
 

The molecular weight of an organic compound plays an 
important role as it should follow the Lipinski rule of 5 
according to which smaller molecules are better as the 
dispersal is directly affected [5]. Most of the existing organic 
molecules that are available in the library and approved by the 
FDA are having molecular weight in the range of 200 and 600 
Daltons. Specifically, the majority of drug molecules belong to 
<500 Daltons group [6]. 
 
3.2. Hydrogen bond 
 

The hydrogen bond is a unique descriptor because 
hydrogen is the only atom that can carry a positive charge at 
physiological pH while remaining covalently bonded in a 
molecule. Both intra-molecular and inter-molecular hydrogen 
bonds play a crucial role in the drug-receptor interaction. Intra-
molecular bonding is a very essential property of a molecule 
that may have a significant effect on the lead modification 
approach. In computational approaches (Molecular docking), 
hydrogen bonds are very much significant to maintain the 
structural components such as α-helix and the β-sheet 
conformations of the protein or receptor. The ∆G° or free 
energy for hydrogen bonding occurs between -1 to -7 kcal/mol. 
The binding affinity increases by order of magnitude per 
hydrogen bond [7]. Proteins or receptors that are composed of 
various groups such as NH and OH can donate hydrogen bond 
and CO and other groups can act as acceptors [8]. Thus, the 
hydrogen bonds have significant biochemical importance in 
drug likeliness of a molecule. An example for the hydrogen bond 
interaction between the ligand and the surface of a receptor is 
shown in Figure 2. 
 

https://academia.chemaxon.com/
https://chemdrawdirect.perkinelmer.cloud/%20rest/
https://chemdrawdirect.perkinelmer.cloud/%20rest/
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Figure 2. Example of hydrogen bonding interaction of aspirin with the receptor surface. The wavy line represents the receptor surface and the dotted line 
indicates the hydrogen bond. 

 
3.3. Polarity 
 

Polarity is the most important parameter to determine the 
ability of a small molecule to be an effective drug. The extent of 
Total Polar Surface Area (TPSA) relies on the sum of hydrogen 
donor and acceptor count in the structure of a molecule which 
is an important predictor of good oral bioavailability. The TPSA 
value should be in the range of 20 to 130 Å for a molecule to be 
a drug. The TPSA is a descriptor that is shown to correlate well 
with passive molecular transport through the membrane of 
receptors. Hence, the sum of polar atoms in a molecule allows 
for the prediction of transport properties of drugs [9].  
 
3.4. Structural modification of molecules for better oral 
bioavailability 
 

About half of the drug candidates do not reach the clinical 
trial phases due to lack of exhibition of acceptable pharmaco-
kinetic properties in animal model studies [10]. Thus, a major 
challenge in organic synthesis is the structural modification of 
lead compounds. This should not only modify the structure of 
starting material but also increases its biological activity [11]. 
During modeling and visualization of small molecules using 
online tools such as Molinspiration (https://www.molin 
spiration.com/) [12], one can find the pharmacokinetic 
violations which are needed to be corrected. In order to make a 
potent molecule, several lead modification approaches are 
required such as homologation, chain branching, fingerprint 
analysis of a molecule, ring-chain transformations and bio-
isosterism to increase the potency of a molecule. 
 
4. Physicochemical properties 
 
4.1. Solubility and distribution 
 

The insolubility, poor solubility and poor permeability 
issues are the main reasons to classify them as inactive drugs 
during the development and design of a particular drug 
candidate [13]. It is therefore important to determine these 
pharmacokinetic and physicochemical properties associated 
with a drug molecule and receptor. Poor or weak solubility can 
often be a more limiting factor in drug development. The 
lipophilicity (log P) and Lipinski’s analysis of compounds are 
very critical for those molecules to be destined for drug 
development or used as drugs [14]. Having a soluble molecule 
greatly facilitates many drug development activities [15]. Once 
the drug molecule gets absorbed in the Gastro intestinal-tract 
(GI-tract) or through some other administration route, it will 
pass through the capillaries and dispersed into the tissues of the 
body [16]. The amount of drug in the body is described by the 
term “volume of the drug distributed” which denotes the sum of 
the drug in the body (mg) divided by the concentration of the 
drug in plasma (mg/L). The drug distribution largely relies on 

the size of the molecule, log P, H bonding, polarity etc. In this 
context, the drug molecules designed to be effective on tissues 
and organs should not be able to cross the blood-brain barrier 
(BBB) to avoid adverse effects on the CNS [17]. 
 
4.2. Permeability and lipophilicity 
 

The permeability is the ability of a drug molecule to diffuse 
passively across the cell membrane, enter the phospholipid 
bilayer and from the cells apical side to the basal lateral side 
through a cytoplasmic aqueous phase or along the lipid 
membranes of the cell [18]. The permeability of a drug molecule 
across biological membranes depends upon the diffusion 
coefficient and lipophilicity property. If a drug molecule has 
poor water solubility (high lipophilicity) that can lead to a 
limiting factor in oral bioavailability, and highly lipophilic 
compounds are metabolized easily or it can bind to plasma 
proteins [7]. However, low lipophilicity is more typically 
problematic because that leads to poor permeability across the 
membrane and thus increased lipophilicity leads to improved 
physicochemical properties. The log P values, as shown in 
Figure 3, denote the in vivo lipophilicity which is derived from 
the 1-octanol/water partition model [19]. If the log P value is 
greater than 5.5, then the molecule will be highly lipophilic and 
therefore it is very important to be aware of choosing the 
solvent to obtain the log P data.  
 
4.3. Stability 
 

The storage as well as in vivo stability of a drug molecule is 
an important criterion to be fulfilled by the successful lead 
molecule. If a molecule is photosensitive or air-sensitive, any 
exposure can lead to decomposition or alteration of the 
functional groups of the molecule. Any potential drug molecule 
having weak alkaline pH value of stability that ranges between 
7.20 and 7.80 can countervail the acid toxins in vivo. This type 
of property of a molecule helps to remove the toxicants from the 
body to keep the body fluid augment digestion and nutrient 
absorption [20]. The highly stable small molecule is useful for 
the medicinal chemists as their toolbox for drug discovery. Due 
to lack of stability of a drug molecule, its biological potential can 
be disrupted. A specific reaction of a drug molecule could lead 
to putrefaction which includes oxidation and hydrolysis. All the 
potential stability issues of a drug candidate can be screened in 
silico and could be solved [21]. 
 
4.4. pKa 

 
The acid-base dissociation constant (pKa) of a drug 

candidate is an important parameter that influences many 
biopharmaceutical properties. The pH of medium interacts 
differently with the ionizable groups having variable pKa 
values.  
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Figure 3. Example for the maximum drug-likeness model score of a standard drug with partition co-efficient and concentration to produce standard biological 
effect. Log 1/C is the concentration of compound required to produce a standard response in a given time, log P is the logarithm of molecules partition 
coefficient between 1-Octanol and water, log Po is the logarithm of optimum partition coefficient for biological activity. 

 
The pKa distribution of drug molecules can impact in two 

different channels. One is structure related activity of functional 
groups of the drug molecule and the ideal range of pKa values 
that they span. The other factor concerns the biological targets 
of these compounds that are designed to hit [22]. The pKa value 
of a drug molecule can impact lipophilicity, solubility, receptor 
binding ability and membrane permeability, which in turn 
directly affect the pharmacokinetic properties. 
 
5. Biological properties 
 

For depicting the screening of a small molecule and their 
target evaluation of biological properties, we selected 
doxorubicin as a drug molecule, the structure of which was 
downloaded from the ZINC database (ZINC3918087) 
(https://zinc.docking.org/substances/home/) [23]. The thera-
peutic screening of this drug molecule was performed and the 
structure was visualized by using online tool Chemaxon 
(https://marvinjs-demo.chemaxon.com/latest/demo.html). 
The generated images of the molecule are as shown in Figure 4. 
 
5.1. Absorption, distribution, metabolism, excretion and 
toxicity (ADMET) 
 

The absorption, distribution, metabolism, excretion and 
toxicity (ADMET) data can be obtained in three ways. First, by a 
series of cell-based assays (in vitro), the second is from the 
computational approaches or by in silico prediction. In the third 
category, the predictive models have been improved that can 
eventually influx in the process of drug discovery and drug 
design to replace in vitro assays and/or in vivo experiments. The 
in vitro and in vivo experiments are generally time-consuming, 
expensive and the most important thing is that the drug 
candidate has to be procured to carry out these experiments. By 
using in silico approach, one can first derive a potent promising 
molecule for further in vitro and in vivo based assays. The idea 
behind the rule of 5 (ADMET) is to find the biological potential 
of a drug candidate. According to ADMET descriptors, the drug 
molecules should pass through all the pipelines of every 
descriptor without violating rule of 5. This is very important for 
their successful biological activity when considering the 
administration of drugs orally or from any route with real 
therapeutic potential. The results from the rule of 5 are only 
indicative, which means that a drug molecule violating the rule 
of 5 does not mean they have completely poor bioavailability. It 
should be viewed more like a quantitative predictor as it alerts 
that poor absorption or permeability is possible, and thus, helps 
to pay special attention towards preparing potential drug 
molecule having less toxicity and more bioavailability to 
overcome the pitfalls in drug properties [24]. 

The absorption occurs across different channels such as 
passive transcellular and paracellular absorption, carrier-
mediated absorption, and receptor-mediated endocytosis in the 
biological membrane [25]. The polar compounds absorption 
takes place by the paracellular absorption which occurs by 
diffusion through the tight junctions between the cells [26]. The 
most important physicochemical properties for passive 
absorption of a drug candidate from the Gastro intestinal (GI) 
tract are its aqueous solubility and lipophilicity. The P-
glycoprotein (P-gp) acts as an efflux pump in order to push the 
molecules out of the membrane. Hence, measuring the P-gp 
substrate through in silico will help the prediction of drug 
likeliness of a molecule. The distribution of entirely adminis-
tered test dose of a drug in the body (mg) will be divided equally 
in the plasma [27]. When a drug molecule is administrated by 
any route, it may permeate through the BBB or it may undergo 
human intestinal absorption (HIA). Further, the drug's 
biodegradability, Caco-2 permeability, AMES toxicity and 
carcinogenicity need to be evaluated. All these descriptors can 
easily be predicted by the online web server swissADME 
(http://www.swissadme.ch/) [28]. This is a free web tool 
which enables the computation of key properties such as 
physicochemical, pharmacokinetic, drug-like and related 
parameters (Permeability, lipophilicity, solubility, pKa and 
absorption). Based on the results obtained for each molecule, 
one can predict the bioavailability, plasma-protein binding, 
metabolism and drug-drug interaction of a likely drug candi-
date of any type of small molecules that are synthesized 
chemically or extracted from any natural product source. In the 
present example, within this filtration criterion, doxorubicin 
has been selected as a drug candidate for the next step. The 
ADMET results of doxorubicin molecule are shown in Table 1. 

 
5.2. Prediction of oral toxicity of small molecules 
 

Determining the toxicity of drug molecules is necessary to 
identify their harmful effects on humans, animals, plants, or the 
environment. It is also one of the main decisive factors in drug 
design. ProTox-II is a free web server to predict the toxicity of 
any small molecule or chemicals by entering the Pubchem name 
or in Canonical SMILES format of the molecule. The organ 
toxicity and toxicity endpoints such as carcinogenicity, 
immunotoxicity, mutagenicity and cytotoxicity of the molecule 
can be estimated by using the online tool (http://tox.charite. 
de/protox_II/index.php?site=compound_input) [34]. Computa-
tional prediction of all these important adverse characteristics 
of a molecule is very critical in suggesting new research 
directions and provides recommendations for designing novel 
in silico models. 
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Table 1. In silico ADMET prediction of doxorubicin by using six different online tools *.  
ADMET profile of the doxorubicin using different type of web tools 
Web servers / URL HIA  

(Probability) 
BBB CYP inhibition/ 

substrate 
AMES  
toxicity 

Carcinogenicity LD50 in rat 
(mol/kg) 

admetSAR [29] 
(http://lmmd.ecust.edu.cn) 

- - Substrate AMES toxic Non-carcinogen 2.6644 

SWISS ADME 
(http://www.swissadme.ch/) 

Low No Substrate - - - 

scbdd.com [30] 
(http://admet.scbdd.com/)  

0.019 0.015 Substrate 0.866 - 3.224 

pkCSM [31] 
(http://biosig.unimelb.edu.au/pkcsm/prediction) 

49.703 -1.688 No - - 2.698 

vNN-ADMET [32] 
(https://vnnadmet.bhsai.org/vnnadmet/login.xhtml) 

- - Substrate Yes - - 

preADMET [33] 
(https://preadmet.bmdrc.kr/) 

31.952 0.032 Weak substrate non-mutagen Negative 128 

* HIA: Human intestinal absorption; BBB: The blood-brain barrier; CYP: Cytochrome P450; AMES: Mutagenic effect; LD50: Median lethal dose. 
 

(a) 
 

(b) 
 

(c) 
 

Figure 4. Structure of doxorubicin as a model ligand (a). The images (b) and (c) are the three-dimensional images of doxorubicin shown with its charge and 
polarity. 

 
5.3. Calculation of molecular properties of doxorubicin  
 

In the present model, doxorubicin as the ligand molecule 
has been subjected to molecular properties prediction using 
seven different freely accessible online tools to evaluate its 
drug-likeness. The online tools used are Molinspiration, 
Molview, mcule.com, SWISSADME, proTOX, ZINC and 
DRUGBANK [35]. All these seven tools gave similar results and 
among these, six of them gave highly comparable output data as 
shown in Table 2. 

5.4. CYP inhibition 
 

The kinetic profile of a molecule indicates the extent of 
binding interaction between the compound and its target as 
well as rate of binding and dissociation from the target. The 
tools also estimate or predict the metabolism property of 
cytochromes P450 (CYPs) and amongst these, the three 
isoforms (2C9, 2D6, and 3A4), that are mainly expressed in the 
gut and liver [36].  

 

http://lmmd.ecust.edu.cn/
http://www.swissadme.ch/
http://admet.scbdd.com/
http://biosig.unimelb.edu.au/pkcsm/prediction
https://vnnadmet.bhsai.org/vnnadmet/login.xhtml
https://preadmet.bmdrc.kr/


Kumar et al. / European Journal of Chemistry 11 (2) (2020) 168-178 173 
   

 
2020 – European Journal of Chemistry – CC BY NC – DOI: 10.5155/eurjchem.11.2.168-178.1962 

 
Table 2. Molecular property predictions of doxorubicin using online in silico tools. 
Types of web servers/tools x log P H bond 

donors 
H bond 
acceptor 

tPSA MW Rotatable bonds 

ZINC 0.57 8 12 208.00 544.533 5 
Molinspiration 0.57 - - 206.08 543.520 5 
SWISSADME 1.27 6 12 206.70 543.520 5 
Molview - 6 12 - 543.525 - 
DRUGBANK 0.92 6 12 206.00 - 5 
mcule.com (https://mcule.com/apps/property-calculator/) 0.70 6 12 206.07 543.510 5 
proTOX (http://tox.charite.de/protox_II/index.php?site=home) - 0 12 206.07 543.520 5 

 

 
 
Figure 5. Prediction of top three best ranking atoms of doxorubicin involved in the CYP inhibition by using SMARTCyp online tool. (a) Predicted SMARTCyp 
score of the enzyme 3A4, (b) Predicted SMARTCyp score of the enzyme 2C9 and (c) Predicted SMARTCyp score of the enzyme 2D6. 

 
In this context, a publicly available web server SMARTCyp 

(https://smartcyp.sund.ku.dk/mol_to_som) can help the 
researchers to predict the sites of cytochrome P450-mediated 
metabolism of drug-like molecules and it displays the predicted 
sites that are metabolized by the cytochrome P450 3A4 isoform 
[37]. The advantage of SMARTCyp is that the result generated 
exactly predicts the site of metabolism directly from the 
structure of a drug molecule, without the need for the genera-
tion of 3D structures [38]. The result of predicted CYPs 
metabolism property of doxorubicin molecule is shown as 
indicated by various parameters. The findings are displayed in 
the form of a structure and in a Table for doxorubicin. Both the 
structure and the Table shows three highest ranking atoms. The 
top three ranking atoms of the doxorubicin molecule are 
highlighted in Figure 5. The atoms in the table are ranked by the 
score, the lowest score resulting in the least rank, and 
accordingly the highest probability of being a site of meta-
bolism. The comparison is expressed by a value between 0 
(low) to 1 (high) showing the greatest probability of being a site 
of metabolism. Although the top three sites are colored to 
encourage recognition, this does not mean that there is a cutoff 
and that there are only three probable locations as the ranking 
matters. It shows how close the atom in the molecule is to an 
atom in a fragment on which Discrete Fourier Transform (DFT) 
has calculated the activation energies. 
 
6. Receptor selection for molecular docking with 
doxorubicin 
 

DNA topoisomerases are essential for DNA replication, 
transcription, recombination, repair, and mitosis by intro-

ducing transient single-strand breaks (SSBs) or double-strand 
breaks (DSBs) in the DNA to adjust its topology in the cell. 
Doxorubicin initially docked into the same active domains of 
the target enzyme of interest. Doxorubicin is a broad-spectrum 
anticancer drug that targets Top II through stabilizing the 
topoisomerase-DNA complex, thus leading to the accumulation 
of DNA breaks and eventually cancer cell death [39]. Here, we 
selected the receptor 1ZXM for docking with doxorubicin 
ligand. The receptor 1ZXM was downloaded from the RCSB 
(https://www.rcsb.org/) protein data bank and visualized in 
the same web server to see its three-dimensional structure 
(Figure 6) [40]. 
 
6.1. Active sites pocket of receptor and its drug ability 
predictions by CASTp and PDBsum web servers 
 

Computed Atlas of Surface Topography of proteins (CASTp) 
is a web server interlinked with the PDB website at the San 
Diego Supercomputing Center (http://sts.bioe.uic.edu/castp/ 
index.html?201l) [41]. This is a user-friendly site wherein a 
four-letter code (PDB-ID) can be entered to get the display list 
of relevant PDB structures. This is done before molecular 
docking to find the active sites that are compatible with the 
ligand with better binding energy and interaction. In this, 
CASTp server identifies all the active pockets and measures the 
volume and area of each pocket as well as the size of mouth 
openings of individual pockets, which helps to assess the 
accessibility of binding sites to various ligands and substrates 
[42].  
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(a) 
 

(b) 
 

Figure 6. Structural presentation of human Topoisomerase II (PDB: 1ZXM). (a) Surface structure of Topo II and (b) Ribbon structure of Topo II. 

 
To get the topographic computation, the input can be in the 

form of a PDB structure / four letters PDB ID. Further, one can 
submit the structures directly to get a customized evaluation. 
For pre-computed results, a default probe radius of 1.4 Å is 
used, which is the standard value for computing the solvent 
accessible surface area. For the customized computation 
requests, users can specify any probe radius as desired [43]. For 
the receptor 1ZXM, we analyzed the active site by using the 
CASTp server and the obtained results are as shown in Figure 7. 
Alternatively, there is another freely accessible online database 
called PDBsum (http://www.ebi.ac.uk/thornton-srv/data 
bases/cgibin/pdbsum/GetPage.pl?pdbcode=index.html) to 
analyze the complete details of a protein. This database 
provides a summary of the molecules in each PDB file (i.e. 
proteins, nucleic acids, ligands, water molecules and metals) 
together with various analyses of their structural features 
[44,45]. A calculation based on Ramachandran plot quality and 
the side chain properties for the main-chain of the 1ZXM was 
performed by using PROCHECK (sub-application of PDBdsum) 
which were found to be normal and the tested parameters were 
included in the standard deviation of the chi angles [46]. The 
enlarged secondary structure and Ramachandran plot for 1ZXM 
predicted by PDBsum web server generated are shown in 
Figure 8. 
 
6.2. Determination of interaction partners of 1ZXM by 
STRING database  
 

The aim of Search Tool Retrieval of Interacting 
Genes/Proteins (STRING) database is to collect, score, and 
incorporate all publicly available sources of knowledge on 
protein-protein interaction and complement these with 

computational predictions which helps to create a global 
network that is comprehensive and objective, including both 
direct (physical) and indirect (functional) interaction. The 
STRING is a publicly available free database which has been 
used to analyze protein interactions of 1ZXM (http://string-
db.org/) [47]. The STRING database has an advantage that it 
predicts most aggregate information of the protein-protein 
associated clusters. In the present example, the PPI network of 
genes was constructed with the STRING database and the 
interaction with a combined score >0.4 was considered 
statistically significant. The value obtained here is statistically 
very significant as TPX2 has shown the highest score of 0.997 
(Figure 9). 

 
7. Molecular docking and visualization of doxorubicin 
interaction profile with 1ZXM receptor  
 

The docking analysis carried out using the DNA TOP2A 
(PDB:1ZXM) has shown very high binding affinity with the 
standard anticancer drug doxorubicin as revealed by three 
different web servers such as SwissDock [48], mcule [49] and 
MTiAutoDock [50]. Visualization of binding interactions of 
doxorubicin upon docking onto receptor 1ZXM in top scored 
poses obtained by the mcule and MTiAutodock are as shown in 
Figures 10 and 11. Once the ligand structure and appropriate 
receptor are uploaded, the web servers splits the ligand file in 
different conformations and sets up the grid box in the active 
sites of residues for better interactions and the data is 
generated for the visualization. In the present example, the 
binding energy values of doxorubicin ranges between -6.8 to -
9.11 as indicated by SwissDock.  

 

http://www.ebi.ac.uk/thornton-srv/data%20bases/cgibin/pdbsum/GetPage.pl?pdbcode=index.html
http://www.ebi.ac.uk/thornton-srv/data%20bases/cgibin/pdbsum/GetPage.pl?pdbcode=index.html
http://string-db.org/
http://string-db.org/
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Table 3. Docking interaction score and clustering results of doxorubicin with 1ZXM by SWISSDOCK. 
Receptor No. of Swiss Dock clusters Cluster rank Full fitness (kcal/ mol) Estimated ∆G (Kcal/mol) 
1ZXM 29 (257 runs) 1 -4590.14 -7.92 
  2 -4589.66 -8.95 
  3 -4586.9 -6.8 
  4 -4585.05 -9.11 
  5 -4585.48 -7.24 
 
Table 4. Docking interaction score with best three docking poses of doxorubicin and 1ZXM by mcule server. 
No Docking pose Docking score 
1 #1 -8.9 
2 #2 -8.4 
3 
4 

#3 
#4 

-8.3 
-8.2 

 

 
 

Figure 7. Active sites prediction for the receptor (1ZXM) side chains A and B by using CSATp web server. 

 

 
 

Figure 8. Prediction by Ramachandran plot and enlarged secondary structure of 1ZXM by PDBsum web server. 

 
The mcule server provides four best docking poses based 

on top four docking scores with best poses of binding affinity 
and interaction as shown in Figure 10 (Pose 1= -8.9, Pose 2= -
8.4, Pose3= -8.3 and Pose4= -8.2). In the case of MTiAutoDock 

server, which is implemented in AutoDock 4.2.6, it generated 10 
different conformations of doxorubicin. The data generated 
from the above docking servers for the ligand doxorubicin and 
target receptor 1ZXM is shown in Tables 3-5. 
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Figure 9. Snapshot of a typical output from a STRING Database. Topo II isomerase (1ZXM) and its interaction partners are shown here. 
 

(a) (b) 
 

(c) (d) 
 

Figure 10. The best four pose molecular visualization for the binding of doxorubicin with the receptor 1ZXM DNA topoisomerase II with top-ranked multi-
conformational view. (a), (b), (c) and (d) are the different docking poses generated by the server mcule.  

 
7.1. Results of docking interaction of doxorubicin with1ZXM 
receptor by SwissDock, mcule and MTiAutoDock 
 

The molecular docking study with DNA TOP2A (PDB: 
1ZXM) revealed that doxorubicin has shown high binding 
affinity as indicated by all the three different online docking 
servers. The SwissDock docking tool focused on ligand-protein 
interaction after uploading the protein and ligand structure 
files. The required structure input format of the receptor could 
be protein PDB code, name of the protein, sequence, or URL etc. 
The ligand input could be ZINC substance ID, name of the ligand 
or category (like scaffolds or side chains), or URL etc. For the 
modified ligands and receptors, the structure needs to be 
uploaded separately. As indicated above, the docking studies of 
doxorubicin was performed with mcule, SwissDock and 
MTiAutodock web servers to understand the ligand’s interac-
tion with Topo II (1ZXM). The results of docking analyses with 
docking score are shown in Tables 3-5. 

 

8. Conclusions 
 

In the discovery and optimization of hit molecules, 
computational approach using online web servers and 
databases have become an essential component of current 
research. These are highly useful in the preparation of ligands 
to enable pharmacokinetic predictions and analysis of 
appropriate receptors with the active pocket residues to find 
the specific target and validation among many others. Many of 
these methods and databases are now available freely online for 
the researchers. These tools provide needed support for the 
drug discovery tasks including the ability to find a new drug 
molecule, poly-pharmacology, drug-drug and drug-protein 
interaction, prediction of active sites and very valuable 
aggregate information of the protein-protein associated 
clusters. There are still gaps that are needed to be improved 
with regard to enhancing guidance to users and screening 
methods for combining receptor flexibility and best scoring 
schemes,  better  selection  of   binding  pocket in a receptor  and  
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Table 5. Ten different conformational interactions of doxorubicin with its target receptor 1ZXM as provided by MTiAutoDock server. 
Ligand All poses  

concatenated file (pdbqt) 
All poses  
concatenated file (mol2) 

Pose Energy Rotatable bonds 

Doxorubicin ligands_in1_all_poses.pdbqt ligands_in1_all_poses.mol2 ligands_in1_1.pdbqt -5.94 2 
ligands_in1_2.pdbqt -5.93 2 
ligands_in1_3.pdbqt -5.93 2 
ligands_in1_4.pdbqt -5.73 2 
ligands_in1_5.pdbqt -5.54 2 
ligands_in1_6.pdbqt -5.51 2 
ligands_in1_7.pdbqt -5.45 2 
ligands_in1_8.pdbqt -5.37 2 
ligands_in1_9.pdbqt -5.28 2 
ligands_in1_10.pdbqt -5.24 2 

 

(a) (b) (c) 

(d) 

(e) 
(f) 

   

(g) (h) 
(i) 

(j) 
 

Figure 11. Visualization of binding interactions of doxorubicin upon docking onto receptor 1ZXM in top 10 scored poses. (a-j) are different conformation of 
binding interaction between the ligand doxorubicin and the receptor (1ZXM). 

developing  user-friendly workflows. Yet, the freely available 
and online accessible web servers and databases have already 
contributed enormously to do faster, better and cheaper 
identification of new drug candidates either synthesized or 
extracted from natural sources. 

In this present compilation, by taking doxorubicin as a 
model ligand and its 1ZXM target receptor, we have shown the 
utility of some of the free online available tools in the area of in 
silico drug design. 
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