ATLANTA PUBLISHING HOUSE

Synthesis, crystal structures and antimicrobial activity of palladium metal complexes of sulfonyl hydrazone ligands

Samina Karimkha Tadavi (iD 1, Ratnamala Subhash Bendre (iD 2, Satish Vittal Patil (iD 3, Shubha Gaguna (ID 4 and Jamatsing Darbarsing Rajput (D) 5,*
${ }^{1}$ Department of Chemistry, Jashbhai Muljibhai Patel Arts, Commerce and Science College, Bhandara, Maharashtra, 441904, India saminatadavi30@gmail.com (S.K.T.)
${ }^{2}$ School of Chemical Sciences, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, Maharashtra, 425001, India
bendrers@rediffmail.com (R.S.B.)
${ }^{3}$ School of Life Sciences, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, Maharashtra, 425001, India satish.patil7@gmail.com (S.V.P.)
${ }^{4}$ Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, 560012, India
shu.sg13@gmail.com (S.G.)
${ }^{5}$ Department of Chemistry, Faculty of BP Arts, SMA Science and KKC Commerce College Chalisgaon, Maharashtra, 424101, India jamatsingh50@gmail.com (J.D.R.)
* Corresponding author at: Department of Chemistry, Faculty of BP Arts, SMA Science and KКС Commerce College Chalisgaon, Maharashtra, 424101, India. e-mail: jamatsingh50@gmail.com (I.D. Rajput).

RESEARCH ARTICLE

10.5155/eurjchem.11.4.377-384.2040

Received: 31 August 2020
Received in revised form: 07 November 2020
Accepted: 22 November 2020
Published online: 31 December 2020
Printed: 31 December 2020

KEYWORDS

Sulfonamide
Antifungal activity
Palladium complex
Antibacterial activity
Single crystal structure
Sulfonyl hydrazine derivative

Abstract

Palladium complexes of sulfonyl hydrazone based ligands have been prepared by refluxing with the corresponding ligands and $\mathrm{Pd}(\mathrm{II})$ salt in $2: 1$ ratio. The compounds have been characterized by FT-IR and UV-Vis spectroscopic methods. The crystal structure of the prepared palladium complexes has been determined by single-crystal X-ray crystallographic technique. Crystal data for $\mathrm{C}_{40} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{PdS}_{2}$ (PMHT-Pd(II) complex): triclinic, space group $P-1$ (no. 2), $a=7.1561(6) \AA, b=12.1300(11) \AA, c=12.6117(17) \AA, \alpha=63.498(11)^{\circ}, \beta=86.694(9)^{\circ}$, $\gamma=81.451(7)^{\circ}$ and $Z=1$. The final R_{1} was $0.0699(\mathrm{I}>2 \sigma(\mathrm{I}))$ and $w R_{2}$ was 0.1834 (all data). Crystal data for $\mathrm{C}_{36} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{PdS}_{2}$ (PTHC-Pd(II) complex): monoclinic, space group $P 2_{1} / n$ (no. 14), $a=8.6726(2) \AA, b=20.8824(4) \AA, c=10.3351(2) \AA, \beta=104.429(2)^{\circ}$ and $Z=2$. The final R_{1} was 0.0344 ($\mathrm{I}>2 \sigma(\mathrm{I})$) and $w R_{2}$ was 0.0840 (all data). Crystal data for $\mathrm{C}_{36} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{PdS}_{2}$ (PTHT-Pd(II) complex): monoclinic, space group $P 2_{1} / n$ (no. 14), $a=9.7658(2) \AA, b=$ $10.0488(3) \AA \AA, c=18.7714(4) \AA, \beta=99.602(2)^{\circ}$ and $Z=2$. The final R_{1} was $0.0334(\mathrm{I}>2 \sigma(\mathrm{I}))$ and $w R_{2}$ was 0.0832 (all data). Crystal data for $\mathrm{C}_{40} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{PdS}_{2}$ (PMHC-Pd(II) complex): triclinic, space group $P-1$ (no. 2), $a=10.2070(9) \AA, b=12.1841(13) \AA, c=16.8879$ (19) \AA) $\alpha=$ $109.005(6)^{\circ}, \beta=90.061(5)^{\circ}, \gamma=99.032(5)^{\circ}$ and $Z=2$. The final R_{1} was $0.0822(\mathrm{I}>2 \sigma(\mathrm{I})$) and $w R_{2}$ was 0.2293 (all data). The single-crystal structure data showed a good agreement with the experimental results. The synthesized complexes were screened for their in vitro antibacterial activity against one Gram-negative (Escherichia coli) and two Gram-positive (Bacillus subtilis and Staphylococcus aureus) bacterial strains and for in vitro antifungal activity against Aspergillus niger, Aspergillus flavus and Aspergillus fumigatus. The PTHCPd(II) complex possesses the nearby significant antifungal activity analogous to the standard drug fluconazole against selected fungal strains Aspergillus niger, Aspergillus Flavus and Aspergillus fumigatus as well as the same complex showed the antibacterial activity for Staphylococcus aureus as comparable to standard ofloxacin drug.

Cite this: Eur. J. Chem. 2020, 11(4), 377-384 Journal website: www.eurjchem.com

1. Introduction

Sulfonamides and sulfonyl hydrazones have been shown to be active in several pharmacological tests, demonstrating antibacterial, antitumor, diuretic, antiviral, and antinociceptive activities; and specific enzyme inhibition such as carbonic anhydrase, c-secretase HIV protease, metalloproteinase, and hormone regulation among others [1,2]. Although a large number of antimicrobial drugs are existing commercially, the requirement for more effective ones continues to exist, because the most common bacteria are resistant to available drugs [3]. Due to their significant pharmacology applications and
widespread use in medicine, these compounds have gained importance in bioinorganic and metal-based drug chemistry [4,5]. To find better compounds, some metal sulphonamides have attracted much attention due to the fact that the complexes showed more activity than both free ligands and the corresponding metallic salts [6]. Some metal sulfonamide complexes have attracted much attention due to the fact that shows greater biological activity than the sulfonamide ligands or metallic salts $[7,8]$.

In our previous studies, we reported a series of novel hydrazone and sulfonyl hydrazine linkages containing carvacrol, thymol, and eugenol derivatives, thereafter anticancer and

Figure 1. The molecular structure of PMHT-Pd(II) complex with atom numbering scheme.

Figure 2. The molecular structure of PTHC-Pd(II) complex with atom numbering scheme.
antioxidant activities were tested using sulforhodamine B (SRB) assay and 2,2-diphenyl-1-picrylhydrazyl free radical scavenging assay (DPPH), respectively. Molecular docking studies of all derivatives against the active site of human Heme oxygenase-1 indicated that interaction with the number of amino acid residues of human Heme oxygenase-1 was crucial for antioxidant activity. In the present study, reporting four palladium(II) complexes of sulfonyl hydrazine derivatives of carvacrol, thymol based nitrogen, and oxygen-containing donor ligands. The sulfonyl hydrazides have explored to synthesize new Schiff bases, as it involves two chemical parts as well as biological key moieties viz. sulfonyl groups and hydrazines and have a connection with some other important chemical classes; sulfonamides ($\mathrm{O} 2 \mathrm{~S}-\mathrm{N}$) and azomethines ($\mathrm{C}=\mathrm{N}$) [9]. The structures of all synthesized palladium(II) complexes have been examined using FT-IR and UV-Vis spectrophotometric methods and finalized by single-crystal X-ray crystallographic technique. The synthesized complexes were screened for their in vitro antibacterial activity against one Gram-negative (Escherichia coli) and two Gram-positive (Bacillus subtilis and Staphylococcus aureus) bacterial strains and for in vitro antifungal activity against Aspergillus niger, Aspergillus flavus and Aspergillus fumigatus.

2. Experimental

2.1. Materials and methods

All solvents and palladium metal salt were purchased from Aldrich and used without further purification. FT-IR spectra were recorded as KBr pellets on a Shimadzu FT-IR-8400
spectrometer. The electronic spectra were recorded as DMF solution on the Shimadzu UV-2400 series spectrophotometer.

2.2. Single-crystal X-ray diffraction data collection

The crystals of PMHC-Pd(II) complex were grown by slow evaporation of chloroform solvent by dissolving 0.5 g of the compound at $7-10{ }^{\circ} \mathrm{C}$. The X-ray single crystal diffraction data were recorded on a Bruker APEX II к-CCD diffractometer. A suitable crystal was selected and mounted on a Bruker APEX-II CCD diffractometer. The data were collected with $\mathrm{MoK} \alpha(\lambda=$ $0.71073 \AA$) radiation for PMHC-Pd(II) complex. The cell refinement and data reduction were performed using APEX2/SAINT [10] and SAINT/XPREP [11], respectively. The structure has solved by using SHELXS [12] and refined by SHELXL [13]. The suitable crystals of PMHT-Pd(II), PTHC-Pd(II), and PTHT-Pd(II) for X-ray crystallography analysis were obtained by slow evaporation of chloroform at room temperature. The X-ray single crystal diffraction data were recorded on an Oxford Xcalibur Eos (Nova) CCD diffractometer using MoK α radiation $(\lambda=0.71073 \AA$) . A suitable crystal was selected and mounted on the diffractometer. The structures are solved by direct methods and refined by full-matrix least-squares on F^{2} using the SHELXT software package [14]. All geometrical data were calculated using PLATON [15]. Molecular structure and packing diagrams were generated using OLEX2 and MERCURY, respectively [16,17$]$. The molecular structure of the complexes with the atomic numbering scheme is shown in Figures 1-4. The crystallographic parameters, data collection, and refinement data for the complexes are given in Table 1. The bond lengths, bond angles, and hydrogen bonds for all complexes are given in Tables 2-4, respectively.

Table 1. Crystal data and structure refinement for palladium complexes.

Compound	PMHT-Pd(II) complex	PTHC-Pd(II) complex	PTHT-Pd(II) complex	PMHC-Pd(II) complex
CCDC	1887978	1887979	1887980	1888204
Empirical formula	$\mathrm{C}_{40} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{PdS}_{2}$	$\mathrm{C}_{36} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{PdS}_{2}$	$\mathrm{C}_{36} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{PdS}_{2}$	$\mathrm{C}_{40} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{PdS}_{2}$
Formula weight	853.36	797.25	797.25	853.36
Temperature (K)	298.15	293(2)	293(2)	293(2)
Crystal system	Triclinic	Monoclinic	Monoclinic	Triclinic
Space group	P-1	P2 $1^{1} \mathrm{n}$	$\mathrm{P} 21 / \mathrm{n}$	P-1
a (Å)	7.1561(6)	8.6726(2)	9.7658(2)	10.2070(9)
b (Å)	12.1300(11)	20.8824(4)	10.0488(3)	12.1841(13)
c (\AA)	12.6117(17)	10.3351(2)	18.7714(4)	16.8879(19)
$\alpha\left({ }^{\circ}\right)$	63.498(11)	90	90	109.005(6)
$\beta\left({ }^{\circ}\right)$	86.694(9)	104.429(2)	99.602(2)	90.061(5)
$\gamma\left({ }^{\circ}\right)$	81.451(7)	90	90	99.032(5)
Volume (${ }^{\text {² }}$)	968.8(2)	1812.70(7)	1816.32(8)	1958.1(4)
Z	1	2	2	2
$\rho_{\text {calc }}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	1.463	1.461	1.458	1.447
$\mu\left(\mathrm{mm}^{-1}\right)$	0.639	0.677	0.676	0.632
F(000)	444.0	824.0	824.0	888.0
Crystal size (mm^{3})	$0.25 \times 0.2 \times 0.2$			
Radiation	MoK α ($\lambda=0.71073$)			
2Θ range for data collection (${ }^{\circ}$)	6.798 to 52.734	6.744 to 52.724	6.894 to 52.744	4.046 to 49.998
Index ranges	$-8 \leq h \leq 8$	$-10 \leq h \leq 10$	$-12 \leq h \leq 12$	$-12 \leq h \leq 12$
	$-14 \leq k \leq 15$	$-26 \leq k \leq 26$	$-12 \leq k \leq 12$	$-14 \leq k \leq 14$
	$-15 \leq l \leq 15$	$-12 \leq l \leq 12$	$-23 \leq 1 \leq 23$	$-20 \leq 1 \leq 20$
Reflections collected	11772	30464	22204	27355
Independent reflections	$3939\left[R_{\text {sigma }}=0.0913\right]$	3695 [$\left.R_{\text {sigma }}=0.0246\right]$	$3714\left[R_{\text {sigma }}=0.0312\right]$	$27355\left[R_{\text {sigma }}=0.1141\right]$
Data/restraints/parameters	3939/0/249	3695/0/231	3714/0/235	27355/57/527
Goodness-of-fit on F^{2}	1.057	1.093	1.055	1.046
Final R indexes [$1 \geq 2 \sigma$ (I]]	$\begin{aligned} & \mathrm{R}_{1}=0.0699 \\ & \mathrm{wR}_{2}=0.1623 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0344 \\ & \mathrm{wR}_{2}=0.0809 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0334 \\ & \mathrm{wR}_{2}=0.0788 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0822 \\ & \mathrm{wR}_{2}=0.1942 \end{aligned}$
Final R indexes [all data]	$\begin{aligned} & \mathrm{R}_{1}=0.1022 \\ & \mathrm{wR}_{2}=0.1834 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0394 \\ & \mathrm{wR}_{2}=0.0840 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0409 \\ & \mathrm{wR}_{2}=0.0832 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.1278 \\ & \mathrm{wR}_{2}=0.2293 \end{aligned}$
Largest diff. peak/hole (e \AA^{-3})	1.45/-1.13	0.41/-0.26	0.42/-0.27	1.72/-2.30

Figure 3. The molecular structure of PTHT-Pd(II) complex with atom numbering scheme.

Figure 4. The molecular structure of PMHC-Pd(II) complex with atom numbering scheme.

Atom	Atom	Length (Å)									
PMHT-Pd(II) complex											
Pd1	$011{ }^{1}$	$1.988(4)$	011	C2	$1.310(6)$	C3	C2	1.433(8)	C14	C15	1.517(9)
Pd1	011	1.988(4)	N11	C20	1.312(7)	C4	C5	1.362(8)	C5	C6	$1.394(9)$
Pd1	N11 ${ }^{1}$	2.001(4)	N11	N12	1.416(7)	C4	C16	1.515(8)	C8	C7	1.415(8)
Pd1	N11	2.001(4)	C20	C3	1.425(8)	C2	C1	1.440(8)	C10	C11	1.379 (9)
S1	N12	1.690 (5)	C9	C8	1.403(8)	C1	C14	1.521(8)	C7	C12	1.393(8)
S1	013	$1.442(5)$	C9	C10	1.390(8)	C1	C6	1.368(8)	C7	C18	1.516(9)
S1	012	1.423 (5)	C9	C19	1.518(8)	C14	C13	1.525(8)	C12	C11	1.374 (9)
S1	C8	$1.783(6)$	C3	C4	1.443(8)						
PTHC-Pd(II) complex											
Pd1	01	$1.9811(16)$	01	C5	$1.319(3)$	C1	C9	1.519(4)	C15	C16	1.375(5)
Pd1	01^{2}	$1.9810(16)$	N1	C7	1.299 (3)	C1	C2	$1.368(4)$	C15	C18	1.505(5)
Pd1	$\mathrm{N} 1^{2}$	$1.9809(19)$	N1	N2	1.427 (3)	C9	C8	1.521(4)	C15	C14	$1.385(4)$
Pd1	N1	$1.9809(19)$	C6	C7	$1.431(3)$	C9	C10	$1.498(5)$	C12	C13	$1.382(4)$
S1	N2	1.684 (3)	C6	C5	1.418(3)	C4	C3	1.368(4)	C12	C17	1.387(4)
S1	03	1.427(2)	C6	C1	$1.431(3)$	C4	C11	$1.506(4)$	C13	C14	$1.376(4)$
S1	02	1.427(2)	C5	C4	$1.415(4)$	C2	C3	$1.401(4)$	C16	C17	$1.386(4)$
S1	C12	$1.757(3)$									
PTHT-Pd(II) complex											
S1	03	1.423(2)	01	C1	1.320 (3)	C1	C2	1.425(4)	C12	C17	$1.376(4)$
S1	02	1.423(2)	N1	N2	$1.421(3)$	C6	C5	1.379 (4)	C5	C4	$1.392(4)$
S1	C13	1.745(3)	N1	C7	1.298(3)	C6	C9	1.511(4)	C15	C16	$1.388(4)$
S1	N2	1.689 (3)	C13	C14	$1.384(4)$	C2	C7	1.419 (4)	C17	C16	1.380 (4)
Pd1	01	$1.9745(17)$	C13	C12	1.383(4)	C2	C3	1.434(4)	C9	C8	1.523(5)
Pd1	013	1.9745(17)	C14	C15	1.370 (4)	C3	C4	1.353(4)	C9	C10	1.524(4)
Pd1	N1	$1.980(2)$	C1	C6	1.419 (3)	C3	C11	1.503(4)	C16	C18	1.501(4)
Pd1	N13	$1.980(2)$									
PMHC-Pd(II) complex											
C1	C2	1.490(14)	C12	C13	1.477(15)	N1	S1	1.661(10)	Pd1	$\mathrm{N} 2^{4}$	1.976(8)
C2	C3	1.415(13)	C13	C14	$1.404(14)$	N2	Pd1	1.976 (8)	Pd1	034	1.964(7)
C2	C7	$1.376(14)$	C13	C18	1.402(15)	N3	S2	$1.666(9)$	Pd2	N45	$1.969(8)$
C3	C4	1.425(13)	C14	C15	1.368(16)	N4	Pd2	1.969 (8)	Pd2	06^{5}	$1.958(7)$
C3	03	1.323(11)	C15	C16	1.381(16)	03	Pd1	1.964(7)	C8	C9	1.62(3)
C4	C5	1.423(13)	C15	C20	1.522(15)	04	S2	$1.446(9)$	C8	C10	1.46(2)
C4	C11	$1.464(13)$	C16	C17	1.367(15)	05	S2	$1.401(8)$	C8	C9'	1.47(2)
C5	C6	1.376(14)	C17	C18	$1.406(15)$	N1	N2	1.408(12)	C8	C10'	1.57(3)
C5	C8	$1.536(14)$	C17	C19	1.515(15)	C11	N2	1.233(11)	S1	02	1.423(9)
C6	C7	$1.376(15)$	C18	S1	1.781(11)	06	Pd2	1.958(7)	S1	01	$1.442(8)$

2.3. Synthesis of ligands

The synthesis of sulfonyl hydrazone based ligands was prepared by multistep process reaction. In the first step, the synthesis of ortho formyl phenolic monoterpenoids (ortho formyl thymol (2-hydroxy-3-isopropyl-6-methylbenzaldehyde) or ortho formyl carvacrol (2-hydroxy-6-isopropyl-3-methylbenzaldehyde)) was carried out using a previously reported method [18-20]. In the second step, synthesis of substituted sulfonyl hydrazides (2,4,6-trimethylbenzenesulfonohydrazide and 4-methylbenzenesulfonohydrazide) [19] was carried out in which hydrazine hydrate ($0.25 \mathrm{~mol}, 2.5$ equiv.) was added dropwise to a solution of 4-methylbenzene- 1 -sulfonylchloride or 2,4,6-trimethyl benzene sulfonyl chloride ($0.1 \mathrm{~mol}, 1$ equiv..) in THF (100 mL) at $0{ }^{\circ} \mathrm{C}$ under inert atmosphere. After stirring for 0 to $5{ }^{\circ} \mathrm{C}$ for 30 min , ice-cold ethyl acetate (200 mL) was added to the cooled reaction mixture and the mixture was washed repeatedly with ice-cold 10% aqueous sodium chloride ($5 \times 150 \mathrm{~mL}$). The organic layer was dried over sodium sulphate at $0^{\circ} \mathrm{C}$, and was then added slowly to a stirring solution of hexane (1.2 L) during 5 min . Substituted benzene sulfonyl hydrazide precipitated as a white solid and was collected by vacuum filtration. The filter cake was washed with hexane ($2 \times$ 50 mL) and then dried in vacuo, yielding the substituted sulfonyl hydrazides compound as a white solid. In the third step, the synthesis of phenolic monoterpenoid-based sulfonyl hydrazones [21] was carried out, in which the hydrazone derivatives ($N^{\prime \prime}$-(2-hydroxy-6-isopropyl-3-methylbenzylidene)-4-methylbenzenesulfonohydrazide (PTHC), N^{\prime}-(2-hydroxy-3-isopropyl-6-methylbenzylidene)-4-methylbenzenesulfonohyd razide (PTHT), N^{\prime}-(2-hydroxy-6-isopropyl-3-methylbenzylide ne)-2, 4, 6-trimethylbenzenesulfonohydrazide (PMHC), N^{\prime}-(2-hydroxy-3-isopropyl-6-methylbenzylidene)-2, 4, 6-trimethyl benzenesulfonohydrazide (PMHT)) were prepared by the
reaction of equimolar quantities of substituted benzene sulfonyl hydrazide and ortho formyl thymol or ortho formyl carvacrol. Each reactant was dissolved in a minimum amount of ethanol, and then they were mixed, adding 2-3 drops of acetic acid. The reaction mixture was refluxed for 2 h , then cooled to room temperature and poured into ice-cold water. The solid product obtained was collected by filtration and then dried in a drying oven at $70^{\circ} \mathrm{C}$. The product was crystallized from ethanol and dried to obtain the pure product [21].

2.4. Common procedure for the synthesis of sulfonyl hydrazone based on palladium metal complexes

The complexes were prepared by a general procedure, palladium(II) chloride solution in $0.1 \mathrm{M}(1 \mathrm{mmol})$ taken and treated with an equal volume of water. The hot methanolic solution of ligand (2 mmol) was added drop by drop to the hot palladium(II) chloride solution. The reaction mixture was stirred at room temperature for 30 min and then continued with constant reflux for 5 h . The green-coloured precipitated products were collected, washed for several times with water and cold methanol to remove impurities, and dried at room temperature (Scheme 1] [22].

2.5. Antimicrobial activity

The agar well diffusion method was used for the determination of antimicrobial activity of the synthesized compounds against three fungal and three bacterial strains. The fungal strains Aspergillus niger (ATCC 6275), Aspergillus flavus (ATCC 6202), Aspergillus fumigates (ATCC 36606), and bacterial strains Escherichia coli (ATCC 35218), Staphylococcus aureus (ATCC 25923), Bacillus subtilis (ATCC 23857) were obtained from the National Chemical Laboratory, Pune, India.

Table 3. Bond angles for palladium complexes.

Atom	Atom	Atom	Angle (${ }^{\circ}$)	Atom	Atom	Atom	Angle (${ }^{\circ}$)	Atom	Atom	Atom	Angle (${ }^{\circ}$)
PMHT-Pd(II) complex											
$011{ }^{1}$	Pd1	011	180.0(3)	C5	C4	C3	118.1(5)	C1	C14	C13	114.3(5)
$011{ }^{1}$	Pd1	N11	88.72(16)	C5	C4	C16	120.5(5)	C15	C14	C1	$110.9(5)$
$011{ }^{1}$	Pd1	N11 ${ }^{1}$	91.28(16)	011	C2	C3	123.9(5)	C15	C14	C13	110.7(5)
011	Pd1	N11 ${ }^{1}$	88.72(16)	011	C2	C1	117.2(5)	C4	C5	C6	121.7(6)
011	Pd1	N11	91.28(16)	C3	C2	C1	118.8(5)	C9	C8	S1	118.3(4)
N11	Pd1	N11 ${ }^{1}$	180.0	C2	C1	C14	118.6(5)	C9	C8	C7	121.4(5)
N12	S1	C8	103.4(3)	C6	C1	C2	118.0(6)	C7	C8	S1	119.8(5)
013	S1	N12	102.9(3)	C6	C1	C14	123.4(6)	C11	C10	C9	121.7(6)
013	S1	C8	110.1(3)	N11	C20	C3	127.6(5)	C1	C6	C5	123.0(6)
012	S1	N12	110.9(3)	N11	N12	S1	113.5(4)	C8	C7	C18	126.3(6)
012	S1	013	118.1(3)	C8	C9	C19	124.3(5)	C12	C7	C8	116.7(6)
012	S1	C8	110.2(3)	C10	C9	C8	118.1(5)	C12	C7	C18	117.0(6)
C2	011	Pd1	128.7(4)	C10	C9	C19	117.5(5)	C11	C12	C7	122.9(6)
C20	N11	Pd1	125.2(4)	C20	C3	C4	116.6(5)	C10	C11	C17	121.0(6)
C20	N11	N12	113.5(5)	C20	C3	C2	123.2(5)	C12	C11	C10	118.9(6)
N12	N11	Pd1	121.3(3)	C2	C3	C4	120.2(5)	C12	C11	C17	120.2(6)
C3	C4	C16	121.4(6)								

011	Pd1	01	180.0	C4	C5	C6	119.4(2)	C10	C9	C8	111.2(3)
N1	Pd1	01	90.24(8)	C6	C1	C9	121.9(2)	C5	C4	C11	119.0(2)
N11	Pd1	01^{2}	90.24(8)	C2	C1	C6	118.7(2)	C3	C4	C5	119.2(3)
N1	Pd1	012	89.76(8)	C2	C1	C9	119.3(2)	C3	C4	C11	121.8(3)
N11	Pd1	01	89.76(8)	C1	C9	C8	113.6(3)	C1	C2	C3	121.1(3)
N11	Pd1	N1	180.0	C10	C9	C1	110.9(3)	C16	C15	C18	120.7(3)
N2	S1	C12	106.31(12)	C7	C6	C1	118.3(2)	C16	C15	C14	118.5(3)
03	S1	N2	105.46(13)	C5	C6	C7	121.8(2)	C14	C15	C18	120.8(3)
03	S1	C12	108.96(15)	C5	C6	C1	119.8(2)	C13	C12	S1	119.4(2)
02	S1	N2	103.41(15)	N1	C7	C6	126.2(2)	C13	C12	C17	120.3(3)
02	S1	03	121.18(15)	N1	N2	S1	113.82(17)	C17	C12	S1	119.8(2)
02	S1	C12	110.31(15)	01	C5	C6	125.0(2)	C4	C3	C2	121.6(3)
C5	01	Pd1	125.76(15)	01	C5	C4	115.6(2)	C14	C13	C12	119.9(3)
C7	N1	Pd1	126.01(17)	N2	N1	Pd1	119.16(15)	C15	C16	C17	121.9(3)
C7	N1	N2	114.8(2)	C13	C14	C15	120.9(3)	C16	C17	C12	118.6(3)

PTHT-Pd(II) complex

03	S1	C13	110.00(13)	N1	N2
03	S1	N2	103.53(13)	C1	C6
02	S1	03	121.67(13)	C5	C6
02	S1	C13	108.95(13)	C5	C6
02	S1	N2	105.22(13)	C1	C2
N2	S1	C13	106.23(12)	C7	C2
01	Pd1	013	180.0	C14	C13
01	Pd1	N1	89.90(8)	C12	C13
011	Pd1	N13	89.90(8)	C12	C13
011	Pd1	N1	90.10(8)	C15	C14
01	Pd1	N13	90.10(8)	01	C1
N1	Pd1	N13	180.0	01	C1
C1	01	Pd1	126.22(16)	C6	C1
N2	N1	Pd1	118.84(15)	C7	N1
C7	N1	Pd1	126.16(19)	C17	C16

C3

C3	C2	C1	$120.2(9)$
C7	C2	C1	$121.7(10)$
C7	C2	C3	$118.0(10)$
C2	C3	C4	$120.5(9)$
O3	C3	C2	$116.0(9)$
O3	C3	C4	$123.5(9)$
C3	C4	C5	$119.3(9)$
C3	C4	C11	$120.5(9)$
C5	C4	C11	$120.2(9)$
C4	C5	C8	$124.7(9)$
C6	C5	C4	$118.0(10)$
C6	C5	C8	$117.2(9)$
C5	C6	C7	$122.3(10)$
C2	C7	C6	$121.8(10)$
N2	C11	C4	$129.7(10)$
C14	C13	C12	$115.9(10)$
C18	C13	C12	$127.7(10)$
$1-x, 1-y,-z,{ }^{2} 1-x,-y,-z,{ }^{3}-x, 1-y,-z,{ }^{4} 2-x,-y,-z$.			

Standard solutions of antifungal (Fluconazole, $25 \mathrm{mg} / \mathrm{mL}$) and antibacterial (Ofloxacin, $25 \mathrm{mg} / \mathrm{mL}$) agents were taken as positive control and the negative control used as DMSO. All synthesized complexes were dissolved to prepare stock solutions of $25 \mathrm{mg} / \mathrm{mL}$ in DMSO. The bacterial strain culture and fungal spore suspension were adjusted to give a final concentration of $10^{7} \mathrm{cfu} / \mathrm{mL}$. About 25 mL of media (Potato

Dextrose Agar) was poured into Petri plates and inoculated with the respective test organisms. Wells 6 mm in diameter were made with a borer in solid agar and loaded with $40 \mu \mathrm{~L}$ of the test compounds. All fungal and bacterial strains were incubated at $28^{\circ} \mathrm{C}$. The average diameter of the inhibition zone surrounding the wells was measured in mm (Tables 5 and 6) [19,23].

D-H.... ${ }^{\text {P }}$	d(D-H)	d(H...A)	d(D...A)	\angle (DHA)	Symmetry
PMHT-Pd(II) complex					
$\mathrm{N}(12)-\mathrm{H}(12) . . . \mathrm{O}(11)$	0.74(8)	2.24(7)	2.803(7)	134(7)	$-x, 1-y,-z$
C(15)-H(15C)...O(11)	0.96	2.57	3.126 (8)	117	
C(18)-H(18A)...O(12)	0.96	1.92	2.722(10)	139	
C(19)-H(19A)...O(13)	0.96	2.40	3.026 (9)	122	
PTHC-Pd(II) complex					
$\mathrm{N}(2)-\mathrm{H}(2) \ldots \mathrm{O}(1)$	0.79(3)	2.20(3)	2.818(3)	136(3)	$1-x,-y,-z$
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A}) \ldots \mathrm{O}(1)$	0.96	2.24	2.718(4)	109	
PTHT-Pd(II) complex					
$\mathrm{N}(2)-\mathrm{H}(2) . . \mathrm{O}(1)$	0.76(3)	2.24(3)	2.833(3)	136(3)	$-x, 1-y,-z$
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B}) \ldots \mathrm{O}(1)$	0.96	2.58	3.121(4)	116	
$\mathrm{C}(12)-\mathrm{H}(12) \ldots \mathrm{O}$ (2)	0.93	2.59	2.941(4)	103	
PMHC-Pd(II) complex					
$\mathrm{C}(39)-\mathrm{H}(39 \mathrm{~A}) \ldots \mathrm{O}(4)$	0.96	1.90	2.724(15)	142.8	
$\mathrm{N}(1)-\mathrm{H}(1) . . .0(3)$	0.85(4)	1.93(8)	2.660(11)	142(10)	$2-x,-y,-z$
$\mathrm{N}(3)-\mathrm{H}(3) \ldots . .0(6)$	0.84(4)	1.90(6)	2.675(10)	152(10)	$1-x,-y, 1-z$

PTHC

PTHT

РмHT

PTHT-Pd(II)

PMHC-Pd(II)
PdCl_{2}

PMHC

Scheme 1. Reaction scheme for the synthesis of palladium(II) complexes.

Table 5. Comparison of zone of inhibition values (in mm) of palladium(II) complexes and standard drug against different antibacterial strains *

Compound	E. coli	S. aureus	B. subtilis
PMHC-Pd(II)	10	6	10
PMHT-Pd(II)	8	12	8
PTHC-Pd(II)	10	16	12
PTHT-Pd(II)	6	4	4
Ofloxaci	30	30	32
* Concentration $25 \mathrm{mg} / \mathrm{mL}$			

* Concentration in $25 \mathrm{mg} / \mathrm{mL}$.

Table 6. Comparison of the zone of inhibition values (in mm) of palladium(II) complexes and standard drug against different fungal strains *

Compound	A. niger	A. $\boldsymbol{\text { flavus }}$	A. fumigatus
PMHC-Pd(II)	12	16	10
PMHT-Pd(II)	10	14	12
PTHC-Pd(II)	32	30	32
PTHT-Pd(II)	26	24	26
Fluconazole	36	38	36

* Concentration in $25 \mathrm{mg} / \mathrm{mL}$.

3. Results and discussion

3.1. Synthesis and characterization

The palladium(II) complexes synthesized by the reaction of PdCl_{2} salt and ligand in a 1:2 molar ratio. The complexes are less soluble in common organic solvents, like alcohols, acetonitrile, hexane, acetone, and soluble in DMF and chloroform. In the UVvisible spectra, the $\operatorname{Pd}(I I)$ complexes showed a broad $d-d$ transition band near $450-438 \mathrm{~nm}$ assignable to ${ }^{1} \mathrm{~A} 1 \mathrm{~g} \rightarrow{ }^{1} \mathrm{~B} 1 \mathrm{~g}$ transition for square planar. A relatively strong charge transfer band has been observed in the spectra of all Pd(II) complexes in the region 309-280 nm [24]. The IR spectra of the complexes are related with those of the free ligands to define the coordination sites that may get involved in chelation. The absence of $v(\mathrm{OH})$ in the IR spectrum of the complex confirms that the ligands are coordinated in its deprotonated form. The very strong $\mathrm{C}=\mathrm{N}$ stretch for free ligands around $1615-1630 \mathrm{~cm}^{-}$ ${ }^{1}$, shifted to lower frequency upon coordination of azomethine, in good agreement with data described previously for the related Pd(II) complexes. Another two strong bands at 1585 and $1445 \mathrm{~cm}^{-1}$ compared to the theoretical bands of 1595 and $1500 \mathrm{~cm}^{-1}$, are because of $v(\mathrm{C}=\mathrm{C})$ and a mixture of $v(\mathrm{C}=\mathrm{C})$ and $v(\mathrm{C}=\mathrm{N})$, respectively. The $\operatorname{Pd}\left(\mathrm{N}_{2} \mathrm{O}_{2}\right)$ exhibits a band at $3080 \mathrm{~cm}^{-}$ ${ }^{1}$ due to CH stretch of aromatic rings and the calculated values are 3017-3093 cm^{-1}. The ligands coordinate through nitrogen's of $\mathrm{C}=\mathrm{N}$ group and the oxygen's of $\mathrm{C}-\mathrm{O}$ is further supported by the appearance of a lower-intensity band in $530-503 \mathrm{~cm}^{-1}$ [2528].

3.2. X-ray crystallographic analysis

The single-crystal X-ray crystallographic studies of all complexes are agreed well with the proposed structure of the complexes. The presented structures illustrate that the complexes are formed by the deprotonation of tetradentate sulfonyl hydrazone based ligands (Figures 1-4). The crystal structures indicate that two nitrogen and two oxygen atoms are coordinated to the central palladium ion after elimination of two hydrogens from the ligands and all palladium ions lie on an inversion center and adopt a slightly distorted square planar geometry while the bond lengths and bond angles have to fall within the expected range comparable to reported values [29]. All the structures of complexes adopt the trans configuration with two attached ligands with palladium(II) ion.

Pd-O [1.988(4), 1.9811(16), 1.9745(17), 1.964(7) Å] and Pd-N [2.001(4), $1.9809(19), 1.980(2), 1.976(8) \AA$] b bond lengths for all complexes are in the expected ranges [26]. The C-O bond lengths are $\mathrm{C}(2)-\mathrm{O}(11) 1.310(6), \mathrm{C}(5)-\mathrm{O}(1) 1.319(3), \mathrm{C}(1)-\mathrm{O}(1)$ $1.320(3), \mathrm{C}(3)-\mathrm{O}(3) 1.323(11) \AA ̊$ for PMHT-Pd(II), PTHC-Pd(II), PTHT-Pd(II) and PMHC-Pd(II) complexes, respectively, are longer than the $\mathrm{C}=0$ bond distance ($1.221 \AA \AA$) and slightly shorter than the C-O bond distance ($1.362 \AA \AA$) [30]. This indicates the existence of electron delocalization over the six-member
chelate rings (Pd-O-C-C-C-N) due to the coordination of the oxygen and nitrogen atoms with the palladium(II) ion.

In the case of PTHC-Pd(II) and PTHT-Pd(II) complexes, the Pd-N distances for both complexes are 1.9809 (19) and 1.980(2) \AA which are next to the sum of the covalent radii in ranges of palladium and nitrogen and these confirm signifying strong coordination through the azomethine nitrogen [31]. The values for $\mathrm{C}=\mathrm{N} 1.299(1) \AA, \mathrm{C}-\mathrm{O} 1.319(1) \AA \AA, \mathrm{N}-\mathrm{N} 1.427(6) \AA$, and $\mathrm{S}-\mathrm{O}$ $1.427(2) \AA$ for both complexes are near about same. The O-PdO and $\mathrm{N}-\mathrm{Pd}-\mathrm{N}$ angles for both complex (PTHC-Pd(II): $\mathrm{O}(1)-$ $\left.\operatorname{Pd}(1)-\mathrm{O}(1)^{i}\left({ }^{i} 1-x,-y,-z\right), \mathrm{N}(1)-\mathrm{Pd}(1)-\mathrm{N}(1)^{i}{ }^{i}{ }^{i} 1-x,-y,-z\right)$ and PTHT-Pd(II): $\mathrm{O}(1)-\mathrm{Pd}(1)-\mathrm{O}(1)^{i i}\left({ }^{i i}-x, 1-y,-z\right), \mathrm{N}(1)-\operatorname{Pd}(1)-\mathrm{N}(1)^{i i}$ $\left({ }^{i}-x, 1-y,-z\right)$) are 180°. The torsion angles for both complexes are near close in the series. Both the complexes show the N $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ type intramolecular hydrogen bonding.

In PMHC-Pd(II) and PMHT-Pd(II) complexes, the Pd-N distances are $\operatorname{Pd}(1)-(\mathrm{N} 2) 1.976(8) \AA$ and $\mathrm{Pd}(1)-\mathrm{N}(11) 2.001$ (4) \AA, respectively, and the $\mathrm{Pd}-\mathrm{O}$ bond distances are $\mathrm{Pd}(1)-\mathrm{O}(3)$ 1.964 (7) \AA and $\operatorname{Pd}(1)-O(11) 1.988(4) \AA$, respectively. Similarly, the $\mathrm{C}=\mathrm{N}$ double bond distance of $\mathrm{C}(11)-\mathrm{N}(2)$ and $\mathrm{N}(11)-\mathrm{C}(20)$ are 1.233(11) and 1.312(7) Å for PMHT-Pd(II) and PMHC-Pd(II) complexes, respectively. The phenolic single bond $\mathrm{C}-\mathrm{O}$ distances are $C(2)-O(11) 1.310(6) \AA$, and $C(3)-O(3) 1.323(11)$ \AA for PMHC-Pd(II) and PMHT-Pd(II) complexes, respectively. The $\mathrm{N}-\mathrm{N}$ bond length values are $\mathrm{N}(11)-\mathrm{N}(12) 1.416(7) \AA$ and $\mathrm{N}(1)-\mathrm{N}(2) 1.408(12) \AA$ for PMHC-Pd(II) and PMHT-Pd(II) complexes, respectively. The S-O bond lengths for both complexes are near about $1.42(2) \AA$. The bite angles for both complex $\mathrm{O}(11)-\mathrm{Pd}(1)-\mathrm{N}(11)$ and $\mathrm{O}(3)-\mathrm{Pd}(1)-\mathrm{N}(2)$ are $91.28(16)^{\circ}$ and $91.2(3)^{\circ}$ for PMHT-Pd(II) and PMHC-Pd(II) complexes, respectively, so the bite angles of the complex deviate slightly from the ideal angle 90°. The PMHC-Pd(II) and PMHT-Pd(II) complexes show the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ type molecular hydrogen bonding [22,32].

3.3. Antimicrobial activity

The PTHC-Pd(II) and PTHT-Pd(II) complexes showed the highest antifungal activity than PMHC-Pd(II) and PMHT-Pd(II) complexes (Table 5). The PTHC-Pd(II) complex possesses the very close significant activity comparable to the standard drug fluconazole against the fungal strains Aspergillus niger, Aspergillus flavus, and Aspergillus fumigatus. Such enhanced activity of metal chelates can be described based on the overtone concept and chelation theory. The chelation considerably decreases the polarity of the metal ion because of the partial sharing of its positive charge with donor groups and possible π-electron delocalization over the whole chelate ring. Such chelation could enhance the lipophilic character of the central metal atom, which subsequently favours its permeation through the lipid layer of the cell membrane. The antibacterial activity of all complexes was investigated by screening them against the Gram-negative Escherichia coli and Gram-positive bacteria Staphylococcus aureus and Bacillus subtilis by agar well
diffusion technique (Table 4). The results showed that all complexes possess lesser antibacterial activity. The PTHCPd(II) complex showed antibacterial activity for Gram-positive Staphylococcus aureus as comparable to ofloxacin as a standard drug. The low activity of the compound is attributed to its low cell permeability, the suitability of the particle size of the metal ion, and the bulkier organic moieties $[26,33,34]$.

4. Conclusions

The present work has shown the successful synthesis and spectroscopic characterization of the Pd(II) complex of sulfonyl hydrazone-based ligands which acts as a bidentate ligand. Single-crystal X-ray diffraction technique has shown the possibilities of hydrogen bonding and intermolecular interaction and it proves the good agreement with experimental synthesis and coordination sites. Antifungal activity results show that PTHCPd(II) complex possesses better activity comparable to the standard drug fluconazole against all selected fungal strains and makes it a good drug.

Acknowledgements

We are also obliged to Sophisticated Analytical Instrumentation Facility, Indian Institute of Technology, Madras and Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, for support in solving the crystal structures of PMHC-Pd, PMHT-Pd(II), PTHC-Pd(II) and PTHT-Pd(II) complexes, respectively.

Supporting information S

CCDC-1888204, 1887978, 1887979 and 1887980 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via https://www.ccdc. cam.ac.uk/structures/ or by e-mailing data request@ccdc. cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: $+44(0) 1223-336033$.

Disclosure statement DS

Conflict of interest: The authors declare that they have no conflict of interest.
Author contributions: All authors contributed equally to this work.
Ethical approval: All ethical guidelines have been adhered.
Sample availability: Samples of the compounds are available from the author.

Funding \$

Funding for this research was provided by: SAP DSA- I (Grant No. F.4-6/2015/DSA-I (SAP-II).

ORCID (D)

Samina Karimkha Tadavi
(iD http://orcid.org/0000-0002-2772-0329
Ratnamala Subhash Bendre
(D) http://orcid.org/0000-0002-2699-4096

Satish Vittal Patil

(iD) http://orcid.org/0000-0001-6167-2511

Shubha Gaguna

(D) http://orcid.org/0000-0001-7112-958X

Jamatsing Darbarsing Rajput
Dhttp://orcid.org/0000-0002-4588-1345

References

[1]. Ozbek, N.; Alyar, S.; Karacan, N. J. Mol. Struc. 2009, 938(1-3), 48-53.
[2]. Lima, L. M.; Amarante, E. G.; Miranda, A. L. P.; Fraga, C. A. M.; Barreiro, E. J. Pharm. Pharmacol. Commun. 1999, 5(12), 673-678.
[3]. Alyar, S.; Karacan, N.J. Enzyme Inh. Med. Chem. 2009, 24(4), 986-992.
[4]. Alyar, H.; Unal, A.; Ozbek, N.; Alyar, S.; Karacan, N. Spectrochim. Acta A 2012, 91, 39-47.
[5]. Bildirici, I.; Sener, A.; Tozlu, I. Med. Chem. Res. 2007, 16(7-9), 418-426.
[6]. Alyar, S.; Ozbek, N.; Iskeleli, N. O.; Karacan, N. Med. Chem. Res. 2012, 22(5), 2051-2060.
[7]. Alyar, H.; Alyar, S.; Unal, A.; Ozbek, N.; Sahin, E.; Karacan, N. J. Mol. Struc. 2012, 1028, 116-125.
[8]. Ozdemir, U. O.; Akkaya, N.; Ozbek, N. Inorg. Chim. Acta 2013, 400, 1319.
[9]. Murtaza, S.; Shamim, S.; Kousar, N.; Tahir, M. N.; Sirajuddin, M.; Rana, U. A.J. Mol. Struc. 2016, 1107, 99-108.
[10]. Bruker. SAINT. Bruker AXS Inc., Madison, Wisconsin, USA, 2004.
[11]. Bruker. XPREP. Bruker AXS Inc., Madison, Wisconsin, USA, 2004.
[12]. Sheldrick, G. M. Acta Crystallogr. A 2007, 64(1), 112-122.
[13]. Sheldrick, G. M. Acta Crystallogr. C 2015, 71(1), 3-8.
[14]. Sheldrick, G. M. Acta Crystallogr. A 2015, 71(1), 3-8.
[15]. Spek, A. L. Acta Crystallogr. C 2015, 71(1), 9-18.
[16]. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Cryst. 2009, 42(2), 339-341.
[17]. Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A. J. Appl. Cryst. 2008, 41(2), 466-470.
[18]. Rajput, J. D. Med. Chem. (Los Angeles) 2016, 6(2), 123-128.
[19]. Bagul, S. D.; Rajput, J. D.; Tadavi, S. K.; Bendre, R. S. Res. Chem. Intermed. 2016, 43(4), 2241-2252.
[20]. Rajput, J. D.; Bagul, S. D.; Hosamani, A. A.; Patil, M. M.; Bendre, R. S. Res. Chem. Intermed. 2017, 43(10), 5377-5393.
[21]. Rajput, J. D.; Bagul, S. D.; Bendre, R. S. Res. Chem. Intermed. 2017, 43(11), 6601-6616.
[22]. Kavitha, P.; Laxma Reddy, K. Arabian J. Chem. 2016, 9(5), 640-648.
[23]. Ozyanik, M.; Demirci, S.; Bektas, H.; Demirbas, N.; Demirbas, A.; Karaoglu, S. A. Turk. J. Chem. 2012, 36, 233-246.
[24]. Shanker, K.; Robini, R.; Shravankumar, K.; Roddy, P. M.; Ho, Y. P.; Ravlnder, V. J. Indian Chem. Soc. 2009, 86, 153-161.
[25]. Budige, G.; Puchakayala, M. R.; Kongara, S. R.; Hu, A.; Vadde, R. Chem. Pharm. Bull. 2011, 59(2), 166-171.
[26]. Tadavi, S. K.; Yadav, A. A.; Bendre, R. S. J. Mol. Struc. 2018, 1152, 223231.
[27]. Ali, O. A. M. Spectrochim. Acta A 2014, 132, 52-60.
[28]. Geeta, B.; Shravankumar, K.; Reddy, P. M.; Ravikrishna, E.; Sarangapani, M.; Reddy, K. K.; Ravinder, V. Spectrochim. Acta A 2010, 77(4), 911-915.
[29]. Coombs, R. R.; Ringer, M. K.; Blacquiere, J. M.; Smith, J. C.; Neilsen, J. Scott.; Uh, Y.-S.; Gilbert, J. Bryson.; Leger, L. J.; Zhang, H.; Irving, A. M.; Wheaton, S. L.; Vogels, C. M.; Westcott, S. A.; Decken, A.; Baerlocher, F. J. Transition Met. Chem. 2005, 30(4), 411-418.
[30]. Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R. J. Chem. Soc., Perkin Trans. 2 1987, 12, S1-S19.
[31]. Akbari, A.; Ahmadi, M.; Takjoo, R.; Heinemann, F. W. J. Coord. Chem. 2013, 66(11), 1866-1875.
[32]. Gao, E. J.; Zhu, M. C.; Huang, Y.; Liu, L.; Liu, H. Y.; Liu, F. C.; Ma, S.; Shi, C. Y. Eur. J. Med. Chem. 2010, 45(3), 1034-1041.
[33]. Tweedy, B. G. Phytopathology 1964, 55, 910-914.
[34]. Dharmaraj, N.; Viswanathamurthi, P.; Natarajan, K. Transition Met. Chem. 2001, 26(1/2), 105-109.

Copyright © 2020 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurichem.com/index.php/eurichem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).

