ATLATA PUBLISHING HOUSE
ATLANTA PUBLISHING HOUSE

Crystal structures of bis-\{ N-[1-(pyridin-2-yl- κN)ethylidene]nicotine hydrazide- $\left.\kappa^{2} N^{\prime}, O\right\}$ cobalt(II)bis(perchlorate) dihydrate and bis-\{ N^{\prime}-[1-(pyridin-2-yl-к N)ethylidene]nicotinohydrazide- $\left.\kappa^{2} N^{\prime}, 0\right\}$ copper(II) perchlorate

Moussa Faye (D) 1, Mouhamadou Moustapha Sow (D) 1, Papa Aly Gaye (D) 2, Moussa Dieng (D) ${ }^{1}$ and Mohamed Gaye (D) 2,*
${ }^{1}$ Department of Chemistry, UFR SATIC, University Alioune Diop, Bambey, 21400, Senegal
khaguine@gmail.com (M.F.), mmoustapha.sow@uadb.edu.sn (M.M.S.), moussa.dieng@uadb.edu.sn (M.D.)
${ }^{2}$ Department of Chemistry, University Cheikh Anta Diop, Dakar, 10700, Senegal
pagaye@univ-zig.sn (P.A.G.), mohamedl.gaye@ucad.edu.sn (M.G.)
* Corresponding author at: Department of Chemistry, University Cheikh Anta Diop, Dakar, 10700, Senegal.
e-mail: mohamedl.gaye@ucad.edu.sn (M. Gaye).

RESEARCH ARTICLE

10.5155/eurjchem.12.2.159-164.2074

Received: 20 January 2021
Received in revised form: 05 April 2021
Accepted: 17 April 2021
Published online: 30 June 2021
Printed: 30 June 2021

KEYWORDS

Cobalt(II)
Copper(II)
Perchlorate
2-Acetyl pyridine
Nicotinic hydrazide
Single crystal structure

Abstract

Complexes of $\mathrm{Co}(\mathrm{II}),\left[\mathrm{Co}\left(\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{8} \mathrm{O}_{2}\right)\right] \cdot\left(\mathrm{ClO}_{4}\right)_{2} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(1)$, and $\mathrm{Cu}(\mathrm{II}),\left[\mathrm{Cu}\left(\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{8} \mathrm{O}_{2}\right)\right] \cdot\left(\mathrm{ClO}_{4}\right)$ (2), have been synthesized. The prepared two compounds were characterized by elemental analysis, infrared and their structures were determined by single-crystal X-ray diffraction. The compound 1 crystallizes in the triclinic space group $P-1$ with the following unit cell parameters: $a=8.880$ (5) $\AA, b=10.529$ (5) $\AA, c=18.430(5) ~ \AA, \alpha=99.407(5)^{\circ}, \beta=102.174$ $(5)^{\circ}, \gamma=100.652(5)^{\circ}, V=1618.2(13) \AA^{3}, Z=2, \mathrm{~T}=293(2), \mu(\mathrm{MoK} \alpha)=0.77 \mathrm{~mm}^{-1}, D \mathrm{calc}=$ $1.582 \mathrm{~g} / \mathrm{cm}^{3}, 16135$ reflections measured $\left(5.050^{\circ} \leq 2 \theta \leq 59.152^{\circ}\right)$, 7648 unique, $R_{\text {int }}=0.034$ which were used in all calculations. The final R_{1} was 0.066 ($\mathrm{I} \geq 2 \sigma(\mathrm{I})$) and $w R_{2}$ was 0.22 (all data). The compound 2 crystallizes in the monoclinic space group $P 2_{1} / c$ with the following unit cell parameters : $a=11.652$ (5) \AA, $b=16.540$ (5) $\AA, c=14.512$ (5) $\AA, \beta=93.495$ (5) ${ }^{\circ}$, V $=2791.6(18) \AA^{3}, \mathrm{Z}=4, \mathrm{~T}=293(2), \mu(\mathrm{MoK} \alpha)=1.05 \mathrm{~mm}^{-1}, D \mathrm{calc}=1.768 \mathrm{~g} / \mathrm{cm}^{3}, 15592$ reflections measured ($5.624^{\circ} \leq 2 \theta \leq 58.804^{\circ}$), 6630 unique, $R_{\text {int }}=0.025$ which were used in all calculations. The final R_{1} was $0.050\left(\mathrm{I} \geq 2 \sigma(\mathrm{I})\right.$) and $w R_{2}$ was 0.144 (all data). In both complexes, the ligand acts in a tridentate fashion. In the structure of the mononuclear complex 1, the Co(II) cation is coordinated by two ligand molecules. The basal plane around the Co (II) cation is occupied by two pyridine nitrogen atoms and two carbonyl oxygen atoms. Two imino nitrogen atoms occupy the apical positions of the distorted square-pyramidal geometry. The mononuclear 2 consists of a $\mathrm{Cu}(\mathrm{II})$ coordinated by one ligand and one monodeprotonated ligand molecule. The metal center lies in a distorted square bipyramidal environment. The basal plane around the $\mathrm{Cu}(\mathrm{II})$ is occupied by two pyridine nitrogen atoms and two carbonyl oxygen atoms, the apical position being occupied by the two imino nitrogen atoms.

Cite this: Eur. J. Chem. 2021, 12(2), 159-164 Journal website: www.eurjchem.com

1. Introduction

The development of new molecules with drug activity and without dangerous side effects is one of the major challenges of science. The compounds having a hydrazone unit $-\mathrm{C}=\mathrm{N}-\mathrm{NH}-\mathrm{R}$ are characterized by their use in the synthesis of compounds having therapeutic properties [1-4]. Compounds with antibacterial [5,6], antifungal [7], antiviral [8], and anticancer [9] properties are listed. These compounds having donor sites such as N, O or S atoms are widely used in coordination chemistry. Complexes with diverse structures have been synthesized in recent years $[10,11]$.

These hydrazone compounds have the ability to exhibit keto-enol tautomeric forms which can coordinate in a tridentate fashion. These tautomeric forms offer these molecules the possibility of coordinating in the neutral mode [12], in monoanionic mode [13], or dianionic mode [10,14]. These
complexes often exhibit important properties for industries such as magnetism [15], luminescence [16], catalysis [17], and optics [18]. These metal transition coordination compounds obtained with hydrazone ligands are also studied because of their broad profile in the pharmacological field, with antitumor [19], antimicrobial [20,21] and anti-tuberculosis [22] potential. It has been shown that hydrazone ligands with biological properties can see their activity increased after complexation with metal ions. Cindric et al. demonstrated that free benzohydrazone having cytotoxic activity against a THP-1 and HepG2 cell line saw its activity significantly increased after complexation with copper [23]. It is in this context that we have prepared transition metal and lanthanide complexes from ligands having hydrazine units [24-29].

Scheme 1. Synthetic scheme for HL and complex preparation.

In this work, we describe the synthesis and characterization of two complexes of cobalt(II) and copper (II) ions obtained from the $\quad N^{\prime}$-(1-(pyridin-2-yl)ethylidene)nicotinohydrazide (HL) ligand, which are characterized by elemental analysis, FTIR, ${ }^{1} \mathrm{H}$ NMR, and ${ }^{13} \mathrm{C}$ NMR. The crystal structures of these two complexes have been elucidated by X-ray diffraction studies.

2. Experimental

2.1. Materials and instrumentation

Nicotinic hydrazide, 2-acetyl pyridine, cobalt perchlorate hexahydrate, and copper perchlorate hexahydrate were purchased from Sigma-Aldrich and used as received without further purification. All solvents used were of reagent grade. The ligand, N^{\prime}-(1-(pyridin-2-yl)ethylidene)nicotinohydrazide (HL) was synthesized following the reported procedure [30].

Melting points were determined on a Büchi 570 meltingpoint apparatus and were uncorrected. Elemental analyses of C, H and N were recorded on a VxRio EL Instrument. Infrared spectra were obtained on an FTIR Spectrum Two of Perkin Elmer spectrometer in the $4000-400 \mathrm{~cm}^{-1}$ region. The molar conductance of $1 \times 10^{-3} \mathrm{M}$ in DMSO solution of the metal complexes was measured at $25{ }^{\circ} \mathrm{C}$ using a WTW LF-330 conductivity meter with a WTW conductivity cell. Room temperature magnetic susceptibilities of the powdered samples were measured using a Johnson Mattey scientific magnetic susceptibility balance (Calibrant: $\mathrm{Hg}\left[\mathrm{Co}(\mathrm{SCN})_{4}\right]$).

2.2. Synthesis and characterization of N^{\prime}-(1-(pyridin-2yl)ethylidene)nicotinohydrazide (HL)

The ligand HL was synthetized following the procedure reported in the literature [30]. To a solution of 2-acetyl pyridine ($0.6627 \mathrm{~g}, 5.5 \mathrm{mmol}$) in 10 mL of methanol was added a solution of nicotinic hydrazide ($0.7566 \mathrm{~g}, 5.5 \mathrm{mmol}$) in 30 mL of methanol. The mixture was heated under reflux for two hours. The solvent was evaporated to dryness and the solid was
collected and recrystallized from ethanol solution. After one week, the white powder was collected (Scheme 1).
N^{\prime}-(1-(pyridin-2-yl)ethylidene)nicotinohydrazide (HL): Color: White. M.p.: $171-172^{\circ} \mathrm{C}$. Yield: 66%. FT-IR (ATR, $v, \mathrm{~cm}^{-1}$): $v(\mathrm{NH}) 3201, v(\mathrm{C}=0) 1663, v(\mathrm{C}=\mathrm{N}) 1622,1581, v(\mathrm{~N}-\mathrm{N}) 1150 .{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d $6, \delta, \mathrm{ppm}$): 2.52 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH} 3$), 7.50-9.07 (m, 8H, Ar-H), 11.29 (s, $1 \mathrm{H}, \mathrm{NH}$). ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}, $\delta, \mathrm{ppm}): 13.52\left(\mathrm{CH}_{3}\right), 120.92$ (H-C2), 120.96 ($\mathrm{H}-\mathrm{C} 4^{\prime}$), 123.89 ($\mathrm{H}-$ C4), 123.92 (C1'), 130.20 (H-C3), 136.36 ($\mathrm{H}-\mathrm{C} 5^{\prime}$), 137.16 ($\mathrm{H}-$ C3'), 149.18 ($\mathrm{H}-\mathrm{C} 5$), 152.63 ($\mathrm{H}-\mathrm{C} 2^{\prime}$), 152.84 (C1), 155.48 ($\mathrm{C}=\mathrm{N}$), 163.37 (C=O). Anal. calcd. for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{ON}$: C C, 64.99; H, 5.03; N, 23.32. Found: C, $64.96 ; H, 5.01 ; ~ N, 23.30 \%$.

2.3. Synthesis and characterization of complexes 1 and 2

To a solution of 2-acetyl pyridine ($0.6627 \mathrm{~g}, 5.5 \mathrm{mmol}$) in 10 mL of ethanol was added a solution of nicotinic hydrazide ($0.7566 \mathrm{~g}, 5.5 \mathrm{mmol}$) in 30 mL of ethanol. The mixture was heated under reflux for two hours. After cooling, the volume is completed to 50 mL . To 25 mL of the above solution was added a solution of $\mathrm{Co}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.0915 \mathrm{~g}, 2.5 \mathrm{mmol})$ or $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.0926 \mathrm{~g}, 2.5 \mathrm{mmol})$ in 5 mL of methanol. The mixture was stirred at room temperature for two hours. The precipitate was discarded, and the filtrates were left for slow evaporation. On standing for five days, crystals suitable for Xray single crystal diffraction analysis were formed, brown prisms of complex $\mathbf{1}$ and light-yellow prisms of complex $\mathbf{2}$ were collected (Scheme 1).

Bis-\{ N-[1-(pyridin-2-yl- $N N$)ethylidene] nicotinohydrazide $\left.\kappa^{2} N^{\prime}, O\right\}$ cobalt(II) bis(perchlorate) dihydrate (1): [Co $\left.(\mathrm{HL})_{2}\right] \cdot\left(\mathrm{ClO}_{4}\right) 2 \cdot 2 \mathrm{H}_{2} \mathrm{O}(1)$. Color: brown. Yield: 53%. FT-IR $(\mathrm{v}, \mathrm{cm}-$ ${ }^{1}$): $3100,1602,1583,1502,1462,1409,1373,1161,1070$, 1028, 912, 823, 780, 620. $\mu_{\text {eff }}\left(\mu_{\mathrm{B}}\right): 4.17 . \Lambda_{\text {м }}\left(\mathrm{S}^{2} \mathrm{~cm}^{2} . \mathrm{mol}^{-1}\right): 154.4$. Anal. calcd. for $\mathrm{CoC}_{26} \mathrm{H}_{28} \mathrm{~N}_{8} \mathrm{Cl}_{2} \mathrm{O}_{12}$: C, 40.33; $\mathrm{H}, 3.64 ; \mathrm{N}, 14.47$. Found: C, 40.31; H, 3.62; N, 14.44\%.

Bis-\{ N^{\prime}-[1-(pyridin-2-yl- κN)ethylidene] nicotinohydrazide$\left.\kappa^{2} N^{\prime}, 0\right\} \operatorname{copper}(\mathrm{II})$ perchlorate (2): [Cu(L)(HL)]•(ClO$)_{4}$ (2). Color: Yellow-light. Yield: 59%.

Parameters	Complex 1	Complex 2
Formula	$\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{CoN}_{8} \mathrm{O}_{12}$	$\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{ClCuN}_{8} \mathrm{O}_{6}$
FW	774.39	742.97
Crystal shape / color	Block / brown	Block / yellow-light
Crystal size (mm)	$0.10 \times 0.10 \times 0.05$	$0.30 \times 0.10 \times 0.09$
Crystal system	Triclinic	Monoclinic
Space group	$P-1$	$P 2_{1} / \mathrm{c}$
$a(\AA ̊)$	8.880 (5)	11.652 (5)
$b(\AA)$	10.529 (5)	16.540 (5)
$c(\AA)$	18.430 (5)	14.512 (5)
$\alpha\left({ }^{\circ}\right)$	99.407 (5)	90.000
$\beta\left({ }^{\circ}\right)$	102.174 (5)	93.495 (5)
$\gamma\left({ }^{\circ}\right)$	100.652 (5)	90.000
$V\left(\AA^{3}\right)$	1618.2 (13)	2791.6 (18)
Z	2	4
$D_{\text {calc }}\left(\mathrm{g} \mathrm{cm}^{3}\right)$	1.582	1.768
$\lambda(\mathrm{MoK} \alpha)$	0.71073	0.71073
T (K)	293(2)	293(2)
$\mu\left(\mathrm{mm}^{-1}\right)$	0.77	1.05
Index ranges	$-11 \leq h \leq 11 ;-14 \leq k \leq 14 ;-24 \leq l \leq 22$	$-15 \leq h \leq 12 ;-22 \leq k \leq 18 ;-16 \leq l \leq 19$
$F(000)$	730	1516
θ range (${ }^{\circ}$)	2.525-29.576	2.812-29.402
No. of measured reflections	16135	15592
No. of Independent reflections	7648	6630
No. of observed [I> $2 \sigma(I)$] reflections	5762	4967
$R_{\text {int }}$	0.034	0.025
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]$	0.066	0.050
$w R\left(F^{2}\right)$	0.22	0.144
Goodness-of-fit (Gof) on F^{2}	1.08	1.02
No. of parameters	509	381
No. of restrains	0	0
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} . \mathrm{A}^{-3}\right)$	0.97, -0.64	0.63, -0.75

FT-IR $\left(v, \mathrm{~cm}^{-1}\right): 3092,1612,1588,1504,1463,1380,1113$, 1097, 1041, 920, 838, 788, 616. $\mu_{\text {eff }}\left(\mu_{\mathrm{B}}\right): 1.77 . \Lambda_{\mathrm{M}}\left(\mathrm{S}_{\mathrm{cm}}{ }^{2} . \mathrm{mol}^{-1}\right):$ 75.1. Anal. calcd. for $\mathrm{CuC}_{26} \mathrm{H}_{23} \mathrm{~N}_{8} \mathrm{ClO}_{6}$: C, 48.26; $\mathrm{H}, 3.61$; $\mathrm{N}, 17.44$. Found: C, 48.24; H, 3.59; N, 17.41\%.

2.4. X-ray data collection, structure determination, and refinement

Details of the X-rays crystal structure solution and refinement are given in Table 1. Diffraction data were collected using an ENRAF NONIUS Kappa CCD diffractometer with graphite monochromatized MoK α radiation ($\lambda=0.71073 \AA$). All data were corrected for Lorentz and polarization effects. No absorption correction was applied. Complex scattering factors were taken from the program package SHELXTL [31]. Structure solution and refinement were performed using SHELXT [32] and SHELXL-2018/3 [33]. All hydrogen atoms were added in calculated positions and refined in riding mode on the parent atom. Molecular graphics were generated using ORTEP-3 [34].

3. Results and discussion

3.1. Synthesis

The IR spectrum of the ligand shows main bands at 3194, 1656 , and $1605 \mathrm{~cm}^{-1}$, attributable, respectively, to $v(\mathrm{~N}-\mathrm{H})$, $v(\mathrm{C}=0)$ and $v(\mathrm{C}=\mathrm{N})$ vibration mods. Additional bands due to the aromatic ring are located in the range $1428-1582 \mathrm{~cm}^{-1}$. Comparison of the infrared data of the ligand and those of the complexes obtained upon coordination with cobalt or copper ions shows that no iminolization undergoes during the complexation. In fact, in the spectra of the complex band due to $v(\mathrm{C}=0)$ appears $c a .1602 \mathrm{~cm}^{-1}$ for complex 1 and $c a .1612 \mathrm{~cm}^{-1}$ for complex 2 . The shift of the $v(\mathrm{C}=\mathrm{N})$ band from $1605 \mathrm{~cm}^{-1}$ in the ligand spectrum to $1583 \mathrm{~cm}^{-1}$ for complex 1 and $1588 \mathrm{~cm}^{-1}$ for complex $\mathbf{2}$ is indicative of the involvement of the azomethine atoms in coordination to the $\mathrm{Co}(\mathrm{II})$ and $\mathrm{Cu}(\mathrm{II})$, respectively [35]. The broad band centered in the range $3090-3110 \mathrm{~cm}^{-1}$ is probably due to the stretching of $\mathrm{H}-\mathrm{N}$ [36]. The bands located at $c a .1070 \mathrm{~cm}^{-1}(\mathrm{vas})$ and $620 \mathrm{~cm}^{-1}\left(\delta_{\mathrm{as}}\right)$ on the spectrum of
complex 1 and $1097 \mathrm{~cm}^{-1}\left(\nu_{\mathrm{as}}\right)$ and $616 \mathrm{~cm}^{-1}\left(\delta_{\text {as }}\right)$ for complex 2 are indicative of the presence of free tetrahedral perchlorate anions [37].

The molar conductivity values of the freshly DMF $\left(1 \times 10^{-3}\right.$ M) complex solution and fifteen days later are, respectively, $154.4\left(\mathrm{S.cm}^{2} . \mathrm{mol}^{-1}\right)$ and $158.2\left(\mathrm{~S}_{\mathrm{cm}}{ }^{2} . \mathrm{mol}^{-1}\right)$ for complex 1 and for $75.1\left(\mathrm{~S}_{\mathrm{cm}}{ }^{2} . \mathrm{mol}^{-1}\right)$ and $76.2\left(\mathrm{~S}_{\mathrm{cm}}{ }^{2} . \mathrm{mol}^{-1}\right)$ for complex 2. These values are in accordance with those reported for $2: 1$ electrolyte for complex $\mathbf{1}$ and 1:1 electrolyte for complex $\mathbf{2}$ [38]. The stability of the conductivity values fifteen days later showed that the complexes are stable in DMF.

The values of the magnetic moment at room temperature for the diamagnetic complexes are indicative of the presence of one metal atom per molecule. The magnetic moment value of $4.17 \mu_{\mathrm{B}}$ complex 1 is in accordance with three unpaired electrons by d^{7} configuration. The magnetic moment value of $1.77 \mu_{\mathrm{B}}$ for complex 2 is in accordance with one unpaired electron in d^{9} configuration [39].

3.2. Single crystal structure

3.2.1. Complex I

In the crystal structure of the coordination compound $\left[\mathrm{Co}\left(\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{8} \mathrm{O}_{2}\right)\right] \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \cdot\left(\mathrm{ClO}_{4}\right)_{2} \quad$ (1), the $\mathrm{Co}(\mathrm{II})$ center is hexacoordinated by two pyridine nitrogen atoms, two imino nitrogen atoms and two carbonyl oxygen atoms of the neutral molecule ligand. The coordination environment can be best described as severely distorted square bipyramidal (Figure 1). The basal plane around the Co(II) cation is occupied by the pyridine nitrogen atoms N 4 and N8 with Co-N distances of 1.920 (3) and $1.915(3) \AA$ and the carbonyl oxygen atoms 01 and 02 with Co-0 distances of 1.887 (3) and $1.905(3) \AA$ (Table 2).

The bond lengths are slightly shorter than the values reported for related complexes [40]. The apical positions are occupied by the imino nitrogen atoms N3 and N7 with distances of Co-N of 1.853(3) and 1.856(3) \AA. These values are shorter than the reported values for a similar complex [41].

Table 2. Selected bond lengths and bond angles for complexes 1 and 2

Atom-Atom	Bond lengths (\AA)	Atom-Atom	Bond lengths (\AA)
Co1-N7	1.856 (3)	Cu1-N6	2.050 (2)
Co1-02	1.905 (3)	Cu1-N2	2.058 (3)
Co1-01	1.887 (3)	Cu1-01	2.099 (2)
Co1-N3	1.853 (3)	Cu1-02	2.130 (2)
Co1-N4	1.920 (3)	Cu1-N1	2.220 (3)
Co1-N8	1.915 (3)	Cu1-N5	2.277 (3)
Atom-Atom-Atom	Bond angles (${ }^{\circ}$)	Atom-Atom-Atom	Bond angles (${ }^{\circ}$)
N7-Co1-02	82.93 (12)	N6-Cu1-N2	165.60 (10)
N7-Co1-01	93.01 (12)	N6-Cu1-01	113.34 (9)
N7-Co1-N4	101.36 (13)	N2-Cu1-01	75.61 (8)
N7-Co1-N8	82.50 (13)	N6-Cu1-02	76.15 (9)
02-Co1-N4	87.59 (13)	N2-Cu1-02	114.89 (9)
02-Co1-N8	165.37 (12)	01-Cu1-02	97.37 (8)
01-Co1-02	91.33 (12)	N6-Cu1-N1	97.01 (10)
01-Co1-N4	165.34 (12)	N2-Cu1-N1	74.57 (9)
01-Co1-N8	90.75 (13)	01-Cu1-N1	149.64 (9)
N3-Co1-N7	175.12 (13)	02-Cu1-N1	90.06 (9)
N3-Co1-02	95.12 (12)	N6-Cu1-N5	73.66 (9)
N3-Co1-01	82.56 (11)	N2-Cu1-N5	95.25 (9)
N3-Co1-N4	82.98 (13)	01-Cu1-N5	92.56 (8)
N3-Co1-N8	99.51 (13)	02-Cu1-N5	149.74 (8)
N8-Co1-N4	93.98 (14)	N1-Cu1-N5	95.66 (9)

Figure 1. The crystal structure of complex 1. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as a small sphere.

Figure 2. Intermolecular $\pi-\pi$ stacking between the pyridyl rings in the title complex $\mathbf{1}$

Upon coordination, each of the two ligand molecules, which act as a tridentate, formed two five-membered rings with the Co (II) center: $\mathrm{N}-\mathrm{C}-\mathrm{C}-\mathrm{N}-\mathrm{Co}$ and $\mathrm{O}-\mathrm{C}-\mathrm{N}-\mathrm{N}-\mathrm{Co}$. For each ligand, the two membered rings share one nitrogen atom N3 and N7, respectively. The angles imposed by the five-membered rings are severely deviated from the ideal angles of 90° for a regular square bipyramid (82.56(11)-101.36(12) ${ }^{\circ}$). These angles are smaller than those reported by Cocu et al. [41]. In the basal plane, the transoid angles $02-\mathrm{Co} 1-\mathrm{N} 8$ and $01-\mathrm{Co} 1-\mathrm{N} 4$ are, respectively, $165.37(12)^{\circ}$ and $165.34(13)^{\circ}$ while the cissoid angles are in the range $\left[87.59(13)-93.98(14)^{\circ}\right]$. The sum of the angles subtended by the donor atoms of $\operatorname{Co}(\mathrm{II})$ in the equatorial plane [01-02-N4-N8] is 363.65°, indicating approximate
coplanarity for these atoms as shown by the rms value of 0.0422 \AA. The angle value of $175.12(13)^{\circ}$ is defined by the atoms in apical position: N3-Co1-N7. A geometrical analysis has been performed on $\pi-\pi$ stacking in the cobalt complex. Considering the crystal structure of the cobalt complex as shown in Figure 2 , there are two types of $\pi-\pi$ stacking interactions between the 2 -substituted pyridyl rings (N4-C9-C13 and N8-C22-C26) and those between the 3-substituted pyridyl rings (N1-C1-C5 and N5-C14-C18) with $\mathrm{Cg} \cdots \mathrm{Cg}$ distances of 3.881 and $3.824 \AA$, respectively. The $\pi-\pi$ stacking interactions link the molecules into a ribbon along the c-axis, Figure 2.

Figure 3. The crystal structure of complex 2. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as a small sphere.

Figure 4. Intermolecular $\pi-\pi$ stacking between the pyridyl rings in the title complex 2 .

3.2.2. Complex 2

In complex 2, the Cu (II) lies in an octahedral environment (Figure 3). One neutral ligand molecule coordinates the Cu (II) center through its pyridine nitrogen atom, its imine nitrogen atom, and its carbonyl oxygen atom. Additionally, a monodeprotonated ligand molecule coordinates the Cu (II) center through its pyridine nitrogen atom, its imine nitrogen atom and its iminolate oxygen atom. In each case two five-membered rings $\mathrm{N}-\mathrm{C}-\mathrm{C}-\mathrm{N}-\mathrm{Cu}$ and $\mathrm{O}-\mathrm{C}-\mathrm{N}-\mathrm{N}-\mathrm{Cu}$ are formed. The result is a severely distorted square bipyramid environment as shown by the transoid angles (149.64(9) and $\left.165.60(10)^{\circ}\right)$, the cissoid angles ($\left.90.06(9)-97.37(8)^{\circ}\right)$ and the apical angle $01-\mathrm{Cu} 1-\mathrm{N} 1$ of $149.64(9)^{\circ}$ (Table 2). Two imino nitrogen atoms, one iminol oxygen atom and one pyridine nitrogen atom occupy the basal plane, while one pyridine nitrogen atom and one carbonyl oxygen atom occupy the apical positions. The $\mathrm{Cu}-\mathrm{N}$ distances are in the range $2.050(2)-2.277$ (3) \AA and agree with the values reported by Santiago et al. [42]. The Cu1-01 and Cu1-02 are, respectively, 2.099 (2) and $2.130(2) \AA$ showing the negative charge difference of these two oxygen atoms. In fact, the iminolate oxygen atom 01 is more negatively charged than the carbonyl oxygen atom 02 and the link O 2 to Cu 1 is stronger, resulting in a shorter distance as observed for similar complexes [42]. Additionally, the C-O bonds in the two ligand molecules are slightly different. The C21-02 (1.271 (3) Å) bond is longer than the C8-01 (1.264 (3) \AA) bond which has a double bond character. The sum of the angles subtended by the donor atoms at the Cu (II) in the equatorial plane [N2 02 N6 N5] is 359.95°, indicating approximate coplanarity for these atoms as shown by the rms value of $0.0780 \AA$. The crystal structure of the copper complex illustrated in Figure 4 shows two types of $\pi-\pi$
stacking interactions between the 2-subtituted pyridyl ring and the 3 -substituted pyridine ring with $\mathrm{Cg} \cdots \mathrm{Cg}$ distances of 3.845 and 3.940 Å respectively. The $\pi-\pi$ stacking interaction link the molecules into sheet parallel to the $b c$ plane (Figure 4).

4. Conclusion

The acetylpyridinenicotinohydrazone ligand well known in the literature is used to synthesize two new complexes from perchlorate salts of cobalt or copper. Magnetic measurements, spectroscopic studies, and X-ray diffraction indicated the formation of a dicanionic mononuclear complex in the case of cobalt (1) and a monocanionic mononuclear complex in the case of copper (2). In complex 1, two ligand molecules act in a tridentate fashion in a neutral form, while in complex 2 one ligand molecule acts in a tridentate manner in a neutral form while a second monodeprotonated ligand molecule acts in tridentate fashion. In both structures, we have a hexacoordinate environment with a distorted octahedral geometry for the two complexes.

Acknowledgement

The authors thank Professor Dominique Luneau at LMI, University Claude Bernard, Lyon, France, for technical assistance.

Supporting information 5

CCDC-2054420 and 2054421 contain the supplementary crystallographic data for compounds 1 and 2, respectively. These data can be obtained free of charge via
https://www.ccdc.cam.ac.uk/structures/, or by e-mailing data request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44(0)1223-336033.

Disclosure statement © ${ }^{\text {© }}$

Conflict of interests: The authors declare that they have no conflict of interest.
Author contributions: All authors contributed equally to this work.
Ethical approval: All ethical guidelines have been adhered.
Sample availability: Samples of the compounds are available from the author.

ORCID (D)

Moussa Faye
(D) https://orcid.org/0000-0002-8773-6445

Mouhamadou Moustapha Sow
(iD https://orcid.org/0000-0003-2853-5640
Papa Aly Gaye
(D) https://orcid.org/0000-0001-6113-4609

Moussa Dieng
(D) https://orcid.org/0000-0002-8841-4130

Mohamed Gaye
(D) https://orcid.org/0000-0001-8989-1548

References

[1]. Koivusalo, L.; Karvinen, J.; Sorsa, E.; Jönkkäri, I.; Väliaho, J.; Kallio, P.; Ilmarinen, T.; Miettinen, S.; Skottman, H.; Kellomäki, M. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 85, 68-78.
[2]. Uppal, G.; Bala, S.; Kamboj, S.; Saini, M. Pharma Chem. 2011, 3, 250268.
[3]. Cukierman, D. S.; Pinheiro, A. B.; Castiñeiras-Filho, S. L. P.; da Silva, A. S. P.; Miotto, M. C.; De Falco, A.; de P. Ribeiro, T.; Maisonette, S.; da Cunha, A. L. M. C.; Hauser-Davis, R. A.; Landeira-Fernandez, J.; Aucélio, R. Q.; Outeiro, T. F.; Pereira, M. D.; Fernández, C. O.; Rey, N. A. J. Inorg. Biochem. 2017, 170, 160-168.
[4]. Sanford, A. G.; Schulze, T. T.; Potluri, L. P.; Watson, G. F.; Darner, E. B.; Zach, S. J.; Hemsley, R. M.; Wallick, A. I.; Warner, R. C.; Charman, S. A.; Wang, X.; Vennerstrom, J. L.; Davis, P. H. Int. J. Parasitol. Drugs Drug Resist. 2018, 8 (3), 488-492.
[5]. Zaky, R. R.; Ibrahim, K. M.; Gabr, I. M. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2011, 81 (1), 28-34.
[6]. Wu, Y.; Ding, X.; Ding, L.; Zhang, Y.; Cui, L.; Sun, L.; Li, W.; Wang, D.; Zhao, Y. Eur. J. Med. Chem. 2018, 158, 247-258.
[7]. Casanova, B. B.; Muniz, M. N.; de Oliveira, T.; de Oliveira, L. F.; Machado, M. M.; Fuentefria, A. M.; Gosmann, G.; Gnoatto, S. C. B. Molecules 2015, 20 (5), 9229-9241.
[8]. Yang, Z.; Li, P.; Gan, X. Molecules 2018, 23 (7), 1798.
[9]. Noma, S. A. A.; Erzengin, M.; Tunç, T.; Balcıoğlu, S. J. Mol. Struct. 2020, 1205 (127550), 127550.
[10]. Chakraborty, J.; Thakurta, S.; Pilet, G.; Luneau, D.; Mitra, S. Polyhedron 2009, 28 (4), 819-825.
[11]. Patel, A. K.; Jadeja, R. N.; Butcher, R. J.; Kesharwani, M. K.; Kästner, J.; Muddassir, M. Polyhedron 2021, 195 (114969), 114969.
[12]. Patel, R. N.; Shukla, K. K.; Singh, A.; Choudhary, M.; Chauhan, U. K.; Dwivedi, S. Inorg. Chim. Acta 2009, 362 (14), 4891-4898.
[13]. Recio Despaigne, A. A.; Da Silva, J. G.; Do Carmo, A. C. M.; Piro, O. E.; Castellano, E. E.; Beraldo, H. J. Mol. Struct. 2009, 920 (1-3), 97-102.
[14]. Andjelković, K.; Ivanović, I.; Niketić, S. R.; Prelesnik, B.; Leovac, V. M. Polyhedron 1997, 16 (24), 4221-4228.
[15]. Gebretsadik, T.; Yang, Q.; Wu, J.; Tang, J. Coord. Chem. Rev. 2021, 431 (213666), 213666.
[16]. Sethi, S.; Panigrahi, R.; Paul, A. K.; Mallik, B. S.; Parhi, P.; Das, P. K.; Behera, N. Dalton Trans. 2020, 49 (30), 10603-10612.
[17]. Murugan, K.; Vijayapritha, S.; Kavitha, V.; Viswanathamurthi, P. Polyhedron 2020, 190 (114737), 114737.
[18]. Makhlouf, M. M.; Alburaih, H. A.; Shehata, M. M.; Adam, M. S. S.; Mostafa, M. M.; El-Denglawey, A. J. Phys. Chem. Solids 2021, 151 (109817), 109817.
[19]. Alagesan, M.; Bhuvanesh, N. S. P.; Dharmaraj, N. Dalton Trans. 2013, 42 (19), 7210-7223.
[20]. Cao, W.; Liu, Y.; Zhang, T.; Jia, J. Polyhedron 2018, 147, 62-68.
[21]. Bhaskar, R. S.; Ladole, C. A.; Salunkhe, N. G.; Barabde, J. M.; Aswar, A. S. Arab. J. Chem. 2020, 13 (8), 6559-6567.
[22]. Joshi, N.; Gore, V.; Tekale, S.; Rajani, D.; Bembalkar, S.; Pawar, R. Lett. Appl. NanoBioScience 2021, 10, 2056-2062.
[23]. Cindrić, M.; Bjelopetrović, A.; Pavlović, G.; Damjanović, V.; Lovrić, J.; Matković-Čalogović, D.; Vrdoljak, V. New J Chem 2017, 41 (6), 24252435.
[24]. Sylla-Gueye, R.; Thiam, I. E.; Orton, J.; Coles, S.; Gaye, M. Acta Crystallogr. E Crystallogr. Commun. 2020, 76 (5), 660-663.
[25]. Sy, A.; Dieng, M.; Thiam, I. E.; Gaye, M.; Retailleau, P. Acta Crystallogr. Sect. E Struct. Rep. Online 2013, 69 (2), m108.
[26]. Tamboura, F. B.; Diouf, O.; Barry, A. H.; Gaye, M.; Sall, A. S. Polyhedron 2012, 43 (1), 97-103.
[27]. Gueye, A.; Tamboura, F.B.; Sy, A.; Gaye, M.; Gruber, N.; Jouaiti, A. IOSR J. Appl. Chem. 2019, 12, 24-30.
[28]. Seck, T. M.; Faye, F. D.; Gaye, A. A.; Thiam, I. E.; Diouf, O.; Gaye, M.; Retailleau, P. Eur. J. Chem. 2020, 11 (4), 285-290.
[29]. Seck, T. M.; Gaye, P. A.; Diouf, O.; Thiam, I. E.; Gaye, M. Chem. Afr. 2020, 3 (4), 949-954.
[30]. Zhang, H.; Lin, S.-Y.; Xue, S.; Wang, C.; Tang, J. Dalton Trans. 2014, 43, 6262-6268.
[31]. Sheldrick, G. M. SHELXTL Version 5.10; Bruker AXS Inc: Madison, Wisconsin, USA, 1997.
[32]. Sheldrick, G. M. Acta Crystallogr. A Found. Adv. 2015, 71 (1), 3-8.
[33]. Sheldrick, G. M. Acta Crystallogr. C Struct. Chem. 2015, 71 (1), 3-8.
[34]. Farrugia, L. J. J. Appl. Crystallogr. 2012, 45 (4), 849-854.
[35]. Seck, T. M.; Sy, A.; Lo, D.; Gaye, P. A.; Sall, M. L.; Diouf, O.; Diaw, M.; Gaye, M. Open J. Inorg. Chem. 2019, 09 (04), 35-52.
[36]. Singh, A. K.; Pandey, O. P.; Sengupta, S. K. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 113, 393-399.
[37]. Roy, T. G.; Hazari, S. K. S.; Miah, H. A.; Gupta, S. K. D.; Roy, P. G.; Behrens, U.; Rehder, D. Inorg. Chim. Acta 2014, 415, 124-131.
[38]. Geary, W. J. Coord. Chem. Rev. 1971, 7 (1), 81-122.
[39]. Jyothi, N.; Ganji, N.; Daravath, S.; Shivaraj. J. Mol. Struct. 2020, 1207 (127799), 127799.
[40]. Roztocki, K.; Matoga, D.; Nitek, W. Inorg. Chim. Acta 2016, 448, 86-92.
[41]. Cocu, M.; Bulhac, I.; Coropceanu, E.; Melnic, E.; Shova, S.; Ciobanica, O.; Gutium, V.; Bourosh, P. J. Mol. Struct. 2014, 1063, 274-282.
[42]. Santiago, P. H. O.; Santiago, M. B.; Martins, C. H. G.; Gatto, C. C. Inorg. Chim. Acta 2020, 508 (119632), 119632.

Copyright © 2021 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).

