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	 Vilsmeier‐Haack	 reaction	 conditions	 were	 applied	 on	 some	 methyl	 ketone	 aryl
phosphonicdihydrazones	 to	 yield	 some	 interesting	 bis‐pyrazole	 derivatives	 containing	 a
hydro‐phosphoryl	 unit.	 Bis‐{4‐formyl‐3‐aryl‐1H‐pyrazol‐1‐yl}phosphine	 oxides	 (4a,b)	 were
condensed	with	some	nucleophiles	such	as	aniline,	phenacyltriphenylphosphonium	bromide
and	 4‐phenylthiosemicarbazide	 followed	 by	 treatment	 with	 thioglycolic	 acid,	 diethyl
phosphite	and/or	acetic	anhydride	to	yield	a	novel	class	of	bis‐pyrazoles	containing	sulfur	and
phosphorus	derivatives.	Most	of	the	newly	synthesized	compounds	were	evaluated	for	their	in
vitro	antimicrobial	activities.	
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1.	Introduction	
	

Pyrazole	 and	 its	 derivatives	 represent	 one	 of	 the	 most	
active	 classes	 of	 compounds	 possessing	 a	 wide	 spectrum	 of	
biological	 activities	 including	 antibacterial	 [1,2],	 antifungal	
[3,4],	 herbicidal	 [5],	 insecticidal	 [6],	 and	 other	 biological	
activities	 [7].	 Up	 till	 now,	 a	 great	 variety	 of	 these	 kinds	 of	
compounds	 have	 been	 synthesized,	 among	 which	 some	
commercial	pesticides	have	been	developed	including	Fripronil	
(MB46030)	[8],	ET‐751	[9],	and	Pyrazolate	(A‐544)	[10].		

On	the	other	hand,	organophosphorus	compounds	possess	
insecticidal,	 pesticidal,	 acaricidal	 and	 antimicrobial	 properties	
[11‐15].	 These	 compounds	 exert	 their	 biological	 action	 on	
arthropods	by	attacking	the	system	of	neural	transmission	and	
inhibiting	 the	 function	 of	 acetyl	 cholinesterase	 [16,17].	 In	
particular,	 organophosphorus	 compounds	 including	 hydro‐
phosphoryl	 group	 (H−P=O)	 are	 widely	 used	 in	 industry,	
agriculture	 and	 medicine.	 It	 is	 interesting	 that	 many	 hydro‐
phosphoryl	 compounds	 are	 also	 used	 as	 complexing	 and	
extracting	 agents,	 as	 well	 as	 corrosion	 and	 saline	 deposition	
inhibitors	[18,19].	The	connection	of	a	heterocyclic	moiety	with	
organo‐phosphorus	 compounds	 further	 may	 enhance	 their	
biological	 activities.	 In	 continuation	 of	 our	 research	 work	 on	
the	 synthesis	of	bioactive	phosphorus	containing	heterocycles	
[13,15,20‐22],	 it	 was	 considered	 valuable	 to	 integrate	
hydrophosphoryl	 unit	 and	 pyrazole	 rings	 together	 in	 a	
molecular	frame	to	see	the	additive	effect	of	these	novel	frames	
towards	the	antimicrobial	activity.	
	
2.	Experimental	
	
	

2.1.	Instrumentation	
	
The	melting	point	was	determined	in	an	open	capillary	tube	

on	 a	 digital	 Stuart	 SMP‐3	 apparatus.	 Infrared	 spectra	 were	
measured	on	Perkin‐Elmer	293	spectrophotometer,	using	KBr	
disks.	1H	NMR	spectra	were	measured	on	Gemini‐200	spectro‐
meter	(200	MHz),	using	DMSO‐d6	 as	a	 solvent	and	TMS	(δ)	as	
the	 internal	 standard.	 13C	 NMR	 spectra	 were	 measured	 on	
Mercury‐300BB	(75	MHz),	using	DMSO‐d6	as	a	solvent	and	TMS	
(δ)	as	 the	 internal	 standard.	 31P	NMR	spectra	were	 registered	
on	a	Varian	Inova	500	MHz	spectrometer	at	room	temperature	
using	DMSO‐d6	as	a	solvent	and	TMS	as	 internal	standard	and	
85%	H3PO4	as	external	 reference.	Mass	spectra	recorded	on	a	
Gas	Chromatographic	GCMSqp	1000	ex	Shimadzu	instrument	at	
70	 eV.	 Elemental	 microanalyses	 were	 performed	 at	 micro‐
analysis	center	in	National	Research	Center,	Giza.	The	purity	of	
the	 synthesized	 compounds	 was	 checked	 by	 thin	 layer	
chromatography	(TLC).	
	
2.2.	Synthesis	

	
2.2.1.	Preparation	of	phosphonicdihydrazide	(1)	
	

A	mixture	of	hydrazine	hydrate	99%	(0.1	mol,	5	cm3)	and	
diethyl	phosphite	(0.05	mol,	7	cm3)	was	heated	under	reflux	at	
70‐80	oC	for	two	hours.	The	reaction	mixture	was	cooled	in	an	
ice	bath	 for	30	minutes.	The	 formed	solid	was	 filtered	off	and	
washed	 with	 absolute	 ethanol	 (10	 cm3).	 The	 filtrate	 was	
concentrated	 to	 its	 third	 volume	under	 reduced	pressure	 and	
cooled	in	an	ice	bath	for	one	hour.	The	white	solid	was	filtered	
off	and	dried.	Total	yield:	80%;	M.p.:	98‐99	oC	(Lit.	92‐94)[23].	
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2.2.2.	General	procedure	for	preparation	of	phosphonic	
dihydrazones	(3a‐d)	
	

A	mixture	 of	 phosphonicdihydrazide	 (1)	 (0.01	mol,	 1.1	 g)	
and	 acetophenone	 derivatives	 namely,	 acetophenone	 (2a),	 4`‐
acetyl‐biphenyl	 (2b),	 2‐hydroxyacetophenone	 (2c)	 and/or	 3‐
acetyl‐2‐methylchromone	 (2d)	 (0.02	mol)	 in	 absolute	 ethanol	
(20	cm3)	in	the	presence	of	few	drops	of	concentrated	sulfuric	
acid,	was	refluxed	for	4	h.	The	reaction	mixture	was	cooled;	the	
resulting	precipitate	was	 filtered	off	and	crystallized	 from	 the	
proper	 solvent	 to	 give	 the	 corresponding	 phosphonic	
dihydrazones	3a−d,	respectively	(Scheme	1).	
	
2.2.2.1.	N1,N5‐bis{1‐phenylethylidene}phosphonic	
dihydrazide	(3a)	
	

Yellow	 crystals	 from	 ethanol	 in	 46%	 yield.	M.p.:	 128−130	
oC.	 IR	 (KBr,	 max,	 cm‐1):	 3423	 (br,	 NH),	 3053	 (C−Harom),	 2960	
(C−Haliph),	2339	(P−H),	1599	(C=N),	1562	(C=C),	1284	(P=O).	1H	
NMR	 (DMSO,	 δ	 ppm):	 2.28	 (s,	 6H,	 CH3),	 7.47−7.93	 (m,	 10H,	
Ph−H).	 13C	NMR	 (DMSO,	 δ	 ppm):14.7	 (CH3),	 126.4	 (C3,5),128.3	
(C2,6),	 129.6	 (C4),	 137.8	 (C1),	 157.2	 (C=N).	 MS	 (m/e,	 %):	 237	
(M+−Ph,	5%),	222	(4.5),	221	(35),	159	(12),	118	(15),	103	(28),	
77	(100),	51	(92).	Anal.	Calcd.	for	C16H19N4OP	C,	61.14;	H,	6.09;	
N,	17.82.	Found:	C,	60.67;	H,	5.82;	N,	17.53%.	
	
2.2.2.2.	N1,N5‐bis{1‐(4`‐biphenyl)ethylidene}phosphonic	
dihydrazide	(3b)	
	

Pale	yellow	crystals	 from	dilute	dimethylsulfoxide	 in	71%	
yield.	 M.p.:	 282−284	 oC.	 IR	 (KBr,	 max,	 cm‐1):	 3425	 (br,	 NH),	
3054,	3032	(C−Harom),	2964	(C−Haliph),	2373	(P−H),	1599	(C=N),	
1577	(C=C),	1294	(P=O).	1H	NMR	(DMSO,	δ	ppm):	2.12	(s,	6H,	
CH3),	 7.38−8.06	 (m,	 18H,	 Ar−H).	 MS	 (m/e,	 %):	 389	 (M+−Ph,	
6%),	388	(31),	373	(57),	209	(12),	194	(25),	178	(31),	153	(29),	
152	 (100),	 76	 (32),	 51	 (19).	 Anal.	 Calcd.	 for	 C28H27N4OP:	 C,	
72.09;	H,	5.83;	N,	12.01.	Found:	C,	71.72;	H,	5.59;	N,	11.79%.	
	
2.2.2.3.	N1,N5‐bis{1‐(2‐hydroxyphenyl)ethylidene}	
phosphonicdihydrazide	(3c)	
	

Yellow	 crystals	 from	 dimethylformamide	 in	 70%	 yield.	
M.p.:	202−204oC.	IR	(KBr,	max,	cm‐1):	3150	(br,	OH,	NH),	3050	
(C−Harom),	 2924	 (C−Haliph),	 2441	 (br,	 P−H),	 1604	 (C=N),	 1559	
(C=C),	1245	(P=O).	1H	NMR	(DMSO,	δ	ppm):	2.08	(s,	6H,	CH3),	
6.97	(d,	4H,	 J=8.2	Hz,	Ar−H),	7.40	(t,	2H,	 J=7.4	Hz,	Ar−H),	7.76	
(d,	 2H,	 J=7.6	 Hz,	 Ar−H),	 12.90	 (s,	 2H,	 OH	 exchangeable	 with	
D2O).31P	NMR	 (DMSO,	 δ	 ppm):	 18.4.	MS	 (m/e,	%):	 348	 (M+2,	
12%),	302	(9),	301	(12),	119	(14),	80	(44),	77	(14),	64	(100),	
52	(42).	Anal.	Calcd.	for	C16H19N4O3P:	C,	55.49;	H,	5.53;	N,	16.18.	
Found:	C,	55.14;	H,	5.24;	N,	15.68	%.	
	
2.2.2.4.	N1,N5‐bis{1‐(2‐methyl‐4‐oxo‐4H‐chromen‐3‐
yl)ethylidene}phosphonic	dihydrazide	(3d)	
	

Pale	yellow	crystals	from	dimethylformamide	in	69%	yield.	
M.p.:	 266−268	 oC.	 IR	 (KBr,	 max,	 cm‐1):	 3241	 (NH),	 3023	
(C−Harom),	 2920	 (C−Haliph),	 2599	 (P−H),	 1665	 (C=O),	 1609	
(C=N),	1528	(C=C),	1256	(P=O),	1011	(C−O−C).	1H	NMR	(DMSO,	
δ	ppm):	2.07	(s,	6H,	CH3),	2.34	(s,	6H,	CH3),	6.88−7.74	(m,	8H,	
Ar−H).	MS	(m/e,	%):	515	(M+2H2O,	18%),	286	(30),	200	(30),	
99	 (30),	 77	 (70),	 55	 (100),	 51	 (26).	 Anal.	 Calcd.	 for	
C24H23N4O5P:	 C,	 60.25;	 H,	 4.85;	 N,	 11.71.	 Found:	 C,	 59.81;	 H,	
4.51;	N,	11.29%.	
	
2.2.3.	Synthesis	of	compounds	4a,	4b,	6	and	8:		General	
procedure	for	Vilsmeier‐Haack	reaction	of	phosphonic‐
dihydrazones	(3a‐d)	
	

The	 Vilsmeier	 reagent	 was	 prepared	 by	 adding	
dimethylformamide	 (0.05	 mol,	 3.88	 cm3)	 in	 an	 ice‐cold	

condition	(0‐5	oC)	under	constant	stirring.	To	this,	phosphorus	
oxychloride	(0.025	mol,	2.34	cm3)	was	added	dropwise	over	a	
period	of	half	hour	and	the	resulting	mixture	was	stirred	for	a	
further	 half	 hour.	 Each	 one	 of	 phosphonicdihydrazones	 3a‐d		
(0.005	mol)	was	added	to	the	Vilsmeier	reagent	and	stirred	for	
5	 hours	 at	 50‐60	 oC.	 The	 reaction	 mixture	 was	 cooled	 and	
poured	 into	crushed	 ice	and	2	g	of	 sodium	acetate	was	added	
under	constant	manual	stirring.	The	reaction	mixture	was	kept	
a	 side	 overnight.	 The	 resulting	 precipitate	 was	 filtered	 off,	
washed	 with	 water	 several	 times	 and	 crystallized	 from	 the	
proper	 solvent	 to	 give	 the	 corresponding	 products	 4a,	 4b,	 6	
and	8,	respectively.	
	
2.2.3.1.	Bis{4‐formyl‐3‐phenyl‐1H‐pyrazol‐1‐yl}phosphine	
oxide	(4a)	
	

Beige	crystals	from	ethanol	in	61%	yield.	M.p.:	193−195	oC.	
IR	 (KBr,	max,	 cm‐1):	 3014	 (C−Harom),	 2771	 (P−H),	1678	 (C=O),	
1620	(C=N),	1535	(C=C),	1284	(P=O).	1H	NMR	(DMSO,	δ	ppm):	
7.45	(d,	1H,	 JPH=682	Hz,	P−H),	7.45–7.93	(m,	10H,	Ph−H),	8.69	
(s,	2H,	C5−Hpyrazole),	9.95	(s,	2H,	CHO).	13C	NMR	(DMSO,	δ	ppm):	
121.1	 (C4pyrazole),	 127.5–138.2	 (Phenyl	 carbons),	 144.5	
(C5pyrazole),	152.1	(C3pyrazole),	184.6	(CHO).MS	(m/e,	%):	389	(M+–
H,	15%),	 388	 (M+–2H,	 30),	 286	 (18),	 274	 (22),	 184	 (18),	 144	
(52),	103	(81),	77	(85),	51	(100).	Anal.	Calcd.	 for	C20H15N4O3P	
(390.34):	C,	61.54;	H,	3.87;	N,	14.35.	Found:	C,	61.27;	H,	3.67;	N,	
13.96	%.	
	
2.2.3.2.	Bis{3‐(4`‐biphenyl)‐4‐formyl‐1H‐pyrazol‐1‐yl}	
phosphine	oxide	(4b)	
	

Orange	crystals	 from	ethanol	 in	62%	yield.	M.p.:	 149–150	
oC.	IR	(KBr,	max,	cm‐1):	3054,	3029	(C–Harom),	2363	(P–H),	1671	
(C=O),	1643	(C=N),	1601	(C=C),	1241	(P=O).	1H	NMR	(DMSO,	δ	
ppm):	7.54	(d,	1H,	JPH=733	Hz,	P–H),	7.47–8.14	(m,	18H,	Ar−H),	
8.84	(s,	2H,	C5–Hpyrazole),	10.00	(s,	2H,	CHO).	31P	NMR	(DMSO,	δ	
ppm):	7.71.	MS	(m/e,	%):	390	(M+–C12H8,	32%),	351	(21),	223	
(33),	 152	 (6),	 139	 (51),	 99	 (100),	 77	 (35),	 60	 (89),	 55	 (68).	
Anal.	 Calcd.	 for	 C32H23N4O3P	 (542.54):	 C,	 70.84;	 H,	 4.27;	 N,	
10.33.	Found:	C,	70.53;	H,	3.86;	N,	9.90%.	
	
2.2.3.3.	Bis{2,4‐dihydrochromeno[4,3‐c]pyrazol‐4‐hydroxy‐
2‐yl}phosphine	oxide	(6)	
	

Red	crystals	 from	ethanol	 in	82%	yield.	M.p.:	279–282	 oC.	
IR	 (KBr,	max,	 cm‐1):	 3135	 (br,	 OH),	 3070	 (C–Harom),	 2930	 (C–
Haliph),	2500	(P–H),	1656	(C=N),	1615	(C=C),	1246	(P=O),	1104	
(C–O–C).	 1H	 NMR	 (DMSO,	 δ	 ppm):	 3.72	 (br,	 2H,	 OH	
exchangeable	 with	 D2O),	 6.53	 (s,	 2H,	 C2–Hpyran),6.95–7.78	 (m,	
8H,	 Ar−H),7.44	 (d,	 1H,	 JPH=423	 Hz,	 P–H),	 7.96	 (s,	 2H,	 C5–
Hpyrazole).	 Anal.	 Calcd.	 for	 C20H15N4O5P	 (422.34):	 C,	 56.88;	 H,	
3.58;	N,	13.27.	Found:	C,	56.56;	H,	3.29;	N,	12.89%.	
	
2.2.3.4.	Bis{chromeno[2,3‐g]indazol‐11‐oxo‐2‐yl}phosphine	
oxide	(8)	
	

Yellow	 crystals	 from	 dilute	 dimethylformamide	 in	 39%	
yield.	 M.p.:	 296–297	 oC.	 IR	 (KBr,	 max,	 cm‐1):	 3050	 (C–Harom),	
2642	(P–H),	1646	(C=O),	1596	(C=N),	1569	(C=C),	1246	(P=O),	
1041	(C–O–C).	1H	NMR	(DMSO,	δ	ppm):6.50	(d,	1H,	JPH=556	Hz,	
P–H),	 7.05–7.80	 (m,	 12H,	 Ar−H),	 7.89	 (s,	 2H,	 C5–Hpyrazole).	 MS	
(m/e,	%):	518	(M+,	2%),	458	(3),	384	(100),	369	(83),	284	(2),	
192	(74),	165	(6),	120	(10),	117	(2),	92	(7),	77	(30),	69	(35),	53	
(19).	Anal.	Calcd.	forC28H15N4O5P	(518.43):	C,	64.87;	H,	2.92;	N,	
10.81.	Found:	C,	64.63;	H,	2.71;	N,	10.52%.	
	
2.2.4.	Synthesis	of	bis(4‐carboxypyrazolyl)phosphine	oxides	
(5a,	5b):	General	procedure	for	oxidation	of	bis‐(4‐formyl	
pyrazolyl)phosphine	oxides	(4a,	4b)	
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Scheme	1
	
A	solution	of	potassium	permanganate	(0.002	mol,	0.32	g)	

in	water	 (10	 cm3)	was	 added	with	 stirring	 to	 a	 suspension	of	
bis‐(4‐formylpyrazolyl)phosphine	 oxides	 4a,b	 (0.001	 mol)	 in	
pyridine	 (10	cm3)	 at	 room	 temperature.	The	 reaction	mixture	
was	stirred	for	3	h,	a	solution	of	NaOH	(1%,	10	cm3)	was	added,	
and	 stirring	 continued	 for	 2	 h	 at	 50	 °C.	 After	 cooling,	 the	
inorganic	 precipitate	was	 filtered	 off	 and	washed	with	water.	
The	filtrate	was	acidified	with	hydrochloric	acid	to	pH	=	4.	The	
formed	precipitate	was	 filtered	off,	washed	with	water,	 dried,	
and	crystallized	from	dilute	ethanol.	
	
2.2.4.1.	Bis{4‐carboxy‐3‐phenyl‐1H‐pyrazol‐1‐yl}phosphine	
oxide	(5a)	
	

Grey	crystals	 from	dilute	ethanol	 in	80%	yield.	M.p.:	>300	
°C.	 IR	 (KBr,	 max,	 cm‐1):	 3243	 (OH),	 2362	 (P–H),	 1713	 (C=O),	
1550	(C=N),	1237	(P=O).	1H	NMR	(DMSO,	δ	ppm):	7.64	(d,	1H,	
JPH=517	 Hz,	 P–H),	 7.60–8.17(m,	 10H,	 Ph−H),	 8.92	 (s,	 2H,	 C5–
Hpyrazole),	 12.14	 (s,	 2H,	 COOH).	 Anal.	 Calcd.	 for	 C20H15N4O5P	
(422.34):	C,	56.88;	H,	3.58;	N,	13.27.	Found:	C,	56.61;	H,	3.43;	N,	
12.97%.	
	
2.2.4.2.	Bis{3‐(4`‐biphenyl)‐4‐carboxy‐1H‐pyrazol‐1‐yl}	
phosphine	oxide	(5b)	
	

Beige	crystals	from	ethanol	in	77%	yield.	M.p.:	>300	°C.	IR	
(KBr,	max,	cm‐1):	3243	(br,	OH),	2360	(P–H),	1711	(C=O),	1239	
(P=O).	1H	NMR	(DMSO,	δ	ppm):	7.32	(d,	1H,	 JPH=468	Hz,	P–H),	
6.67–7.82	(m,	18H,	Ar−H),	8.13	(s,	2H,	C5–Hpyrazole),	11.80	(s,	2H,	
COOH).	Anal.	Calcd.	for	C32H23N4O5P	(574.54):	C,	66.90;	H,	4.04;	
N,	9.75.	Found:	C,	66.61;	H,	3.87;	N,	9.52%.	
	
2.2.5.	Bis{chromeno[4,3‐c]pyrazol‐4‐oxo‐2‐yl}phosphine	
oxide	(7)	
	

A	mixture	 of	6	 (0.001	mol,	 0.422	 g)and	 selenium	 dioxide	
(0.002	mol,	0.22	g)	in	dry	dioxane	(15	cm3)	was	refluxed	for	5	
h.	The	reaction	mixture	was	filtered	off	while	hot.	Some	water	
(20	 cm3)	was	added	 to	 the	 filtrate,	 and	 then	 left	 for	 complete	
precipitation.	 The	 resulting	 precipitate	 was	 filtered	 off	 and	
crystallized	 from	 dilute	 dimethylformamide	 to	 give	 deep	 red	
crystals	 in	75%	yield.	M.p.:	>300	°C.	IR	(KBr,	max,	cm‐1):	3054	
(C–Harom),	 2360	 (P–H),	 1652	 (C=O),	 1624	 (C=N),	 1592	 (C=C),	
1277	 (P=O),	 1080	 (C–O–C).	 1H	NMR	 (DMSO,	 δ	 ppm):	 7.21	 (d,	
1H,	 JPH=425	Hz,	P–H),	7.32	(t,	2H,	 J=8.8	Hz,	Ar–H),	7.46	(t,	2H,	
J=8.0	Hz,Ar–H),	7.58	(d,	2H,	 J=8.2	Hz,	Ar–H),	7.94	(d,	2H,	 J=7.8	
Hz,Ar–H),8.64	(s,	2H,	C5–Hpyrazole).	Anal.	Calcd.	 for	C20H11N4O5P	
(418.31):	C,	57.43;	H,	2.65;	N,	13.39.	Found:	C,	57.09;	H,	2.43;	N,	
13.04%.	
	
2.2.6.	Bis{3‐phenyl‐4‐[(phenylimino)methyl]‐1H‐pyrazol‐1‐
yl}phosphine	oxide(9)	

A	 mixture	 of	 bis‐(4‐formylpyrazolyl)phosphine	 oxide	 4a	
(0.001	mol,	 0.39	 g)	 and	 freshly	 distillated	 aniline	 (0.002	mol,	
0.186	g)	in	absolute	ethanol	(10	cm3)	was	refluxed	for	4	h.	The	
solvent	 was	 concentrated	 to	 half	 its	 volume	 and	 left	 for	 two	
days	 for	complete	precipitation.	The	formed	solid	was	 filtered	
off	and	crystallized	from	dilute	ethanol	to	give	yellow	crystals	
in	 66%	yield.	M.p.:	 148‐150	 °C.	 IR	 (KBr,	max,	 cm‐1):	 3050	 (C–
Harom),	2498	(P–H),	1631	(C=Nexocyclic),	1540	(C=C),	1230	(P=O).	
1H	NMR	 (DMSO,	δ	ppm):	7.69	 (d,	 1H,	 JPH=608	Hz,	P–H),	 7.11–
8.10	 (m,	 20H,	 Ph−H),	 8.56	 (s,	 2H,	 C5–Hpyrazole),	 9.36	 (s,	 2H,	
CH=Nexocyclic).	MS	(m/e,	%):	520	(M+–H2O,–H2,	1%),	423	(1),	260	
(42),	 246	 (24),	 130	 (12),	 77	 (100),	 51	 (48).	 Anal.	 Calcd	 for	
C32H25N4OP	 (540.57):	 C,	 71.10;	 H,	 4.66;	 N,	 15.55.	 Found:	 C,	
70.83;	H,	4.34;	N,	15.23%.	
	
2.2.7.	Bis{3‐phenyl‐4‐[3‐phenyl‐4‐oxo‐1,3‐thiazolidin‐2‐yl]‐
1H‐pyrazol‐1‐yl}phosphine	oxide	(10)	
	

Method	A:	A	mixture	of	bis‐Schiff's	base	9	(0.001	mol,	0.54	
g)	 and	 thioglycolic	 acid	 (0.0025	 mol,	 0.23	 g)	 in	 dry	
dimethylformamide	(20	cm3)	in	the	presence	of	anhydrous	zinc	
chloride	 (1	 g),	was	 refluxed	 for	 8	 h.	 The	mixture	was	 cooled,	
and	 poured	 into	 crushed	 ice.	 The	 resulting	 precipitate	 was	
filtered	 off	 and	 crystallized	 from	 dry	 benzene	 to	 give	 beige	
crystals	in	45%	yield.	M.p.:	278–280	°C	(Dec.).	
	

Method	B:	A	mixture	of	bis‐(4‐formylpyrazolyl)phosphine	
oxide	4a	 (0.001	mol,	0.39	g),	 freshly	distillated	aniline	 (0.002	
mol,	 0.186	 g),	 thioglycolic	 acid	 (0.0025	 mol,	 0.23	 g)	 and	
anhydrous	zinc	chloride	(1	g),	was	heated	on	water	bath	for	4	
h.	 The	mixture	was	 cooled,	 and	 poured	 into	 crushed	 ice.	 The	
resulting	precipitate	was	 filtered	off	and	crystallized	 from	dry	
benzene	 to	give	beige	 crystals	 in	66%	yield.	M.p.:	277–279	 °C	
(Dec.).	 IR	 (KBr,	 max,	 cm‐1):	 3059	 (C–Harom),	 2877	 (C–Haliph),	
2500	(br,	P–H),	1658	(C=O),	1595	(C=N),	1308	(P=O).	1H	NMR	
(DMSO,	 δ	 ppm):	 4.46	 (s,	 4H,	 CH2),	 5.91	 (s,	 2H,	 C2–Hthiazolidine),	
7.28(d,	1H,	 JPH=454	Hz,	P–H),	7.07–8.23	(m,	20H,	Ph−H),	8.64,	
8.53	 (ss,	 2H,	 C5–Hpyrazole).	 Anal.	 Calcd.	 for	 C36H29N6O3PS2	
(688.77):	C,	62.78;	H,	4.24;	N,	12.20;	S,	9.31.	Found:	C,	62.38;	H,	
3.94;	N,	11.84;	S,	9.03%.	
	
2.2.8.	Bis{diethyl[phenylamino(3‐phenyl‐1H‐pyrazol‐4‐
yl)methyl]phosphonate}phosphine	oxide	(11)	
	

Method	A:	A	mixture	of	bis‐Schiff's	base	9	(0.001	mol,	0.54	
g)	 and	 diethyl	 phosphite	 (5	 cm3)	 in	 the	 presence	 of	 boron	
trifluorideetherate	(0.2	cm3),	was	heated	on	water	bath	for	4	h.	
The	 excess	 of	 diethyl	 phosphite	 was	 removed	 under	 reduced	
pressure.	Some	water	(5	cm3)	was	added	to	the	residue	to	give	
yellow	precipitate	which	was	filtered	off	and	crystallized	from	
dilute	 ethanol	 to	 give	 pale	 yellow	 crystals	 in	 68%	 yield.	M.p.:	
99–100	°C.	
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Method	B:	A	mixture	of	bis‐(4‐formylpyrazolyl)phosphine	
oxide	4a	 (0.001	mol,	0.39	g),	 freshly	distillated	aniline	 (0.002	
mol,	 0.186	 g),	 diethyl	 phosphite	 (5	 cm3),	 and	 boron	
trifluorideetherate	(0.2	cm3),	was	heated	on	water	bath	for	4	h.	
The	 excess	 of	 diethyl	 phosphite	was	 removed	 under	 reduced	
pressure.	Some	water	(5	cm3)	was	added	to	the	residue	to	give	
yellow	precipitate	which	was	filtered	off	and	crystallized	from	
dilute	 ethanol	 to	 give	 pale	 yellow	 crystals	 in	 72%	 yield.	M.p.:	
100–101	 °C.	 IR	 (KBr,	 max,	 cm‐1):	 3300	 (NH),	 3057	 (C–Harom),	
2983,	 2906	 (C–Haliph),	 2583	 (P–H),	 1599	 (C=N),	 1536	 (C=C),	
1287,	 1233	 (2	 P=O),	 1049	 (P–O–C).	 1H	NMR	 (DMSO,	 δ	 ppm):	
1.07	(t,	12H,	J=6.8	Hz,CH3CH2O),	3.96	(q,	8H,	J=6.8	Hz,CH3CH2O),	
4.91	 (d,	 2H,	 JPCH=18.4	 Hz,	 CH–P),	 6.60–7.97	 (m,	 20H,	 Ph−H),	
7.40	 (d,	 1H,	 JPH=498	 Hz,	 P–H),	 8.25	 (s,	 2H,	 NH	 exchangeable	
with	 D2O),	 8.65	 (s,	 2H,	 C5–Hpyrazole).	 13C	 NMR	 (DMSO,	 δ	 ppm):	
16.0	 (J=6.9	 Hz,	 CH3CH2O),	 46.1	 (d,	 JPC=161	 Hz,	 CH–P),	 62.7	
(J=6.9	 Hz,	 CH3CH2O),	 118.0	 (C4	 pyrazole),	 126.5–139.0	 (Phenyl	
carbons),	 146.7	 (C5pyrazole),	 151.2	 (C3pyrazole).	 31P	NMR(DMSO,	 δ	
ppm):	 8.2	 (O=P–H),	 21.5	 (EtO–P=O).	 Anal.	 Calcd.	 for	
C40H47N6O7P3	 (816.78):	 C,	 58.82;	 H,	 5.80;	 N,	 10.29.	 Found:	 C,	
58.61;	H,	5.42;	N,	9.79%.	
	
2.2.9.	Bis{3‐phenyl‐4‐(1‐oxo‐1‐phenylprop‐2‐en‐3‐yl)‐1H‐
pyrazol‐1‐yl}phosphine	oxide	(12)	
	

A	 mixture	 of	 bis‐(4‐formylpyrazolyl)phosphine	 oxide	 4a	
(0.001	 mol,	 0.39	 g)	 and	 phenacyltriphenylphosphonium	
bromide	 (0.002	 mol,	 0.92	 g)	 in	 dry	 dioxane	 (20	 cm3)	 in	 the	
presence	 of	 few	 drops	 of	 triethylamine	 was	 refluxed	 for	 6	 h.	
The	reaction	mixture	was	cooled;	the	resulting	precipitate	was	
filtered	off	 and	crystallized	 from	dilute	dimethylformamide	 to	
give	 pale	 yellow	 crystals	 in	 71%	 yield.	 M.p.:	 128−130	 oC.	 IR	
(KBr,	max,	 cm‐1):	3052	(C–Harom),	2500	(br,	P–H),	1687	 (C=O),	
1599	(CH=CH),	1562	(C=N),	1529	(C=C),	1215	(P=O).	1H	NMR	
(DMSO,	δ	ppm):	7.41–7.73	(m,	16H,	Ph−H),	7.78	(d,	2H,	J=13.8	
Hz,	CH=CH–C=O),	7.83–7.96	(m,	4H,	Ph−H),	8.09	(d,	2H,	J=13.8	
Hz,	CH=CH–C=O),	8.36	(d,	1H,	JPH=638	Hz,	P–H),	8.62	(s,	2H,	C5–
Hpyrazole).	 13C	NMR	(DMSO,	δ	ppm):	118.7	(CH=CH–C=O),	121.6	
(C4pyrazole),	127.9–137.0	(phenyl	carbons),	138.0	(CH=CH–C=O),	
139.0	 (C5pyrazole),	 153.0	 (C3pyrazole),	 188.0	 (C=O).	 MS	 (m/e,	 %):	
414	 (M+–2Ph,	 –CO,	 0.1%),	 363	 (0.3),	 293	 (14),	 231	 (3),	 168	
(14),	149	(86),	94	(35),	85	(71),	77	(2),	71	(55),	57	(100).	Anal.	
Calcd.	 for	 C36H27N4O3P	 (594.59):	 C,	 72.72;	 H,	 4.58;	 N,	 9.42.	
Found:	C,	72.35;	H,	4.12;	N,	9.53%.	
	
2.2.10.	Bis{3‐phenyl‐4‐(4‐phenyl‐2‐thienyl)‐1H‐pyrazol‐1‐
yl}phosphine	oxide	(14)	
	

A	 mixture	 of	 bis‐chalcone	 12	 (0.001	 mol,	 0.59	 g)	 and	
thioglycolic	acid	(0.0025	mol,	0.23	g)	in	dry	dioxane	(20	cm3)	in	
the	 presence	 of	 anhydrous	 potassium	 carbonate	 (1	 g),	 was	
refluxed	for	8	h.	The	reaction	mixture	was	cooled;	the	resulting	
precipitate	 was	 filtered	 off,	 washed	 with	water	 several	 times	
and	 crystallized	 from	 ethanol	 to	 give	 pale	 yellow	 crystals	 in	
67%	 yield.	 M.p.:	 228–230	 oC.	 IR	 (KBr,	 max,	 cm‐1):	 3057	 (C–
Harom),	 2363	 (br,	 P–H),	 1614	 (C=Cthiophene),	 1597	 (C=N),	 1533	
(C=C),	1209	(P=O).	 1H	NMR	(DMSO,	δ	ppm):	6.60	(t,	2H,	 J=9.2	
Hz,	C3–Hthiophene),	7.08	(d,	2H,	J=8.6	Hz,	C5–Hthiophene),	7.64	(d,	1H,	
JPH=	 594	Hz,P–H),	 8.53,	 8.68	 (ss,	 2H,	 C5–Hpyrazole),	 7.75	 (d,	 2H,	
J=6.2	Hz,	Ph–H),	8.25	(d,	1H,	J=8.2	Hz,	Ph–H),	8.02	(d,	2H,	J=7.8	
Hz,	Ph–H),	7.36–7.49	(m,	14H,Ph–H),	7.53	(d,	1H,	J=6.6	Hz,	Ph–
H).	Anal.	Calcd.	for	C38H27N4OPS2	(650.75):	C,	70.14;	H,	4.18;	N,	
8.61;	S,	9.85.	Found:	C,	70.32;	H,	3.93;	N,	8.42;	S,	9.48	%.	
	
2.2.11.	Bis{4‐[(2‐ethoxy‐2‐oxido‐5‐phenyl‐2,3‐dihydro‐1,2‐
oxaphosphol‐3‐yl]‐3‐phenyl‐1H‐pyrazol‐1‐yl}phosphine	
oxide	(16)	
	

A	mixture	of	bis‐chalcone	12	(0.001	mol,	0.59	g)	and	diethyl	
phosphite	(5	cm3)	in	the	presence	of	boron	trifluorideetherate	
(0.2	 cm3),	 was	 heated	 on	 water	 bath	 for	 8	 h.	 The	 excess	 of	

diethyl	 phosphite	 was	 removed	 under	 reduced	 pressure.	 The	
formed	 precipitate	 was	 filtered	 off	 and	 crystallized	 from	
ethanol	to	give	yellow	crystals	in	82%	yield.	M.p.:	189−191	oC.	
IR	(KBr,	max,	cm‐1):	3059	(C−Harom),	2916,	2895	(C−Haliph),	2613	
(br,	 P–H),	 1592	 (C=N),	 1531(C=C),	 1286,	 1211	 (P=O),	 1064,	
1015	 (P–O–C).	 1H	NMR	 (DMSO,	 δ	 ppm):	 1.34	 (t,	 6H,	 J=7.2	Hz,	
CH3CH2O),	4.35	(q,	4H,	J=7.2	Hz,	CH3CH2O),	6.70	(d,	2H,	J=28	Hz,	
CH–P),	7.15	(d,	2H,	J=5	Hz,			C4–Hoxaphosphole),	7.73	(d,	1H,	JPH=612	
Hz,	P–H),	7.43–8.33	(m,	20H,	Ph−H),	8.60	(s,	2H,	C5−Hpyrazole).13C	
NMR	 (DMSO,	 δ	 ppm):	 13.9	 (CH3CH2O),	 54.5	 (d,	 J=168	 Hz,	
C3oxaphosphole),	 62.0	 (CH3CH2O),	 119.6	 (C4oxaphosphole),	 120.6	
(C4pyrazole),	 126.6–139.1	 (phenyl	 carbons),	 145.4	 (C5pyrazole),	
154.6	(C3	pyrazole),	161.8	(C5oxaphosphole).	MS	(m/e,	%):	778.66	(M+,	
not	detected),	431	(0.1),	311	(2),	245	(3),	149	(72),	97	(9),	71	
(19),	57	(100).	Anal.	Calcd.	for	C40H37N4O7P3	(778.66):	C,	61.70;	
H,	4.79;	N,	7.20.	Found:	C,	61.29;	H,	4.44;	N,	6.79%.	
	
2.2.11.	Bis{3‐(4`‐biphenyl)‐1H‐pyrazole‐4‐carboxaldehyde	
N4‐phenylthiosemicarbazone}phosphine	oxide	(18)	
	

A	 mixture	 of	 bis(4‐formylpyrazolyl)phosphine	 oxide	 4b	
(0.001	mol,	0.54	g)	and	4‐phenylthiosemicarbazide	(17)	(0.002	
mol,	0.33	g)	in	absolute	ethanol	(10	cm3)	was	refluxed	for	4	h.	
The	 product	 was	 precipitated	 on	 heating,	 filtered	 off	 and	
crystallized	 from	 dimethylformamide	 to	 give	 orange	 yellow	
crystals	 in	 45%	 yield.	 M.p.:	 214–216	 oC.	 IR	 (KBr,	 max,	 cm‐1):	
3303,	3127	(2NH),	3055,	3029	(C–Harom),	2359	(br,	P–H),	1621	
(C=Nexocyclic),	1596	(C=Nendocyclic),	1539	(C=C),	1260	(P=O),	1193	
(C=S).	 1H	NMR	(DMSO,	δ	ppm):	7.02	(d,	1H,	 JPH=532	Hz,	P–H),	
6.97–7.79	(m,	28H,	Ar−H),	8.40	(s,	2H,	C5–Hpyrazole),	8.80	(s,	2H,	
CH=N),	9.85	 (s,	 2H,	NH	 exchangeable	with	D2O),	 11.71	 (s,	 2H,	
NH	 exchangeable	 with	 D2O).	 MS	 (m/e,	 %):	 840	 (M+,	 not	
detected),	761	(M+−Ph,	−2H,	5%),	701	(5),	570	(5),	413	(5),	259	
(5),	 153	 (10),	 135	 (36),	 93	 (97),	 77	 (76),	 66	 (56),	 51	 (100).	
Anal.	 Calcd.	 for	 C46H37N10OPS2	 (840.98):	 C,	 65.70;	 H,	 4.43;	 N,	
16.66;	S,	7.63.	Found:	C,	65.32;	H,	4.21;	N,	16.31;	S,	7.30%.	
	
2.2.12.	Bis{3‐(4`‐biphenyl)‐4‐[(4‐acetyl‐2‐(N‐phenyl	
acetamido)‐4,5‐dihydro‐1,3,4‐thiadiazol‐5‐yl]‐1H‐pyrazol‐1‐
yl}phosphine	oxide	(20)	
	

A	solution	of	bis‐thiosemicarbazone	18	(0.001	mol,	0.84	g)	
in	acetic	anhydride	 (10	cm3)	was	heated	under	 reflux	 for	4	h.	
The	 excess	 of	 solvent	 was	 removed	 under	 reduced	 pressure	
and	the	residue	was	poured	on	ice	and	stirred	for	10	minutes.	
The	 separated	 solid	 was	 filtered	 off	 and	 crystallized	 from	
ethanol	to	give	deep	green	crystals	in	56%	yield.	M.p.:	124–126	
oC.	 IR	 (KBr,	max,	 cm‐1):	 3056,	 3028	 (C–Harom),	 2930	 (C–Haliph),	
2361	(P–H),	1688	(C=O),	1667	(C=O),	1597	(C=N),	1540	(C=C),	
1297	(P=O).	1H	NMR	(DMSO,	δ	ppm):	1.81	(s,	6H,	CH3),	1.88	(s,	
6H,	 CH3),	 6.30	 (d,	 1H,	 JPH=327	 Hz,	 P–H),	 6.54	 (brs,	 2H,	 C5–
Hthiadiazole),	 7.35–7.90	 (m,	 28H,	 Ar−H),	 8.18	 (s,	 2H,	 C5–Hpyrazole).	
13C	 NMR	 (DMSO,	 δ	 ppm):	 21.0	 (CH3),	 23.1	 (CH3),	 60.4	
(C5thiadiazole),	 121.3	 (C4pyrazole),	 126.4–140.8	 (aromatic	 carbons),	
144.5	 (C5pyrazole),	 148.0	 (C3pyrazole),	 153.0	 (C2thiadiazole),	 168.0	
(C=O),	170.1	 (C=O).	Anal.	Calcd.	 for	C54H45N10O5PS2	 (1009.13):	
C,	64.27;	H,	4.49;	N,	13.88;	S,	6.36.	Found:	C,	64.22;	H,	4.31;	N,	
13.28;	S,	6.01	%.	
	
2.2.13.	Bis{3‐(4`‐biphenyl)‐4‐[2‐ethoxy‐6‐phenylamino‐2‐
oxido‐3,4‐dihydro‐2H‐1,4,5,2‐thiadiazaphosphinin‐3‐yl]‐1H‐
pyrazol‐1‐yl	]}phosphine	oxide	(22)	
	

A	mixture	of	bis–thiosemicarbazone	18	(0.001	mol,	0.84	g)	
and	 diethyl	 phosphite	 (8	 cm3)	 in	 the	 presence	 of	 boron	
trifluorideetherate	(0.2	cm3),	was	heated	on	water	bath	for	10	
h.	The	excess	of	diethyl	phosphite	was	removed	under	reduced	
pressure.	 The	 residue	 was	 treated	 with	 ethyl	 acetate	 to	 give	
solid	which	was	filtered	off	and	crystallized	from	ethyl	acetate	
to	give	beige	crystals	 in	51%	yield.	M.p.:	158–160	oC.	 IR	 (KBr,	
max,	 cm‐1):	3404,	3276	 (br,	2NH),	3058	 (C–Harom),	2978,	2850	
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(C–Haliph),	 2493	 (P–H),	 1600	 (C=N),	 1543	 (C=C),	 1228,	 1248	
(2P=O),	 1046	 (P–O–C).	 1H	 NMR	 (DMSO,	 δ	 ppm):	 1.16	 (t,	 6H,	
J=8.2	 Hz,	 CH3CH2O),	 3.96	 (q,	 4H,	 J=8.2	 Hz,	 CH3CH2O),	 4.90	 (d,	
2H,	 J=20.4	Hz,	 C3–Hthiadiazaphosphinine),	 6.59–7.79	 (m,	 28H,	Ar−H),	
7.08	(d,	1H,	JPH=532.4	Hz,	P–H),	8.65	(s,	2H,	C5–Hpyrazole),	9.83	(s,	
2H,	NH	exchangeable	with	D2O),	11.69	(s,	2H,	NH	exchangeable	
with	D2O).	 31P	NMR	 (DMSO,	 δ	 ppm):	 6.6	 (O=P–H),	 28.0	 (EtO–
P=O).	 Anal.	 Calcd.	 for	 C50H47N10O5P3S2	 (1025.05):	 C,	 58.59;	 H,	
4.62;	 N,	 13.66;	 S,	 6.26.	 Found:	 C,	 58.32;	 H,	 4.34;	 N,	 13.44;	 S,	
5.94%.	
	
3.	Results	and	discussion	
	
3.1.	Synthesis	
	

The	 key	 intermediate	 in	 the	 present	 work	 is	
phosphonicdihydrazide	(1),	which	was	obtained	from	fusion	of	
diethyl	 phosphite	 with	 two	 equivalent	 amounts	 of	 hydrazine	
hydrate	 at	 70−80	 oC	 [23]	 (Scheme	 1).	 Condensation	 of	
phosphonicdihydrazide	(1)	with	acetophenone	derivatives	2a‐
d	 gave	 the	 corresponding	 phosphonicdihydrazones	 3a‐d	
(Scheme	 1).	 These	 reactions	 were	 carried	 out	 in	 absolute	
ethanol	under	mild	conditions,	and	the	products	were	isolated	
as	yellow	crystalline	substances	in	46‐71%	yields.	Structures	of	
3a‐d	 were	 deduced	 from	 their	 spectroscopic	 measurements.	
The	 1H	 NMR	 spectra	 of	 compounds	 3a‐d	 recorded	 signals	 of	
methyl	protons	in	the	region		2.07−2.28	ppm.	Also,	the	signals	
of	 NH	 and	 H−P=O	 protons	 were	 displaced,	 presumably	 as	 a	
result	 of	 rapid	 protons	 exchange	 in	 two	 types	 of	 tautomeric	
equilibriums.	 The	 first	 type	 is	 tautomeric	 amide‐imide	
equilibrium	(i,	ii,	iii),	while	in	the	second	type,	hydrophosphoryl	
unit	 in	 solutions	 easily	 undergoes	 the	 tautomeric	 transition,	
providing	it	a	unique	combination	of	properties	of	pentavalent	
(λ5,	 σ4	 form)	 and	 trivalent	 (λ3,	 σ3	 form)	 phosphorus	 atom	
(phosphonate–phosphite	i	and	iv)	(Scheme	2)	[24‐27].	Also,	the	
13C	NMR	spectrum	of	compound	3a	displayed	the	carbon	atoms	
of	 methyl	 and	 C=N	 groups	 at	 	 14.7	 and	 157.2	 ppm,	
respectively.	 Furthermore,	 compound	3c	 exhibited	 a	 signal	 in	
its	 31P	NMR	spectrum	at		 18.4	ppm	due	 to	 the	presence	of	 a	
hydro‐phosphoryl	 unit	 [28].	 The	 mass	 spectral	 data	 of	 3a‐d	
were	in	accordance	with	their	molecular	formulas.	
	

Scheme	2	
	

A	 convenient	 procedure	 for	 the	 synthesis	 of	 4‐formyl‐
pyrazole	derivatives	is	based	on	the	Vilsmeier‐Haack	reactions	
with	methyl	ketone	aryl	hydrazones	[29‐32].	Thus,	application	
of	Vilsmeier‐Haack	reaction	on	phosphonic‐	dihydrazones	3a,b	
afforded	bis{4‐formyl‐3‐aryl‐1H‐pyrazol‐1‐yl}phosphine	oxides	
(4a,b)	(Scheme	3).	The	proposed	mechanism	for	the	formation	
of	4a,b	 involved	 double	 formylation	 at	 each	methyl	 group	 of	
phosphonicdihydrazones	3a,b,	followed	by	self‐cyclization	then	
hydrolysis	in	basic	medium	(Scheme	4)	[33].	The	IR	spectra	of	
compounds	4a,b	showed	two	strong	absorption	bands	at	1678‐
1671	 and	 1284‐1241	 cm‐1	 assignable	 to	 CHO	 and	 P=O	
functional	 groups,	 respectively.	 The	 1H	 NMR	 spectra	 of	
compounds	4a,b	exhibited	singlet	signals	at		9.95−10.00	ppm	
for	the	formyl	protons	and	the	protons	of	the	pyrazole	rings	in	
position	5	 resonated	at		 8.69−8.84	ppm.	 In	 addition,	doublet	

signals	 were	 present	 at	 	 7.45−7.54	 ppm	 (JPH=	 682–733	 Hz)	
corresponding	to	proton	of	H−P=O	units.	Furthermore,	the	13C	
NMR	spectrum	of	4a	 displayed	 two	 characteristic	 signals	 at		
184.6	and	144.5	ppm	corresponding	to	aldehydic	carbon	atom	
and	C−5	of	 the	pyrazole	rings,	 respectively.	Also,	 the	 31P	NMR	
spectrum	of	4b	showed	a	signal	at		7.71	ppm.	Mass	spectra	of	
4a,b	 revealed	 the	molecular	 ion	peaks	at	m/e	 389	 (M−H)	and	
390	(M−C12H8),	respectively.	
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Bis(4‐formylpyrazolyl)phosphine	 oxides	 4a,b	 were	
oxidized	 in	basic	medium	by	potassium	permanganate	 to	give	
the	 corresponding	 bis(4‐carboxypyrazolyl)phosphine	 oxides	
5a,b,	 respectively	 (Scheme	 5).	 The	 oxidation	 reaction	 took	
place	 only	 on	 the	 formyl	 groups.	 This	 may	 be	 due	 to	 the	
phosphorus	 centres	 in	 4a,b	 are	 less	 susceptible	 to	
electrophiles,	 and	 ultimately	 more	 stable	 and	 resistant	 to	
spontaneous	 oxidation.	 Structures	 of	 products	 5a,b	 were	
established	 on	 the	 basis	 of	 their	 elemental	 and	 spectral	 data	
(See	Experimental	section).	

The	 present	 work	 was	 also	 extended	 to	 apply	 the	
Vilsmeier‐Haack	 reaction	 on	 phosphonicdihydrazones	 3c,d	
which	 contain	 active	 functional	 groups	 in	ortho	 positions	 that	
led	 to	 new	 fused	 pyrazole	 systems.	 Thus,	 when	
phosphonicdihydrazone	3c	was	treated	with	Vilsmeier	reagent	
afforded	 a	 red	 crystalline	 product	 namely,	 bis{2,4‐
dihydrochromeno[4,3‐c]pyrazol‐4‐hydroxy‐2‐yl}phosphine	
oxide	 (6).	 Formation	 of	 compound	 6	 involved	 double	
formylation	 at	 the	 methyl	 groups	 of	 3c,	 followed	 by	
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nucleophilic	 attack	of	NH	groups	at	–CH=N+(CH3)2	moieties	 to	
eliminate	 two	 molecules	 of	 dimethylamine.	 Another	 nucleo‐
philic	attack	took	place	by	phenolic	OH	groups	at	–CH=N+(CH3)2	
moieties,	 followed	 by	 hydrolysis	 to	 give	 the	 final	 product	
(Scheme	 6).	 The	 spectral	 data	 of	 6	 recommended	 the	 cyclic	
structure	 as	 its	 1H	 NMR	 spectrum	 displayed	 a	 broad	 singlet	
(D2O	exchangeable)	at		3.72	ppm	due	to	alcoholic	OH	protons	
and	 singlet	 signal	 at	 	 6.53	 ppm	 indicated	 to	 H–2	 proton	 of	
hydrochromene	moieties.	The	protons	of	 the	 formed	pyrazole	
rings	were	 also	 observed	 in	 1H	NMR	 spectrum	at		 7.96	 ppm	
while	proton	of	hydrophosphoryl	unit	at		7.44	ppm	(JPH	=	423	
Hz),	respectively.	Also,	its	IR	spectrum	showed	a	broad	band	at	
3135	cm‐1	due	to	alcoholic	OH	group.	The	oxidation	reaction	of	
compound	 6	 with	 selenium	 dioxide	 in	 dry	 dioxane	 yielded	
bis{chromeno[4,3‐c]pyrazol‐4‐oxo‐2‐yl}phosphine	 oxide	 (7)	
(Scheme	7).	The	absorption	band	of	carbonyl	groupappeared	at	
1652	 cm‐1	 [34,35]	 in	 the	 IR	 spectrum	 of	7.	 Also,	 its	 structure	
was	confirmed	from	1H	NMR	spectrum	by	disappearance	of	OH	
and	C2–H	protons	of	compound	6.	
	

 
	

Scheme	5	
	
	

 
	

Scheme	6	
	
	

 
	

Scheme	7	

Consequently,	 the	 effect	 of	 Vilsmeier	 reagent	 on	 the	
phosphonicdihydrazone	 3d	 afforded	 bis{chromeno[2,3‐g]	
indazol‐11‐oxo‐2‐yl}phosphine	 oxide	 (8)	 in	 moderate	 yield	
(Scheme	8).	This	 transformation	 involved	monoformylation	at	
each	methyl	group	of	3d,	 followed	by	 two	steps	of	 cyclization	
process.	 The	 first	 step	 is	 nucleophilic	 attack	 of	 NH	 groups	 at							
–CH=N+(CH3)2	 to	 eliminate	 two	 molecules	 of	 dimethylamine.	
The	 second	 step	 is	 nucleophilic	 attack	 of	 the	 C–4	 of	 formed	
pyrazole	rings	at	–CH=N+(CH3)2	of	chromone	moieties	to	cyclize	
into	 benzoid	 system	 (Scheme	 8)	 [36].	 The	 IR	 spectrum	 of	
product	 8	 showed	 three	 characteristic	 absorption	 bands	 at	
1646,	 1596	 and	 1569	 cm‐1	 assignable	 to	 C=O,	 C=N	 and	 C=C	
functional	groups,	respectively.	Moreover,	its	1H	NMR	spectrum	
revealed	a	singlet	signal	of	C5–H	of	pyrazole	rings	at		7.89	ppm	
while	 the	 aromatic	 protons	 at	 	 7.05–7.80	 ppm	 as	 multiplet	
signals.	The	mass	spectrum	of	8	showed	a	molecular	 ion	peak	
at	m/e	518	with	a	base	peak	at	m/e	384.	
	

 
	

Scheme	8	
	

Sulfur	and	phosphorus	containing	heterocyclic	compounds	
play	an	important	role	in	organic	chemistry	and	attract	strong	
interest	due	to	diversity	of	their	chemical	transformations	and	
broad	spectrum	of	biological	 activity	 [37,38].	 In	 this	 research,	
bis(4‐formylpyrazolyl)phosphine	oxides	4a,b	 turned	out	 to	be	
fairly	 reactive	 compounds,	 and	 they	 readily	 condensed	 with	
nitrogen	 and	 carbon	 nucleophiles	 to	 give	 the	 corresponding	
condensation	 products.	 The	 reactivity	 of	 these	 condensation	
products	 towards	 sulfur	 and	 phosphorus	 reagents	 was	
investigated.	Thus,	 treatment	of	 compound	4a	with	aniline,	 in	
refluxing	 ethanol,	 afforded	 yellow	 crystals	 of	 bis{3‐phenyl‐4‐
[(phenylimino)methyl]‐1H‐pyrazol‐1‐yl}phosphine	 oxide	 (9)	
(Scheme	9).	The	structure	of	bis‐Schiff's	base	9	was	confirmed	
by	 both	 spectral	 and	 elemental	 analysis	 (See	 Experimental	
section).		

When	bis‐Schiff's	base	9	was	treated	with	thioglycolic	acid,	
in	 refluxing	 dry	DMF	 containing	 anhydrous	 zinc	 chloride	 as	 a	
catalyst,	afforded	a	single	product	identified	as	bis{3‐phenyl‐4‐
[3‐phenyl‐4‐oxo‐1,3‐thiazolidin‐2‐yl]‐1H‐pyrazol‐1‐yl}phos‐
phine	 oxide	 (10).	 The	 latter	 compound	 was	 also	 obtained	
authentically	 in	 one‐pot	 (four	 components)	 from	 the	 direct	
reaction	of	4a	with	aniline	and	thioglycolic	acid	in	the	presence	
of	anhydrous	zinc	chloride	(Scheme	9).	The	IR	spectrum	of	10	
showed	the	carbonyl	groups	of	thiazolidinone	moieties	at	1658	
cm‐1.	Also,	its	1H	NMR	spectrum	exhibited	two	singlet	signals	at	
	 5.91	 and	 4.46	 ppm	 due	 to	 C2–H	 and	 CH2	 of	 thiazolidinone	
protons,	respectively,	while	the	proton	of	H–P=O	appeared	as	a	
doublet	signal	at		7.28	ppm	(JPH=	454	Hz).	
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Scheme	9	
	

Also,	 when	 bis‐Schiff's	 base	 9	 was	 treated	 with	 diethyl	
phosphite	 in	 the	 presence	 of	 BF3.Et2O	 as	 a	 catalyst	 at	 80	 oC	
under	Pudovik	reaction	condition	 [39],	produced	a	novel	 type	
of	 bis(‐aminophosphonate)	 structure	 11,	 which	 was	 also	
obtainedauthenticallyin	 high	 yield	 in	 one‐pot	 (four	 compo‐
nents)	 from	 the	direct	 reaction	of	4a	with	 aniline	 and	diethyl	
phosphite	 in	 the	 presence	 of	 BF3.Et2O	 at	 80	 oC	 under	
Kabachnik‐Fields	 reaction	 conditions	 [40]	 (Scheme	 9).	 The	
absorption	 bands	 of	 NH	 and	 two	 P=O	 groups	 in	 IR	 spectrum	
appeared	at	3300,	1287	and	1233	cm‐1,	respectively.	Also,	 the	
1H	NMR	spectrum	of	11	exhibited	triplet	and	quartet	at		1.07	
and	3.96	(J=	6.8	Hz)	corresponding	to	ethoxy	protons.	Because	
of	 coupling	 with	 phosphorus	 atom,	 the	 proton	 of	 CH–P	
exhibited	 a	 doublet	 signal	 at	 	 4.91	 ppm	 (JPCH=	 18.4	 Hz).	
Moreover,	 its	 13C	NMR	 spectrum	displayed	 the	 ethoxy	 carbon	
atoms	at		16.0	and	62.7	ppm,	while	the	carbon	atom	of	CH–P	at	
	 46.1	 ppm	 (JPC=	 161	 Hz).	 The	 presence	 of	 only	 one	 signal	
observed	for	CH–P	and	OCH2CH3	groups	indicated	that	only	one	
of	the	two	possible	diastereomers	(meso	and	racemic	forms)	is	
formed	 stereospecifically.	 These	 observations	 were	 further	
confirmed	by	analysis	of	the	31P	NMR	spectrum	of	11,	in	which	
only	one	sharp	phosphorus	signal	 is	observed	at		21.56	ppm	
for	 ‐aminophosphonate	 groups	 indicating	 that	 only	 one	
diastereomer	contributes	to	the	structure	[41].	

Recently,	 chalcones	 have	 been	 reported	 to	 exhibit	 a	wide	
variety	 of	 pharmacological	 effects	 [42,43].	 Thus,	 when	 bis(4‐
formylpyrazolyl)phosphine	oxide	4a	was	allowed	to	react	with	
phenacyltriphenylphosphonium	 bromide	 in	 dry	 dioxane	
containing	drops	of	triethylamine	as	basic	catalyst	under	Wittig	
reaction	conditions	[44],	afforded	a	product	identified	as	bis{3‐
phenyl‐4‐(1‐oxo‐1‐phenylprop‐2‐en‐3‐yl)‐1H‐pyrazol‐1‐yl}	
phosphine	 oxide	 (12)	 (Scheme10).	 The	 IR	 spectrum	 of	 12	
showed	 one	 characteristic	 absorption	 band	 at	 1687	 cm‐1	
assignable	 to	 carbonyl	 groups.	 Also,	 its	 1H	 NMR	 spectrum	
exhibited	two	doublet	signals	at		7.78	and	8.09	ppm	(J=	13.8	
Hz)	due	 to	 olefinic	 protons	H	 and	H,	 respectively,	while	 the	
carbon	atoms	C	and	Cappeared	at		118.7	and	138.0	ppm	in	
its	13C	NMR	spectrum	[45].	Moreover,	the	mass	spectrum	of	12	
recorded	 a	 highest	 ion	 peak	 at	m/e	 414	 after	 losing	 diphenyl	
moieties	and	carbon	monoxide	with	a	base	peak	at	m/e	57.	

Bis‐chalcone	12	 is	seemed	to	be	a	 logical	starting	material	
for	 synthesis	 of	 sulfur	 and	 phosphorus	 heterocyclesvia	 its	
reaction	 with	 sulfur	 and	 phosphorus	 nucleophiles.	 Thus,	
reaction	of	bis‐chalcone	12	with	thioglycolic	acid	in	dry	dioxane	
containing	 anhydrous	 potassium	 carbonate	 furnished	
exclusively	and	reasonable	good	yield	a	product	 that	could	be	
formulated	as	bis{3‐phenyl‐4‐(4‐phenyl‐2‐thienyl)‐1H‐pyrazol‐
1‐yl}phosphine	oxide	(14)	(Scheme	11).	A	plausible	mechanism	

involved	 an	 initial	Michael	 type	 addition	 of	 the	 thiol	 group	 of	
thioglycolic	acid	to	the	activated	double	bond	in	compound	12,	
followed	by	 cyclocondensation	between	active	methylene	and	
carbonyl	 group	 to	 give	 the	 nonisolable	 intermediate	 13.	
Decarboxylation	 and	 auto‐oxidation	 of	 the	 intermediate	 13	
produced	 the	 final	 product	 14	 (Scheme	 11).	 The	 chemical	
structure	 of	 14	 was	 elucidated	 on	 the	 basis	 of	 spectral	
techniques.	 Its	 IR	 spectrum	 did	 not	 record	 any	 carbonyl	 or	
hydroxyl	groups	which	confirmed	the	decarboxylation	process.	
Also,	its	1HNMR	spectrum	displayed	resonated	signals	at		6.60	
and	 7.08	 ppm	 due	 to	 the	 two	 protons	 C3–H	 and	 C5–H	 of	
thiophene	moieties,	respectively,	in	addition	to	a	doublet	signal	
at	 	 7.64	 ppm	 (JPH=594	 Hz)	 correspond	 to	 proton	 of	 H–P=O	
unit.	
	

 
	

Scheme	10	
	

 
	

Scheme	11	
	

Moreover,	 it	 has	 been	 found	 that	 the	 one‐pot	 reaction	 of	
bis‐chalcone	 12	 with	 diethyl	 phosphite	 in	 the	 presence	 of	
BF3.Et2O	 at	 80	 oC	 for	 8	 hours,	 afforded	bis{[2‐ethoxy‐2‐oxo‐5‐
phenyl‐2,3‐dihydro‐1,2‐oxaphosphol‐3‐yl]‐3‐phenyl‐1H‐pyra‐	
zol‐1‐yl}phosphine	 oxide	 (16)	 (Scheme	 12).	 The	 proposed	
mechanism	 involved	 an	 initial	 Michael	 type	 addition	 of	
phosphorus	atom	of	diethyl	phosphite	 to	 the	activated	double	
bond	in	compound	12	to	give	the	nonisolable	intermediate	15,	
which	 underwent	 cyclization	 by	 elimination	 of	 ethanol	
molecules	to	give	16	(Scheme	12)	[46].	The	1H	NMR	spectrum	
of	16	 displayed	 two	doublet	 signals	 at		 6.70	ppm	(J=	28	Hz)	
and	7.15	ppm	(J=	5	Hz)	assignable	to	protons	of	CH–P	and	C4–H,	
respectively,	of	oxaphosphole	rings,	in	addition	to	the	presence	
of	the	ethoxy	protons	as	triplet	and	quartet	at		1.34	and	4.35	
ppm	(J=	7.2	Hz),	 respectively.	Also,	 its	 IR	spectrum	confirmed	
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the	 disappearance	 of	 carbonyl	 group	 of	 compound	 12	 which	
support	the	cyclized	state.	
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Scheme	12	
	

Reaction	of	bis(4‐formylpyrazolyl)phosphine	oxide	4b	with	
4‐phenylthiosemicarbazide	(17)	in	refluxing	ethanol	produced	
the	corresponding	bis‐thiosemicarbazone	18	in	moderate	yield	
(Scheme	13).	The	structure	of	18	was	established	on	the	basis	
of	 its	 elemental	 analysis,	 IR,	 1H	 NMR	 and	mass	 spectral	 data	
(See	Experimental	section).	
	

 
	

Scheme	13	
	
It	 is	 known	 that	 thiosemicarbazones	 could	 be	 used	 as	 a	

precursor	 for	 the	 synthesis	 of	 a	 variety	 of	 bioactive	 sulfur‐
nitrogen	 heterocyclic	 systems	 [47,48].	 Thus,	 refluxing	 of	 bis‐
thiosemicarbazone	18	in	acetic	anhydride	for	4	hours	produced	
the	 corresponding	 bis(thiadiazolylpyrazolyl)phosphine	 oxide	
20	 in	 56	 %	 yield	 (Scheme	 14).	 The	 formation	 of	 20	 may	 be	
occurred	via	acetylation	of	NHPh	moieties	and	the	azomethine‐
nitrogen	 atoms	 which	 favor	 the	 development	 of	 a	 positive	
charge	 on	 the	 carbon	 atoms	 of	 these	 groups	 to	 give	 the	
intermediate	 19,	 which	 underwent	 ring	 closure	 by	 attack	 of	
sulfur	atom	to	eliminate	two	molecules	of	acetic	acid	to	give	the	
final	 product	 20	 (Scheme	 14)	 [49].	 The	 structure	 of	 20	 was	
established	 on	 the	 basis	 of	 spectral	 data.	 Its	 IR	 spectrum	
confirmed	 the	 presence	 of	 C=O	 of	 acetyl	 groups	 at	 1688	 and	
1667	 cm‐1,	 while	 its	 1H	 NMR	 spectrum	 revealed	 two	 singlet	
signals	 at		 1.81	and	1.88	ppm	assigned	 to	protons	of	methyl	
groups,	in	addition	to	singlet	signal	at		6.54	ppm	due	to	C5–H	
of	 thiadiazole	moieties.	The	13C	NMR	spectrum	of	20	was	also	
good	 support	 for	 the	 proposed	 structure	 which	 exhibited	
characteristic	 signals	 at	 	 21.0,	 23.1,	 60.4	 and	 153.0	 ppm	
corresponding	to	carbon	atoms	of	two	methyl	groups,	C–5	and	
C–2	 of	 thiadiazole	 moieties,	 respectively.	 Also,	 the	 carbon	
atoms	of	carbonyl	groups	appeared	at		168.0	and	170.1	ppm.	

Scheme	14	
	

	
Finally,	heterocyclization	of	bis‐thiosemicarbazone	18	with	

diethyl	 phosphite	 at	 80	 oC	 in	 the	 presence	 of	 BF3.Et2O	 for	 10	
hours,	afforded	an	interesting	type	of	phosphorus	heterocycle,	
namely	 bis{3‐(4`‐biphenyl)‐4‐[2‐ethoxy‐6‐phenylamino‐2‐oxo‐
3,4‐dihydro‐2H‐1,4,5,2‐thiadiazaphosphinin‐3‐yl]‐1H‐pyrazol‐
1‐yl}phosphine	 oxide	 (22)	 (Scheme	 15).	 The	 proposed	
mechanism	 for	 formation	 of	 22	 may	 occur	 via	 addition	 of	
phosphorus	atom	of	diethyl	phosphite	to	CH=Nexocyclic	groups	to	
give	 the	 nonisolable	 intermediate	 21,	 which	 underwent	
cyclization	by	nucleophilic	attack	of	SH	groups	at	phosphonate	
groups	to	eliminate	two	molecules	of	ethanol	(Scheme	15).	The	
IR	 spectrum	 of	 22	 displayed	 characteristic	 absorption	 bands	
for	 NH	 and	 P=O	 groups	 at	 3404–3276	 and	 1248–1228	 cm‐1,	
respectively.	 Also,	 its	 1H	 NMR	 spectrum	 clearly	 indicated	 the	
presence	 of	 one	 ethyl	 ester	 group	 at	 each	 1,4,5,2‐thiadiaza‐
phosphinine	moiety	 as	 a	 triplet	 and	 quartet	 signals	 at	 	 1.16	
and	 3.96	 ppm	 (J=	 8.2	 Hz),	 respectively,	 in	 addition	 to	 one	
doublet	 and	 two	 singlet	 signals	 at	 	 4.90	 (JPH=	 20.4	Hz),	 9.83	
and	 11.69	 ppm	 assigned	 to	 CH–P	 and	 each	 two	 NHprotons,	
respectively.	 Moreover,	 its	 31P	 NMR	 spectrum	 exhibited	 two	
signals	at		 6.62	and	28.08	ppm	corresponding	 to	H–P=O	and	
EtO–P=O	groups,	respectively	[15].	
	
3.2.	In	vitro	antimicrobial	activity	
	

All	the	synthesized	compounds	were	evaluated	in	vitro	 for	
their	antibacterial	activity	against	Staphylococcus	aureus	(ATCC	
25923)	and	Streptococcus	pyogenes	(ATCC	19615)	as	examples	
of	Gram	positive	bacteria	 and	Pseudomonas	 fluorescens	 (S	97)	
and	 Pseudomonas	 phaseolicola	 (GSPB	 2828)	 as	 examples	 of	
Gram	negative	 bacteria.	 They	were	 also	 evaluated	 in	 vitro	 for	
their	 antifungal	 activity	 against	 Fusariumoxysporum	 and	
Aspergillusfumigatus	 fungal	 strains.	 Agar‐diffusion	 technique	
was	used	for	the	determination	of	the	preliminary	antibacterial	
and	 antifungal	 activity	 [50].	 The	 test	 was	 performed	 on	
medium	potato	dextrose	agars	(PDA)	which	contain	infusion	of	
200	g	potatoes,	6	g	dextrose	and	15	g	agar	 [51].	Uniform	size	
filter	paper	disks	(3	disks	per	compound)	were	impregnated	by	
equal	 volume	 (10	 µL)	 from	 the	 concentrations	 of	 1	 and	 2	
mg/cm3	 dissolved	 compounds	 in	 dimethylformamide	 (DMF)	
and	 carefully	 placed	 on	 inoculated	 agar	 surface.	 After	
incubation	for	36	h	at	27	°C	in	the	case	of	bacteria	and	for	48	h	
at	24	°C	in	the	case	of	fungi.	Cephalothin,	Chloramphenicol	and	
Cycloheximide	were	used	as	reference	drugs	at	30	µg/cm3	 for	
Gram	 positive	 bacteria,	 Gram	 negative	 bacteria	 and	 fungi,	
respectively.	 The	 results	 were	 recorded	 for	 each	 tested	
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compound	as	average	diameter	of	inhibition	zones	of	bacterial	
or	fungal	around	the	disks	in	mm	at	the	concentrations	1	and	2	
mg/	cm3	(Tables	1‐3).	
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Scheme	15	
	
Table	1.	Antibacterial	 activity	 (Gram	 positive	 bacteria)	 of	 the	 synthesized	
compounds	3‐22	at	1	and	2	mg/cm3	by	disc	diffusion	assay*.	

Compound	

Diameter	of	zone	of	inhibition	in	mm
Gram‐positive	bacteria	

S.	aureus	
(ATCC	25923)	

	
	

S.	pyogenes
(ATCC	19615)	

2	mg/cm3	 1	mg/cm3 2	mg/cm3	 1	mg/cm3

3a	 −	 −	 −	 −
3b	 −	 −	 −	 −
3c −	 −	 −	 −
3d	 −	 −	 −	 −
4a	 10	 8		 7		 −	
4b	 10		 8		 8		 5	
6	 10		 8		 7		 6	
8	 10		 7		 8		 5	
9	 8		 5		 5		 −
10	 14		 8		 18		 14	
11	 21	 12		 17		 14	
12	 8		 6		 7		 −
14	 10		 7		 11		 9	
16	 24	 17	 19	 13
18	 11		 7		 8		 5	
20	 16		 11		 20		 15	
22	 30		 24		 26		 20	
Cephalothin	 28	 30
*Less	 active:	 6‐12	mm;	moderately	 active:	 13‐19	mm;	 highly	 active:	 20‐30	
mm;	–:	No	inhibition	or	inhibition	less	than	5	mm.	
	

1)	 The	 investigation	 of	 antibacterial	 and	 antifungal	
screening	 data	 in	 Tables	 1‐3	 revealed	 that	 most	 of	 the	
synthesized	 compounds	 were	 found	 to	 possess	 various	
antimicrobial	activities	towards	all	the	microorganisms.		

2)	In	general,	most	of	the	synthesized	compounds	exhibited	
antibacterial	activity	better	than	antifungal	activity.		

3)	Most	of	 the	synthesized	compounds	showed	inhibitions	
against	 Gram‐positive	 bacteria	 more	 than	 Gram‐negative	
bacteria	 except	12	which	 showed	 also	high	 activity	 against	P.	
phaseolicola.	

4)	Most	of	the	synthesized	compounds	showed	low	activity	
at	1	mg/cm3	and	moderate	inhibition	at	2	mg/cm3.		

5)	Phosphonicdihydrazones	3a‐d	did	not	exhibit	any	effects	
against	 all	 microbial	 strains.	 Only	 compound	 3b	 showed	 a	
lower	inhibition	against	Gram‐negative	bacteria	at	2	mg/cm3.	

Table	2.	Antibacterial	 activity	 (Gram	negative	 bacteria)	 of	 the	 synthesized	
compounds	3−22	at	1	and	2	mg/cm3	by	disc	diffusion	assay*.	

Compound	

Diameter	of	zone	of	inhibition	in	mm
Gram‐negative	bacteria

P.	phaseolicola	
(GSPB	2828)	

	
	

P.	fluorescens
(S	97)	

2	mg/cm3 1	mg/cm3 2	mg/cm3 1	mg/cm3

3a − −	 −	 −
3b 6 −	 7	 −
3c − −	 −	 −
3d − −	 −	 −
4a 10 8	 8 6
4b −	 −		 6	 −
6 5	 −		 7	 −
8 9	 5		 9		 7	
9 5	 −		 6	 −
10 6	 −		 8		 −	
11 7	 6		 10	 7	
12 10	 7		 8		 6	
14 13	 10		 9	 6	
16 12 10 12	 9
18 6	 −	 7		 −
20 27	 22		 20		 12	
22 20 14		 24		 18	
Chloramphenicol 25 30
*Less	 active:	 6‐12	mm;	moderately	 active:	 13‐19	mm;	 highly	 active:	 20‐30	
mm;	–:	No	inhibition	or	inhibition	less	than	5	mm.	
	
Table	3.	Antifungal	activity	of	the	synthesized	compounds	3−22	at	1	and	2	
mg/cm3	by	disc	diffusion	assay*.	

Compound	
Diameter	of	zone	of	inhibition	in	mm

Fungi	
F.	oxysporum 	

	
A.	fumigatus

2	mg/cm3 1	mg/cm3 2	mg/cm3	 1	mg/cm3

3a − −	 −	 −
3b − −	 −	 −
3c − −	 −	 −
3d − −	 −	 −
4a − −	 − 6
4b − −	 −	 −
6 − −	 −	 −
8 − −	 −	 7	
9 − −	 − −
10 − −	 −	 −	
11 17	 10		 14	 7	
12 − −	 −	 6	
14 8	 −	 − 6	
16 11 9	 7	 9
18 − −	 −	 −
20 − −	 −	 12	
22 35	 29	 33		 18	
Cycloheximide 28 31
*Less	 active:	 6‐12	mm;	moderately	 active:	 13‐19	mm;	 highly	 active:	 20‐30	
mm;	–:	No	inhibition	or	inhibition	less	than	5	mm.	
	

6)	 The	 products	 4a,	b,	 6	 and	8	 revealed	 better	 activities	
against	bacterial	strains	in	comparison	with	the	corresponding	
phosphonicdihydrazones	3a‐d.	This	activity	may	be	attributed	
to	 the	 presence	 of	 the	 formed	 bioactive	 pyrazole	 rings	 by	
Vilsmeier‐Haack	reaction.	

7)	 Compounds	 9,	 12	 and	 18	 did	 not	 show	 noticeable	
activity	 in	 comparison	 with	 their	 corresponding	 bis(4‐
formylpyrazolyl)	phosphine	oxides	4a	and	4b	(Figures	1‐3).		

8)	Compounds	10,	14	and	20	showed	slightly	activity	more	
than	 their	 corresponding	 starting	 material	 9,	 12	 and	 18,	
respectively,	as	result	of	sulfur	atoms	effects	to	their	structures,	
which	may	cause	enhanced	activity	(Figures	1‐3).		

9)	Compounds	11,	16	and	22	showed	comparatively	good	
activity	more	than	their	corresponding	starting	material	9,	12	
and	18,	 respectively,	 which	 may	 due	 to	 addition	 phosphorus	
atoms	 to	 their	 structures	 which	may	 cause	 enhanced	 activity	
(Figures	1‐3).		

10)	Compounds	11,	16	and	22	(including	extra	phosphorus	
atom)	showed	good	inhibitions	against	all	bacterial	and	fungal	
strains,	 while	 compounds	 10,	 14	 and	 20	 (including	 sulfur	
atom)	 showed	 a	 degree	 of	 inhibition	 against	 only	 bacterial	
strains	 (Tables	 1	 and	 2).	 This	 may	 be	 due	 to	 a	 combination	
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between	 the	 extra	 phosphorus	 atoms	 withcompounds	 9,	 12	
and	 18	 leading	 to	 a	 biocidal	 effects	 activity	 more	 that	 sulfur	
atom	moieties.	

11)	Compounds	11,	16	 and	22	 exhibited	good	 inhibitions	
against	all	microbial	strains,	which	may	be	due	to	presence	of	
acyclic	 or	 cyclic	‐aminophosphonate	 and	 ethyl	 phosphonate	
moieties,	 previously	 noted	 for	 their	 impact	 on	 biological	
systems	[17]	(Figure	4).	

12)	In	conclusion,	compounds	11,	16	and	22	are	nearly	as	
active	 as	 reference	 drugs	 against	 some	 microbial	 strains.	
However	 none	 of	 the	 test	 compounds	 show	 superior	 activity	
than	the	reference	drugs.	
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Figure	1.	Relationship	between	 inhibition	 zones	at	2	mg/mL	and	bacterial	
strains	for	compounds	10	and	11	which	refers	to	an	increase	in	activity	via	
addition	sulfur	and	phosphorus	atoms	to	starting	materials	4a	and	9.	
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Figure	2.	Relationship	between	 inhibition	 zones	at	2	mg/mL	and	bacterial	
strains	for	compounds	14	and	16	which	refers	to	an	increase	in	activity	via	
addition	sulfur	and	phosphorus	atoms	to	starting	materials	4a	and	12.	
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Figure	3.	Relationship	between	 inhibition	 zones	at	2	mg/mL	and	bacterial	
strains	for	compounds	20	and	22	which	refers	to	a	clear	increase	in	activity	
via	addition	sulfur	and	phosphorus	atoms	to	starting	materials	4b	and	18.	
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Figure	4. Relationship	between	inhibition	zones	at	2	mg/mL	and	microbial	
strains	for	compounds	11,	16	and	22	(including	extra	phosphorus	atoms	in	
shape	acyclic	‐aminophosphonate,	 ethyl	phosphonate	and	cyclic	‐amino‐
phosphonate	moieties,	respectively)	which	showed	good	inhibitions	against	
all	 microbial	 strains.	 Compound	22	 is	 the	 highest	 one	 because	 it	 contains	
cyclic	 α‐aminophosphonate	 moiety	 in	 addition	 to	 sulfur	 element	 which	
revealed	 that	 the	 presence	 of	 phosphorus	 and	 sulfur	 in	 one	 compound	
enhance	very	clear	increase	in	activity.	
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