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The synthesis, characterization, and theoretical studies of the title compound has been 
reported in this study. The molecular structure has been characterized by room-
temperature single-crystal X-ray diffraction study which reveals that it has an angular shape 
with intramolecular and intermolecular hydrogen bonding. Crystal data for the title 
compound, C27H22N2O2 (M =406.46 g/mol): monoclinic, space group C2/c (no. 15), a = 
36.371(10) Å, b = 4.6031(12) Å, c = 12.192(3) Å, β = 94.972(6)°, V = 2033.5(9) Å3, Z = 4, T = 
100 K, μ(MoKα) = 0.084 mm-1, Dcalc = 1.328 g/cm3, 8812 reflections measured (2.248° ≤ 2Θ 
≤ 49.734°), 1773 unique (Rint = 0.0323, Rsigma = 0.0239) which were used in all calculations. 
The final R1 was 0.0411 (I > 2σ(I)) and wR2 was 0.1165 (all data). In crystal structure, the 
molecule exits in the enol form and is located on a two-fold axis of symmetry; where the 
central methylene carbon atom of the diphenylmethane moiety is displaced from the 
aromatic ring planes. The Hirshfeld surface analysis of the title compound shows that H···H, 
C···H, and O···H interactions of 53.3, 13.2, and 5.4%; respectively, which exposed that the 
main intermolecular interactions were H···H intermolecular interactions. The HOMO-LUMO 
energy gap in the title compound is 2.9639 eV. Molecular electrostatic potential of the 
investigated compound has also been studied. 
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1. Introduction 
 

Compounds containing imine group (–CH=N–) are known 
as Schiff bases and are usually prepared by condensing primary 
amines with active carbonyl compounds, in di-Schiff base there 
are two units of imine group [1-3]. They are versatile and 
flexible ligands for forming multinuclear transition metal 
complexes with interesting properties viz. reversible oxygen-
binding ability and catalysis for several reactions [4-7]. The 
predilection and adaptability of imine functionality can be 
endorsed to its effortlessness synthesis, stability towards 
hydrolysis, and most prominently the flexible nature of -N=CH- 
bonds through tautomerism, which facilitate its incorporation 
in different applications [8,9]. Bis-bidentate Schiff base ligands 
have also attracted significant interest as building blocks in 
metallo-supramolecular chemistry, especially in the synthesis 
of helicate [10-13]. Free N-salicylideneanilines are often thermo-
chromic due to a temperature-dependent equilibrium between 
the keto-amine and enol-imino form [14,15]. 

Schiff bases with ortho-substituted aromatic rings have 
found to be most responsive for chelation with transition metal 
ions. The chelation of transition metal ions to the >C=N linkage 
would develop intramolecular charge transfer (ICT) transition 

or make ligand to metal charge transfer (LMCT) transition, 
which could be useful for the visual sensing of the metal ions 
[16-18]. In this regard, 4-(diethylamino)-2-hydroxybenzalde-
hyde is a well-known chromophore used in the area of chemo-
sensors. Similar type of bis-N,O-bidentate Schiff-base ligands 
can be electronically and configurationally controlled, leading 
to a systematic study of the self-assembly process in solution 
[19]. 

In continuation to our previous research work for the 
search potential important functionalized bis-Schiff [20-22], we 
report here the synthesis, crystal structure, DFT studies, and 
Hirshfeld surface analysis of a multidentate bis-Schiff base, 2,2'-
(((methylene-bis(4,1-
phenylene))bis(azanylylidene))bis(methanylylidene))diphenol 
(1), 1+2 condensate of4-(4-aminobenzyl)benzenamine and 2-
hydroxybenzaldehyde.For designing bis-Schiff base compound 
1, we have selected amine part using two aniline moieties 
joined through a methylene rotor at their para positions and 
aldehyde part containing strong electron donating hydroxo 
group also in ortho position to the aldehyde, which makes it 
electron rich [23,24].  
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Table 1. Crystal data and structure refinement parameters for the title compound 1. 
Empirical formula C27H22N2O2 
Formula weight 406.46  
Temperature (K) 100  
Crystal system Monoclinic  
Space group C2/c  
a, (Å) 36.371(10)  
b, (Å) 4.6031(12)  
c, (Å) 12.192(3)  
α (°) 90  
β (°) 94.972(6)  
γ (°) 90  
Volume (Å3) 2033.5(9)  
Z 4  
ρcalc(g/cm3) 1.328  
μ (mm-1) 0.084  
F(000) 856.0  
Crystal size (mm3) 0.22 × 0.21 × 0.18  
Radiation MoKα (λ = 0.71073)  
2Θ range for data collection (°) 2.248 to 49.734  
Index ranges -42 ≤ h ≤ 42, -5 ≤ k ≤ 5, -14 ≤ l ≤ 14  
Reflections collected  8812  
Independent reflections  1773 [Rint = 0.0323, Rsigma = 0.0239]  
Data/restraints/parameters  1773/0/146  
Goodness-of-fit on F2 1.038  
Final R indexes [I≥2σ (I)]  R1 = 0.0411, wR2 = 0.1063  
Final R indexes [all data]  R1 = 0.0561, wR2 = 0.1165  
Largest diff. peak/hole (e.Å-3) 0.12/-0.15  
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Scheme 1. Synthesis of compound 1. 

 
2. Experimental 
 
2.1. Materials and physical measurements 
 

All chemicals used in this study were purchased from 
Aldrich Chemical Company, USA, and Acros Chemical Company, 
USA, and used without further purification unless otherwise 
mentioned. The melting point was determined by an electro-
thermal IA9000 series digital melting point apparatus and is 
uncorrected. Microanalyses were carried out using a Perkin-
Elmer 2400II elemental analyzer. Infrared (IR) spectra and 
solution electronic spectra were recorded on Nicolet Magna IR 
(Series II) and Shimadzu UV-160A spectrophotometers, 
respectively. 1H NMR spectra and electro-spray ionization mass 
(ESI-MS) measurements were made using a Bruker Advance 
400 MHz and Finnigan LCQ Decaxp MAX mass spectrometer, 
respectively.  
 
2.2. Synthesis of the title compound 1 
 

The compound 1 has been synthesized by following a 
reported procedure [25]. Bis(4-aminophenyl)methane (1 
mmol) was dissolved in 30mL of dehydrated methanol, and 2-
hydroxybenzaldehyde (2 mmol) was added drop-wise over 10 
min. The reaction mixture was refluxed for 4h at 70 °C, 
maintaining dry condition. A yellow precipitate was filtered and 
washed several times with n-hexane and then re-crystallized 
from methanol and dried in vacuum to obtain the pure yellow 
solid. Single crystals suitable for analysis were obtained by the 
slow evaporation of methanolic solution (Scheme 1). 

2, 2'-(((Methylene-bis(4, 1-phenylene))bis(azanylylidene)) 
bis(methanylylidene))diphenol: Color: Yellow. Yield: 85%. FT-
IR (KBr, ν, cm-1): 1617, 1595, 1563. 1H-NMR (400 MHz, CDCl3, δ, 
ppm): 13.28 (bs, 2H, OH), 8.65 (s, 2H, =CH), 7.41 (m, J = 7.3 Hz, 

4H, Ar-H), 7.26 (m, 8H, Ar-H), 7.04 (d, J = 7.8 Hz, 2H, Ar-H), 6.96 
(t, J = 7.8 Hz, 2H, Ar-H), 4.07 (s, 2H, CH2). ESI-MS (m/z, %): 
407.39 (LH2+, 100%). Anal. calcd. for C27H22N2O2: C, 79.78; H, 
5.46; N, 6.89. Found: C, 79.62; H, 5.43; N, 6.97%. UV-Vis (MeOH, 
λmax, nm): 330, 280. 
 
2.3. X-ray crystallography 
 

Single crystal X-ray data of compound 1 was collected using 
MoKα (λ = 0.71073 Å) radiation on a Bruker APEX II diffracto-
meter equipped with CCD area detector. The crystal was kept at 
100 K during data collection. Using Olex2 [26], the structure 
was solved with the SHELXS [27] structure solution program 
using Direct Methods and refined with the SHELXL [28] 
refinement package using Least Squares minimization. Atoms 
other than hydrogen atoms were treated anisotropically. The 
hydrogen atoms were geometrically fixed. The crystallographic 
details of compound 1 are summarized in Table 1, the bond 
lengths, bond angles and torsion angles of compound 1 are 
listed in Tables 2-4, respectively. 

 
2.4. Theoretical calculations 
 

Gaussian 09 program [29] has been used for the quantum 
chemical calculations. The possible ground state structures 
have been optimized with density functional theory (DFT) at 
B3LYP/6-311G**. GaussView 5 program [30] was used for the 
visualization of the studied systems. 
 
2.5. Hirshfeld Surface Calculations 
 

For obtaining additional insight into the intermolecular 
interaction of molecular crystals, Hirshfeld surface analysis 
helps as a powerful set-up.  
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Table 2. Bond lengths for the title compound. 
Atom Atom Length (Å)   Atom Atom Length (Å) 
N1 C8 1.4139(19)   C11 C14 1.513(2) 
N1 C7 1.2793(19)   C11 C12 1.382(2) 
O1 C5 1.344(2)   C5 C6 1.387(2) 
C8 C13 1.379(2)   C10 C9 1.382(2) 
C8 C9 1.388(2)   C13 C12 1.379(2) 
C4 C7 1.445(2)   C3 C2 1.372(2) 
C4 C5 1.399(2)   C2 C1 1.375(3) 
C4 C3 1.391(2)   C6 C1 1.372(3) 
C11 C10 1.376(2)         

  
Table 3. Bond angles for the title compound. 
Atom Atom Atom Angle (°)   Atom Atom Atom Angle (°) 
C7 N1 C8 121.43(13)   O1 C5 C6 119.46(16) 
C13 C8 N1 117.09(13)   C6 C5 C4 119.45(16) 
C13 C8 C9 118.02(14)   C11 C10 C9 122.02(15) 
C9 C8 N1 124.88(14)   C12 C13 C8 121.11(15) 
C5 C4 C7 121.40(14)   C10 C9 C8 120.16(15) 
C3 C4 C7 120.01(14)   C2 C3 C4 121.51(17) 
C3 C4 C5 118.59(15)   C111 C14 C11 109.79(18) 
N1 C7 C4 122.28(14)   C13 C12 C11 121.30(15) 
C10 C11 C14 121.49(13)   C3 C2 C1 119.27(17) 
C10 C11 C12 117.31(14)   C1 C6 C5 120.46(18) 
C12 C11 C14 121.11(13)   C6 C1 C2 120.71(17) 
O1 C5 C4 121.09(15)           
1 1-x, +y, 3/2-z. 
 
Table 4. Torsion angles for the title compound. 
A B C D Angle (°)   A B C D Angle (°) 
N1 C8 C13 C12 178.34(14)   C5 C4 C3 C2 1.3(2) 
N1 C8 C9 C10 -179.75(14)   C5 C6 C1 C2 0.1(3) 
O1 C5 C6 C1 -179.61(17)   C10 C11 C14 C11 1 -93.61(15) 
C8 N1 C7 C4 179.78(12)   C10 C11 C12 C13 0.8(2) 
C8 C13 C12 C11 1.7(2)   C13 C8 C9 C10 1.5(2) 
C4 C5 C6 C1 0.6(3)   C9 C8 C13 C12 -2.8(2) 
C4 C3 C2 C1 -0.5(3)   C3 C4 C7 N1 178.71(15) 
C7 N1 C8 C13 -166.32(14)   C3 C4 C5 O1 178.93(15) 
C7 N1 C8 C9 14.9(2)   C3 C4 C5 C6 -1.3(2) 
C7 C4 C5 O1 -0.3(2)   C3 C2 C1 C6 -0.2(3) 
C7 C4 C5 C6 179.52(15)   C14 C11 C10 C9 174.60(15) 
C7 C4 C3 C2 -179.53(14)   C14 C11 C12 C13 -175.94(15) 
C11 C10 C9 C8 1.0(2)   C12 C11 C10 C9 -2.1(2) 
C5 C4 C7 N1 -2.1(2)   C12 C11 C14 C111 82.95(14) 
1 1-x, +y, 3/2-z. 
 

The size and shape of Hirshfeld surface allow the qualitative 
and quantitative study and imagining of intermolecular close 
contacts in molecular crystals [31]. The Hirshfeld surface 
enclosing a molecule is defined by a set of points in 3D space 
where the contribution to the electron density from the 
molecule of interest is equal to the contribution from all other 
molecules. Molecular Hirshfeld surfaces are built based on 
electron distribution calculated as the sum of spherical atom 
electron densities [32,33]. The identification of the regions of 
particular importance to intermolecular interactions is 
achieved by mapping normalized contact distance (dnorm), 
expressed as: dnorm = (di-rivdw)/rivdw+(de-revdw)/revdw; where rivdw 
and revdw are the van der Waals radii of the atoms [34]. The value 
of dnorm is negative or positive when intermolecular contacts are 
shorter or longer than rvdw, respectively. Due to the symmetry 
between de and di in the expression for dnorm, where two 
Hirshfeld surfaces touch, both will display a red spot identical 
in color intensity as well as size and shape [35]. The mixture of 
de and di in the form of a 2D fingerprint plot provides a 
summary of intermolecular contacts in the crystal and are in 
complement to the Hirshfeld surfaces [34]. The information 
about the intermolecular interactions in the immediate 
environment of each molecule in the asymmetric unit is 
achieved by such plots. In addition, the close contacts between 
particular atom types can be highlighted in so-called resolved 
fingerprint plots [36], which allow the facile assignment of an 
intermolecular contact to a certain type of interaction and 
quantitatively summarize the nature and type of intermolecular 
contacts. Two additional colored properties (shape index and 

curvedness) based on the local curvature of the surface can also 
be specified [37]. The Hirshfeld surfaces are mapped with dnorm, 
shape-index, curvedness and 2D fingerprint plots (full and 
resolved) reported in this manuscript were generated using 
Crystal-Explorer 3.1 [38]. 
 
2.6. Molecular electrostatic potential 
 

The molecular electrostatic potential at a given point 
around a molecule can be defined in terms of total charge 
distribution of the molecule and related with the dipole 
moments. It supplies a method to understand the electron 
density which is useful for determining the electrophilic 
reactivity and nucleophilic reactivity along with hydrogen-
bonding interactions [39,40]. 
 
3. Results and discussion 
 
3.1. Synthesis and structure 
 

The compound 1 was synthesized in good yield and as 
yellow solid by condensing bis(4-aminophenyl)methane and 2-
hydroxybenzaldehyde in 1:2 molar ratio in anhydrous 
methanol (Scheme 1). It crystallizes in monoclinic space group 
C2/c and the asymmetric unit contains a single molecule of 
compound 1. The molecule of compound 1 has crystallo-
graphically imposed two-fold plain of symmetry. The ORTEP 
diagram of the compound 1 is shown in Figure 1.  
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Table 5. List of hydrogen bonding in compound 1. 
D H A D-H (Å) H···A (Å) D-A (Å) ∠ D-H···A (°) 
C7 H7 O1 0.950 2.563 3.417 149.75 
C9 H9 O1 0.950 3.279 4.070 141.97 
C3 H3 O1 0.950 2.718 3.539 145.03 
O1 H1 N1 0.840 1.841 2.589 147.81 
 

 
Figure 1. The ORTEP diagram of the compound 1. H-bondings are shown in dotted line. 

 

 
(a) 

 
(b) 

 

 
(c) 

 
(d) 

 
Figure 2. Crystal structure of compound 1, (a, b) top view, (b, c) layer structure. H-bondings are shown in dotted line 

 
The central methylene C atom (C14) of the diphenyl-

methane moiety is displaced from the aromatic ring planes. The 
molecule of compound 1 is angular V-shaped conformation, 
with atom C14 coinciding with a crystallographic two-fold axis. 
The two O-H groups are trans to each other. The angle between 
the two arms originating from central methylene C atom (C14) 
is 109.77° and the symmetry-related C1/C2/C3/C4/C5/C6 
phenol ring is 78.87°. The C8/C9/C10/C11/C12/C13 phenyl 
ring is not coplanar with the C1/C2/C3/C4/C5/C6 phenol ring, 
the interplanar angle is 12.93°. The imino plane is almost 
coplanar with the phenol ring, it is, rather, twisted considerably 
out of the plane of the phenyl ring of bis(4-aminophenyl) 
methane. The dihedral angle between the two unique phenyl 
rings is 177.68° while the dihedral angle between the two 
central phenyl rings is 93.73°. In the crystal structure of 
compound 1, there exists two intramolecular O–H⋯N hydrogen 
bonds between the hydroxyl hydrogen and imino nitrogen 
atoms. Detailed information regarding hydrogen bonds in the 
molecules of compound 1 is given in Table 5. The packing of the 
molecules is shown in Figure 2. The molecules are stabilized by 
several weak non-covalent interactions including C-H⋯O 
bonds, and π-π interactions resulting the formation of layered 
structure with direction of propagation of two adjacent layers 

are in opposite direction. Each layer is stabilized by π-π 
interactions. Top view of the structure formed rectangular 
channel (Figure 2a and b). There is a chance of keto-enol 
tautomerism in compound 1, but the in the crystal structure of 
compound 1, the molecule exits in the enol form. 
 
3.2. Theoretical investigations 
 

The optimized bond length and angles for the compound 1 
is well replicated with the experimental single crystal X-ray 
diffraction structure data. The optimized structure of 
compound 1 has been shown in Figure 3. The surface plots of 
HOMO and LUMO of compound 1 have been depicted in Figure 
4. The ground state energy of compound 1 achieved in DFT 
calculation is -1302.14 a.u. The HOMO-LUMO energy gap in 
compound 1 is 2.9639 eV. 
 
3.3. Molecular Hirshfeld surfaces 
 

The Hirshfeld surface is a suitable tool for describing the 
surface characteristics of molecules. The molecular Hirshfeld 
surface of compound 1 was generated using a standard (high) 
surface resolution with the 3D dnorm surfaces mapped over a 
fixed color scale of 0.22 (red) to 1.4 Å (blue).  



Patra and De / European Journal of Chemistry 13 (1) (2022) 49-55 53 
 

 
2022 – European Journal of Chemistry – CC BY NC – DOI: 10.5155/eurjchem.13.1.49-55.2175 

 

 
Figure 3. Optimized molecular structure of compound 1. 

 

ELUMO = -5.5500 eV 
 

↕∆E = 2.9639 eV 

EHOMO = -8.5139 eV 
 

Figure 4. HOMO-LUMO energy levels and energy gap of the compound 1. 
 

(a) (b) (c) 
 

Figure 5. Hirshfeld surfaces of compound 1, (a) 3D dnorm surface, (b) shape index, and (c) curvedness. 
 
The shape index mapped in the color range of -1.0 to 1.0, 

and curvedness was in the range of -4.0 to 0.4. The surfaces 
were shown to be transparent to allow visualization of the 
molecular moiety in a similar orientation for all of the 
structures around which they were calculated. The molecular 
Hirshfeld surfaces (dnorm, Shape index and curvedness) of 
compound 1 have been shown in Figure 5. The pattern of 
adjacent red and blue triangles that appears on the shape index 
surfaces of compound 1 and a relatively large and flat green 
region at the same side of the molecule on the corresponding 
curvedness surfaces, confirms the presence of π···π interactions 
in compound 1. 

The Hirshfeld surface analysis of compound 1 shows that 
H···H, C···H, and O···H interactions of 53.3, 13.2 and 5.4%, 
respectively, which revealed that the main intermolecular 
interactions were H···H intermolecular interactions. Both the 
C···H and O···H interactions were represented by a small area in 
the right side of the top in the 2D fingerprint map, whereas the 
H···H interactions were represented by the largest in the 
fingerprint plot (Figure 6) and thus, had the most significant 
contribution to the total Hirshfeld surfaces (53.3%). 

3.4. Molecular electrostatic potential 
 

Molecular electrostatic potential can simultaneously 
display molecular size, shape as well as positive, negative and 
neutral electrostatic potential regions in terms of color grading. 
The order of the electrostatic potential is as follows: Red < 
orange < yellow < green < blue. Negative regions of molecular 
electrostatic potential are rich in electrons and are focused on 
electronegative atoms. Positive regions are electrons deficient 
and these sites are mainly around hydrogen atoms. Molecular 
electrostatic potential of compound 1 has been shown in Figure 
7. 

 
4. Conclusion 
 

In conclusion, we have reported here the synthesis, crystal 
structure and Hirshfeld surface analysis of a di-Schiff base 
ligand, 2,2'-(((methylene-bis(4,1-phenylene))bis(azanylylide- 
ne))bis(methanylylidene))diphenol (1), which is a building 
block of several metal helicates.  
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(a) (b) 
 

(c) (d) 
 

Figure 6. 2D Fingerprint plots of compound 1, (a) standard full, (b) resolved into H···H, (c) resolved into C··H, and (d) O···H contacts, showing the percentages 
of contacts contributing to the total Hirshfeld surface area of the molecule. 

 

 
 

Figure 7. Molecular electrostatic potential of compound 1. 
 

Interestingly, this molecule has an angular shape with 
intramolecular and intermolecular hydrogen bonding. In 
crystal structure, the molecule exits in the enol form and is 
located on a two-fold axis of symmetry; where the central 
methylene carbon atom of the diphenylmethane moiety is 
displaced from the aromatic ring planes. The Hirshfeld surface 
analysis of compound 1 shows that H···H, C···H, and O···H 
interactions of 53.3, 13.2, and 5.4%; respectively, which 
exposed that the main intermolecular interactions were H···H 
intermolecular interactions. 
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