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This study reports the base-catalyzed aqueous sol-gel synthesis of zinc oxide nanoparticles. 
The solution was primarily comprised of zinc nitrate hexahydrate as a metal precursor, 
isopropyl alcohol and water as solvents, and glycerin as a stabilizing agent. The effect of 
calcination temperature on the structure and morphology of the prepared nanoparticles was 
investigated by varying the calcination temperature from 500 to 900 °C. The X-ray 
diffraction analysis, infrared spectroscopy, thermogravimetric analysis, and field emission 
scanning electron microscopy were employed to determine the crystal structure, surface 
functional groups, thermal stability, and surface morphology of the nanoparticles. The 
particle size was found to be directly proportional to the calcination temperature. 
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1. Introduction 
 

Published reports revealed that metal and metal oxide 
nanoparticles have received remarkable attention owing to 
their wide range of applications in fields like medicine, 
electronics, sensors, catalysis, and waste treatment process. 
Nanosize oxides of metals like iron, zinc, copper, nickel, cobalt, 
manganese, etc. have been reported for their enhanced physical 
properties including fine particle size, improved thermal 
stability, increased surface area, high catalytic activity, and easy 
usage. Among these metal oxides, zinc oxide is categorized as a 
semiconductor with a broad band gap energy of 3.37 eV and 
high bond energy of 60 meV that make it a right choice for use 
in electronics, optoelectronics, laser technology, sensors, 
converters, energy generators, photocatalysts, ceramics, bio-
medicines and pro-ecological systems [1]. Zinc oxide nano-
particles have an advantage of being versatile in the capability 
of attaining a variety of structures compared to other metal 
oxide nanoparticles i.e. they can be produced in one-, two-, and 
three-dimensional structures including nanorods, needles, 
helixes, springs, and rings, ribbons, tubes, belts, wires and 

combs, nanoplates, nano-pellets, flowers, dandelion, snow-
flakes, etc. The desired morphology can be obtained by varying 
synthesis parameters such as reaction temperature, reaction 
time, agitation speed, the solvent used, pH, calcination 
temperature, calcination time, etc. [1,2]. 

Various physical and chemical methods such as sol-gel, 
precipitation, coprecipitation, colloidal method, hydrothermal, 
solvothermal, sonochemical and microemulsion, pyrolysis, and 
inert gas condensation methods have been adopted to produce 
zinc oxide nanoparticles [3]. Nowadays, researchers are paying 
more attention to simple, inexpensive, nontoxic, and environ-
ment friendly methods for the synthesis of zinc oxide nano-
structures [4-6]. Among these methods, the sol-gel technique 
has been found to be the most appropriate one, being simple, 
economical, and capable of producing ultrafine materials with 
high surface area [7]. This method is capable of producing high-
quality homogenous and porous structures including nano-
particles, thin-films, xerogels, aerogels, fibres, etc. at low 
processing temperature [8]. Moreover, it offers the use of a 
wide range of reagents suitable for controlling the morphology 
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of nanoparticles. All these facts make sol-gel synthesis being 
advantageous over green synthesis. 

Previous scientists have therefore successfully prepared 
zinc oxide nanostructures with controlled morphology and size 
using the most convenient and trouble-free sol-gel technique. 
Lu et al. synthesized three-dimensionally interconnected 
macropores of zinc oxide using citric acid and an epoxide 
through sol-gel process together with phase separation [9]. 
Recently, Vishwakarma and co-workers successfully synthe-
sized ultrafine zinc oxide particles ranging from 15 nm to 25 nm 
in size [10]. More recently, Somoghi et al. reported the base-
catalyzed sol-gel preparation of zinc oxide nanoparticles 
controlled with various silane coupling agents (Octyltriethoxy-
silane, octadecyltriethoxysilane, and (3-glycidyloxypropyl) 
trimethoxysilane) [11]. 

Present work deals with the preparation of zinc oxide 
nanoparticles via a sol-gel process in a basic medium, utilizing 
zinc nitrate hexahydrate, isopropyl alcohol, and water as a 
precursor and solvents respectively whereas glycerin was 
employed as a stabilizing agent. The morphology and structure 
of the prepared samples were ascertained although X-ray 
diffraction as well as field emission scanning electron 
microscopy. Thermal stability was confirmed by thermo-
gravimetry while the presence of surface functional groups was 
checked by infrared spectroscopy. 
 
2. Experimental 
 
2.1. Materials 
 

Analytical grade zinc nitrate hexahydrate, isopropyl 
alcohol, glycerin, and ammonium hydroxide were used for the 
whole experimental work. 
 
2.2. Sample preparation 
 

Zinc oxide nanoparticles were synthesized through an 
aqueous sol-gel route in a basic medium. Zinc nitrate 
hexahydrate precursor (14.64 g) was added to a mixture of 
solvents, i.e. isopropyl alcohol and water in a 1:5 ratio. 8 mL of 
glycerin were added and the pH of the aqueous solution was 
maintained at 8 using ammonium hydroxide. The mixture was 
stirred constantly for two hours at 70 °C. The resulting 
precipitates were filtered and were dried at 70 °C for several 
hours until complete drying. The dried precipitates were 
ground well and were divided into five portions that were 
calcined for two hours at 500, 600, 700, 800, and 900 °C and 
were labeled as ZNB-1, ZNB-2, ZNB-3, ZNB-4, and ZNB-5, 
respectively. 
 
2.3. Characterization 
 

X-ray diffraction analysis of all the prepared zinc oxide 
nanoparticles was carried out by Bruker D2-Phaser X-ray 
diffractometer employing monochromatized CuKα1 radiation 
at a wavelength of 1.54060 Å. Thermal analysis was performed 
using a Leco TGA701 Thermogravimetric analyzer varying the 
temperature from room temperature to 1000 °C. IR spectra 
were recorded with Thermo Nicolet IR 200 (USA) and surface 
morphology was studied by field emission scanning electron 
microscope FEI Nova 450 NanoSEM. 
 
3. Results and discussion 
 

Synthesis of zinc oxide nanoparticles was carried out in a 
basic medium using a mixture of isopropanol and water as 
solvent. Glycerin was added for making polyol medium which 
acts as both solvent as well as a stabilizing agent for regulating 
the growth of zinc oxide nanoparticles. The polyol medium is 
believed to control the formation of hard agglomerates formed 

during the synthesis of metal oxide nanoparticles obtained 
through aqueous routes, therefore the use of high boiling 
polyols has been recommended by previous researchers [12]. 
Moreover, the presence of a basic medium in sol-gel synthesis 
leads to the formation of more hydroxyl groups, thereby 
facilitating a rapid accomplishment of equilibrium between 
hydrolysis and condensation reactions [13]. Hence zinc nitrate 
used as a precursor can readily undergo hydrolysis forming 
nitrate ions and zinc ions making zinc ions easily available for 
bonding with the hydroxyl groups of alcohol molecules. The 
intermediate product, i.e., zinc hydroxide nitrate thus formed in 
the aqueous solution can be easily transformed into zinc oxide 
through calcination at higher temperatures. Ammonium nitrate 
formed as a byproduct is highly soluble in water and can be 
easily removed. High purity zinc oxide nanoparticles can 
therefore be obtained successfully by the base-catalyzed 
aqueous sol-gel route. 
 
3.1. X-ray diffraction analysis 
 

Figures 1a-e present the crystal structure of ZNB samples 
calcined at 500, 600, 700, 800, and 900 °C, respectively. At 500 
°C, the pattern shows several diffraction peaks that correspond 
to the hexagonal wurtzite phase of zinc oxide. Two major peaks 
for ZNB-1 appear at 31.73 and 36.18° 2θ values while minor 
peaks at 34.36, 47.36, 56.41, 62.33, and 68.64° confirming the 
presence of the wurtzite phase can be seen (JCPDS Card no: 36-
1451). These results are in close agreement with the 
observations of previous scientists [14-17]. 

The figures illustrate similar diffraction peaks with slight 
variation in intensities with the increasing calcination tempe-
rature. This can be attributed to the fact that while annealing at 
higher temperatures the grain growth of nanoparticles occurs 
resulting in the appearance of more intense and prominent 
major peaks. The sharpness of the peaks specifies that the 
samples are well crystallized [18]. However, the broadening of 
peaks observed at lower calcination temperatures proves the 
formation of nanosize crystals [19]. Narrowness in diffraction 
peaks at higher calcination temperatures occurs due to 
variation in the water of crystallization in molecules of pre-
cursor, resulting in more shrinkage subject to the particle 
coarsening effect due to calcination [20]. Among all the ZNB 
samples no diffraction peak for any other phase of zinc oxide 
can be seen, that indicates high purity of single-phase zinc oxide 
nanoparticles [16]. According to Lu et al. pure wurtzite phase of 
zinc oxide, ZnO could be obtained at calcination temperatures 
above 320 °C, with simultaneous isotropic shrinkages [9]. 
 
3.2. Infrared spectroscopy 
 

The IR spectra of zinc oxide nanoparticles prepared in a 
basic medium recorded in the frequency range of 4000-400 cm-

1 are demonstrated in Figures 2a-e. The figures show similar 
absorption bands with slight variation in intensity among all 
samples. Numerous distinct absorption bands were detected in 
the region between 3800-3000 cm-1 that are assigned to the 
stretching modes of hydroxyl groups of water molecules 
adsorbed on the surface as well as hydrogen-bonded hydroxyl 
groups [21,22]. 

The bands of relatively low intensity between 3000-2800 
cm-1 are attributed to the stretching vibrations of alkyl groups 
of organic impurities captured by the crystals of zinc oxide 
during their synthesis [11,23,24]. A few weak absorption bands 
in the region between 2800 and 2200 cm-1 correspond to 
hydrogen bonding between surface adsorbed water molecules. 
Minor absorption bands around 1600 cm-1 are assigned to the 
bending vibrations of hydroxyl groups of water molecules [25-
27]. Another minor absorption band between 1400 to 1300 cm-

1 can be related to the asymmetric stretching vibrations of the 
nitrate group [28].  
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(c) (d) 
 

(e) 
 

Figure 1. X-ray diffraction pattern of (a) ZNB-1, (b) ZNB-2, (c) ZNB-3, (d) ZNB-4 and (e) ZNB-5. 
 
The prominent broad band below 1000 cm-1 obtained in 

each ZNB sample except ZNB-2 having an absorption band with 
relatively low intensity corresponds to the stretching vibrations 
of metal-oxygen bonds hence proving the formation of Zn-O 
bonds of zinc oxide. Previous researchers also had similar 
observations for zinc oxide nanoparticles [7,29]. 
 
3.3. Thermal analysis 
 

Thermogravimetric analysis of ZNB samples was perfor-
med and the curves are shown in Figures 3a-e. The curves show 
two step gradual weight loss up to 1000 °C. In the first step 
below 400 °C, weight loss of 0.41 to 0.90% observed can be 
ascribed to the evaporation of adsorbed moisture and organic 
residues entangled in the mesopores formed between the 
crystallites during their agglomeration [30,31]. The second step 
of weight loss of 0.65 to 1.46% till 1000 °C may take place due 
to the flow of heat between the sample and the crucible. Hence, 
these results prove the thermal stability of ZNB samples since 
no major weight loss occurred among all samples. 

3.4. Field emission scanning electron microscopy 
 

The surface morphology of the synthesized zinc oxide 
nanoparticles ZNB-1, ZNB-3, and ZNB-5 was studied by field 
emission scanning electron microscopy. The images were 
recorded at 100,000× magnification and are presented in 
Figures 4a-c, respectively. The micrograph of ZNB-1 calcined at 
500 °C exhibits agglomerated morphology with nanoparticles 
of various shapes and multiple sizes gathered to form 
aggregates in several nanometer ranges. According to previous 
researchers, chemical binding of primarily formed fine particles 
results in the formation of aggregates that join to form larger 
agglomerates through van der Waals forces [32]. However, it 
can be seen that with the rise in calcination temperature, the 
agglomeration significantly decreases whereas the size of 
nanoparticles increases due to particle growth at higher 
calcination temperatures resulting in the formation of flakes 
[33]. Hence, ZNB-5 bares a flake-like morphology with a bigger 
size of flakes and less agglomeration, unlike ZNB-1 and ZNB-3.  
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(a) 
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(c) (d) 
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Figure 2. IR spectrum of (a) ZNB-1, (b) ZNB-2, (c) ZNB-3, (d) ZNB-4 and (e) ZNB-5. 
 

(a) 
 

(b) 
 

(c) (d) 
 

(e) 
 

Figure 3. TGA curve of (a) ZNB-1, (b) ZNB-2, (c) ZNB-3, (d) ZNB-4 and (e) ZNB-5. 
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  (a) 
 

  (b) 
 

  (c) 
 

Figure 4. SEM micrograph of (a) ZNB-1, (b) ZNB-3, and (c) ZNB-5. 

Former scientists also obtained highly agglomerated zinc 
oxide nanoparticles of various shapes that separated after 
calcination at higher temperatures and attained regular shapes 
[16,17,20]. 
 
4. Conclusion 
 

Zinc oxide nanoparticles were prepared through a cost-
effective sol-gel method using a basic medium. The effect of 
varying calcination temperatures on the structure and 
morphology of the prepared samples were investigated. X-ray 
diffraction analysis confirmed that all the samples were 
composed of pure hexagonal wurtzite structure of zinc oxide. IR 
spectroscopy identified the presence of surface hydroxyl 
groups and organic residues entrapped in the nanocrystals 
while TGA proved their thermal stability. FESEM studies 
showed that calcination at 500 °C led to increased 
agglomeration followed by a significant decrease due to the 
separation of nanoparticles with the temperature rise. The 
particle size on the other hand increased due to particle growth 
at higher calcination temperatures resulting in the formation of 
nano-flakes.  
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