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The co-crystal of 2-aminobenzothiazol with 4-fluorobenzoic acid were synthesized and 
characterized by elemental analyses, spectral studies (FT-IR, NMR, HRMS) and single-crystal 
X-ray diffraction analysis. This compound co-crystallizes in the monoclinic space group 
P21/c (no. 14), a = 11.7869(14) Å, b = 4.0326(5) Å, c = 27.625(3) Å, β = 92.731(10)°, V = 
1311.6(3) Å3, Z = 4, T = 293(2) K, μ(CuKα) = 2.345 mm-1, Dcalc = 1.470 g/cm3, 3568 
reflections measured (7.508° ≤ 2Θ ≤ 134.202°), 2280 unique (Rint = 0.0262, Rsigma = 0.0413) 
which were used in all calculations. The final R1 was 0.0446 (I > 2σ(I)) and wR2 was 0.1274 
(all data). The crystal structure is stabilized by elaborate system of N–H···O and O-H···O 
hydrogen bonds to form supramolecular structures. Furthermore, the 3D Hirshfeld surfaces 
and the associated 2D fingerprint plots have been analyzed for molecular interactions. 
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1. Introduction 
 

Easy and smooth delivery of the active pharmacological 
ingredient is one of the important parts of drug development. 
Most of the cases, the active pharmacological ingredients are 
crystalline solids at ambient temperature and are generally 
provided as a tablet form [1]. It is well established that the 
efficacy of a drug molecule depends on its physical properties 
such as dissolution rate, solubility, melting point, color etc. 
which again varies depending upon the packing of its crystal [2]. 
Co-crystallization offers significant benefit by delivering two or 
more different active pharmacological ingredients at a time, 
which in many occasions provides better efficacy than the 
individual single component [3]. Since the first formation of co-
crystal between nucleic bases [4], these were recognized as 
valuable materials and gained significant attention [5-8]. These 
were reported to use as pharmaceutical materials [9,10], 
electronic and optical materials [11,12] and even employed as 
media for conducting solid-state organic syntheses [13-16]. 

Benzothiazole (Benzo[d]thiazol) is an important class of 
fused heterocyclic scaffold having broad range of pharmaceu-
tical applications such as antimicrobial [17], anti-inflammatory 
[18], anticancer activities [19,20], neuroprotective [21], anti-

helmintic [22], anticonvulsant [23], antiglutamate [24], anti-
malarial [25], antitubercular [26] and so on. Figure 1 represents 
a glimpse of drug molecules having benzothiazole as the core 
skeleton [27].  

Very recently, we have reported the X-ray diffraction 
analysis of a co-crystal formed between 2-aminobenzothiazol 
and 1-methylisatin [28]. In continuation of our strong interest 
towards the crystal structure of bioactive organic molecules 
[29-40], in this communication, we want to report the detailed 
X-ray diffraction analysis along with FT-IR, NMR, and HRMS 
studies of another co-crystal (III) formed between 4-fluoro 
benzoic acid and 2-aminobenzothiazol. We strongly believe that 
co-crystallization of these two highly active pharmacological 
ingredients will surely make some impact and show high 
therapeutic potentials. Screening of biological activities of this 
co-crystal is under process which will be communicated later 
on. 
 

2. Experimental 
 

2.1. General 
 

Infrared spectra were recorded on Agilent (Cary 660) FT-IR 
spectrophotometer on KBr discs.  
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Figure 1. Drug molecules with benzothiazole skeleton. 
 

 
 

Scheme 1. Preparation of 1:1 co-crystal of 4-fluorobenzoic and 2-aminobenzothiazol. 
 
1H and 13C NMR spectra were obtained at 500 MHz Jeol 

(JNM ECX-500) NMR machines with CDCl3 as the solvent. Mass 
spectra (TOF-MS ES+) were measured on a Bruker Impact HD 
QTOF Micro mass spectrometer. Melting points were recorded 
on a Digital Melting Point Apparatus (Model No. MT-934) and 
are uncorrected. TLC was performed on silica gel 60F254 
(Merck) plates. Single crystal data was collected on Agilent 
Technologies (Oxford Diffraction) Supernova single crystal 
diffractometer. 
 
2.2. Preparation of co-crystal 
 

1:1 Co-crystals of 4-fluorobenzoic acid and 2-amino 
benzothiazol (III, 0.270 g; 0.93 mmol) were obtained from the 
equimolar mixture of 4-fluorobenzoic acid (I, 0.280 g, 2 mmol) 
and 2-aminobenzothiazol (II, 0.301 g, 2 mmol) in aqueous 
ethanol (1:1, v:v). Slow evaporation of the solution at room 
temperature resulted in the formation of white block-shaped 
co-crystals (Scheme 1). 

4-Fluorobenzoic acid (I): Color: White powder. FT-IR (KBr, 
ν, cm-1): 3082, 2987, 2826, 2667, 2552, 1674, 1599, 1509, 1423, 
1293, 1224, 1130, 924, 847, 765. 1H NMR (500 MHz, CDCl3, δ, 
ppm): 9.97 (1H, s, OH), 8.14-8.12 (2H, m, Ar-H), 7.15 (2H, t, J = 
8.50 Hz, Ar-H).  

2-Aminobenzothiazol (II): Color: White powder. FT-IR (KBr, 
ν, cm-1): 3060, 1716, 1588, 1503, 1420, 1276, 1014, 829. 1H 
NMR (500 MHz, CDCl3, δ, ppm): 7.59 (1H, dd, J = 7.92, 1.30, 1.25 
Hz, Ar-H), 7.54 (1H, dd, J = 8.05, 1.15 Hz, Ar-H), 7.31 (1H, td, J = 
7.33, 1.30, 1.25 Hz, Ar-H), 7.13 (1H, td, J = 7.58, 7.68, 1.20 Hz, 
Ar-H), 5.45 (2H, s, NH2).  

Co-crystal of 2-aminobenzothiazol and 4-fluorobenzoic acid 
(1:1) (III): Color: Colorless crystal. FT-IR (KBr, ν, cm-1): 3401, 
3305, 3169, 2358, 1671, 1624, 1600, 1542, 1509, 1453, 1329, 
1228 1126, 1091, 854, 744. 1H NMR (500 MHz, CDCl3, δ, ppm): 
8.15 (2H, dd, J = 8.90, 5.5 Hz, Ar-H), 7.58-7.54 (2H, m, Ar-H), 7.34 
(1H, t, J = 7.55 Hz, Ar-H), 7.17-7.12 (3H, m, Ar-H), 6.73 (2H, s, 
NH2). 13C NMR (125 MHz, CDCl3, δ, ppm): 170.33, 168.08, 
166.84, 164.83, 149.42, 132.51, 132.44, 129.31, 127.07, 126.35, 
122.62, 121.06, 118.01, 115.53, 115.35. 
 
2.3. Crystal structure determination and refinement 
 

Single block crystals of the compounds, C14H11N2O2S (III) 
with dimensions of 0.30 × 0.20 × 0.20 mm were used for data 
collection. X-ray diffraction study was done on Agilent 
Technologies (Oxford Diffraction) Supernova single crystal 
diffractometer using radiation (λ = 1.54184 Å). X-ray intensity 
data of 3568 reflections were collected at 293(2) K and out of 
these reflections 2280 were found unique. The intensities were 

measured by ω scan mode for θ ranges 3.75 to 67.10°, where 
2158 reflections with I > 2σ (I) were treated as observed. Data 
was corrected for Lorentz-polarization and absorption factors. 
The molecular structure was solved by direct methods using 
SHELXT package [41]. Multisolution tangent refinement was 
used. All non-hydrogen atoms of the molecule were located in 
the best E-map and refined in anisotropic approximation using 
SHELXS [41]. All hydrogen atoms were geometrically fixed and 
allowed to ride on the corresponding non-H atoms with N-H= 
0.86 Å, C-H= 0.93-0.98 Å and Uiso(H)=1.5 Ueq of the attached C 
atoms for methyl groups and 1.2 Ueq(N, C) for other H atoms. 
The geometry of the molecule was calculated using the WinGX 
[42], PARST [43], and PLATON [44] software. The crystallo-
graphic data are summarized in Table 1. 
 
2.4. Hirshfeld surfaces calculations 
 

In order to carry out the Hirshfeld surface analysis and to 
create fingerprint plots, Crystal Explorer 17.5 program [45] was 
used, for which the crystallographic information file (CIF) was 
used as input. The molecular Hirshfeld surface of compound III 
was generated using a standard (high) surface resolution with 
the 3D dnorm surfaces, the shape index and curvature. The 
surfaces were shown to be transparent to allow visualization of 
the molecular moiety in a similar orientation for all of the 
structures around which they were calculated. 2D fingerprint 
graphs are plotted by accumulating (di, de) pairs. 
 
3. Results and discussion 
 
3.1. Synthesis 
 

We have compared the 1H NMR data of compounds I, II, and 
III (Figure 2). In the 1H NMR spectrum of compound II, peak for 
-NH2 appeared at δH 5.45 ppm (2H, s), in this case, a sharp 
singlet peak was obtained. Whereas a small broad singlet peak 
was recorded at δH 6.73 ppm (2H, brs) for the same -NH2 
protons in co-crystal III. This little bit higher value indicates 
there must be some deficiency of electron density over -NH2 in 
the co-crystal III, which is definitely due to the formation of 
strong hydrogen bonds. Other peaks are almost comparable in 
the individual as well as co-crystal form. 
 
3.2. Single crystal X-ray structure analysis 
 

An ORTEP view [46] of the co-crystal III with atomic 
labeling is shown in Figure 3. The bond lengths and angles in 
the compounds are comparable with literature values [47] and 
the selected bond distances and angles are shown in Table 2.  
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Table 1. Crystal data and structure refinement for compound III. 
Empirical formula C14H11FN2O2S  
Formula weight 290.31  
Temperature (K) 293(2)  
Crystal system Monoclinic  
Space group P21/c  
a, (Å) 11.7869(14)  
b, (Å) 4.0326(5)  
c, (Å) 27.625(3)  
α (°) 90  
β (°) 92.731(10)  
γ (°) 90  
Volume (Å3) 1311.6(3)  
Z 4  
ρcalc(g/cm3) 1.470  
μ (mm-1) 2.345  
F(000) 600.0  
Crystal size (mm3) 0.3 × 0.2 × 0.2  
Radiation CuKα (λ = 1.54184)  
2Θ range for data collection (°) 7.508 to 134.202  
Index ranges -13 ≤ h ≤ 14, -3 ≤ k ≤ 4, -28 ≤ l ≤ 32  
Reflections collected  3568  
Independent reflections  2280 [Rint = 0.0262, Rsigma = 0.0413]  
Data/restraints/parameters  2280/0/189  
Goodness-of-fit on F2 1.009  
Final R indexes [I≥2σ (I)]  R1 = 0.0446, wR2 = 0.1139  
Final R indexes [all data]  R1 = 0.0615, wR2 = 0.1274  
Largest diff. peak/hole (e.Å-3) 0.22/-0.28  
 

 
 

Figure 2. Comparison of 1H NMR of compounds I, II and co-crystal III. 
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Table 2. Selected bond lengths and angles for compound III.  
Atom Atom  Length (Å)  Atom Atom  Length (Å) 
S3 C4  1.741(3)  C31 C32  1.383(4) 
S3 C2  1.755(3)  C35 C34  1.367(4) 
F37 C34  1.354(3)  C35 C36  1.376(4) 
O40 C38  1.292(3)  C34 C33  1.373(4) 
C4 C9  1.404(4)  N1 C9  1.385(3) 
C4 C5  1.377(4)  C8 C9  1.389(4) 
O39 C38  1.219(3)  C8 C7  1.374(4) 
C2 N10  1.317(4)  C7 C6  1.391(5) 
C2 N1  1.315(3)  C32 C33  1.378(4) 
C31 C36  1.389(4)  C6 C5  1.378(4) 
C31 C38  1.495(4)         
Atom Atom Atom Angle (°)   Atom Atom Atom Angle (°) 
C4 S3 C2 89.29(12)   C2 N1 C9 111.0(2) 
C9 C4 S3 109.27(19)   C35 C36 C31 120.9(3) 
C5 C4 S3 128.7(2)   O40 C38 C31 115.4(2) 
C5 C4 C9 122.0(3)   O39 C38 O40 124.0(3) 
N10 C2 S3 120.9(2)   O39 C38 C31 120.6(2) 
N1 C2 S3 115.12(19)   C7 C8 C9 119.1(3) 
N1 C2 N10 124.0(3)   N1 C9 C4 115.3(2) 
C36 C31 C38 121.9(2)   N1 C9 C8 125.7(2) 
C32 C31 C36 119.1(3)   C8 C9 C4 119.0(2) 
C32 C31 C38 119.0(2)   C8 C7 C6 121.1(3) 
C34 C35 C36 118.2(3)   C33 C32 C31 120.7(3) 
F37 C34 C35 119.0(3)   C5 C6 C7 120.9(3) 
F37 C34 C33 118.2(3)   C4 C5 C6 117.9(3) 
C35 C34 C33 122.8(3)   C34 C33 C32 118.3(3) 
 

 
Figure 3. The structure of the co-crystal (III), displacement ellipsoids are drawn at 50% probability level. 

 
The X-ray diffraction analyses showed that asymmetric unit 

of co-crystal of compound III consisted of two crystallo-
graphically independent molecules one of 2-aminobenzothiazol 
IIIA and other of 4-fluorobenzoic IIIB. The geometrical para-
meters of 2-aminobenzothiazol moiety shows slightly different 
and are in good agreement with those of related co-crystal 
structure (C14H10BrN3O4S) [48].  

The double bond character of the N1-C2 is confirmed by its 
distance of 1.315(3) Å (IIIA). The S3-C4 = 1.741(3) Å, S3-C2 = 
1.755(3) Å (IIIA) exhibit small variations from the reported for 
values of 1.764 Å, 1.741 Å for related co-crystal (C14H10BrN3O4S) 
[48], these differences may be due to ring strain and electron 
delocalization. In addition, the bond distance of 1.317(4) Å for 
C2-N10 shows variation from its reported value of 1.342 Å in 
similar co-crystal (C14H10BrN3O4S) [48]. The bond angles C9-
N1-C2 = 111.0(2)°, N1-C2-S3 = 115.12(19)° and C2-S3-C4 = 
89.29(12)° of 2-aminobenzothiazol moiety (IIIA) is found to be 
comparable [110.26°, 115.97°, 88.69°] with the value of the 
reported co-crystal (C14H10BrN3O4S) [48].  

In 4-fluorobenzoic acid moiety (IIIB), the bond distance the 
double bond C38-O39 = 1.219(3) Å and single bond C38-O40= 
1.292(3) Å shows variation from [1.251 Å, 1.282 Å] with the 
reported co-crystal (C7H5O2F) [49]. In the benzene rings 
systems, the endocyclic angles at C5, C33, C34 and C35 are 
narrowed while those at C4 and C7 are expanded from 120°, 
respectively.  

The substituted group makes torsion angles N10-C2-N1-C9 
= -179.4(3)° (IIIA), C38-C31-C32-C33 = -179.2(3)° (IIIB) with 
the respective moieties. All rings of compound III are planer in 
conformation with maximum deviation for C1 [0.024(3)] of 2-
aminobenzothiazol ring, and for C32 [0.007(3)] of benzene ring. 

The dihedral angle between aminobenzothiazol and fluoro-
benzoic acid moieties of 170.78(8)° shows that both the 
moieties are to equatorial to each other. 

Hydrogen bonding is one of the most important non-
covalent interactions that can determine and control the 
assembly of molecules and ions. Analysis of the crystal packing 
showed only intermolecular hydrogen bonds in compound III. 
Both the active H atoms of the NH2 group participate in inter-
molecular N-H···O type hydrogen bonds in compound III. In this 
co-crystal structure, the molecules are linked by a pair of N10-
H102···O39 and O40-H401···N1 hydrogen bonds with inversion 
dimmers forming R42(8) and R44(16) ring motifs [50] (Figure 4). 
These dimmers are further connected by another hydrogen 
bond N10-H101···O39 in a two-dimensional network, thus 
forming layer shaped structures along b-axis (Figure 5). The 
best packing view for compounds III is obtained along b-axis. 
Details about all interactions are given in Table 3. 
 
3.3. Hirshfeld surface analysis 
 

For obtaining additional insight into the intermolecular 
interaction of molecular crystals, the Hirshfeld surface is a 
suitable tool for qualitative and quantitative study and mapping 
of intermolecular close contacts in molecular crystals. Figure 6 
shows the 3D Hirshfeld dnorm surfaces, the shape index and 
curvature for co-crystal III, which are achieved by mapping 
dnorm over the Hirshfeld surface in the range from -0.4870 to 
1.3305 a.u. for co-crystal III. This indicates interactions 
between neighboring molecules [51,52]. 
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Table 3. Geometry of inter- and intramolecular interactions for compound III. 
D–H···A D–H, Å H···A, Å D···A, Å θ(D–H···A), deg 
N10-H101···O39 i 0.84(4) 2.13(4) 2.883(4) 151(3) 
N10-H102···O39 ii 0.78(4) 2.05(4) 2.830(4) 176(4) 
O40-H401···N1 0.82 1.85 2.664(3) 171 
Symmetry codes: (i) x, 1+y, z; (ii) 1-x, 1-y, -z. 
 

 
Figure 4. A plot of molecules of the co-crystal III showing the formation of dimmers by intermolecular N-H···O and O-H···N hydrogen bonds forming 𝑅𝑅42(8) and 
𝑅𝑅44(16) ring motif. 
 

 
 

Figure 5. Packing view of molecules viewed down the b-axis within the unit cell of compound III. 
 

 
  

(a) (b) (c) 
 

Figure 6. Hirshfeld surface: (a) dnorm, (b) shape index, and (c) curvature for co-crystal III. 
 

In Figure 6a, we see that the long cyclic hydrogen bond 
between H102 and O39 is associated with two large red spots 
of the same size, as identical pair on the surface forming 
inversion dimers. Figure 6b shows the lack of self-comple-
mentary patches of triangles on the shape index surface, which 
symbolizes a weaker and longer C-H···π stacking. Figure 6c 
displays very small regions of green (relatively flat) separated 
by dark blue boundaries (large positive curvature), indicating 
the involvement of any aromatic-aromatic sequence in co-
crystal III. 

The corresponding 2-D fingerprint plots for Hirshfeld 
surfaces of compound III displaying major intermolecular 
interactions with their percentage of contribution to the total 
Hirshfeld surface area are shown in Figure 7 along with labeled 
intermolecular contact values [53]. Table 4 shows that H···H 
interaction following H···C/C···H interaction with 34.1 and 
13.5%, respectively, had a significant contribution among all 
total Hirshfeld surfaces. The O···H/H···O intermolecular 
interactions clearly appear as distinct spikes in the 2D 
fingerprint. 
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Table 4. Summary of the various intermolecular contacts contributed to the Hirshfeld surface for co-crystal III. 
Intermolecular interaction Contribution (%), >1.0 
H···H 34.1 
H···C/C···H 13.5 
F···H/H···F 11.3 
O···H/H···O 10.8 
C···C 9.0 
H···N/N···H 3.1 
F···C/C···F 2.9 
S···C/C···S 2.1 
O···C/C···O 1.7 
C…N/N…C 1.1 
 

   

   
 

Figure 7. 2D fingerprint plots of co-crystal III. 
 

(a) (b) 
 

(c) 
 

Figure 8. Energy framework diagram for (a) electrostatic, (b) dispersion and (c) total interaction energy. 
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The energy framework calculations is estimated from a 

single-point molecular wavefunction at B3LYP/6-31G(d,p) 
basis set [54,55]. The interaction energies viz., electrostatic, 
polarization, dispersion, and repulsion, between the molecular 
pairs were calculated. The visualization of different interaction 
energies; Coulomb interaction energy (red), dispersion energy 
(green), and total interaction energy (blue) of the compound 
are shown in Figure 8. The cylinders in the energy framework 
represent the relative strengths of molecular packing in 
different directions. The molecular pair-wise interaction 
energies calculated for the construction of energy frameworks 
are used to evaluate the net interaction energies. The total 
interaction energies for electrostatic, polarization, dispersion 
and repulsion are -124.8, -29.1, -16.5, and 147.8 kJ/mol, 
respectively. The total energy is -76.5 kJ/mol. 
 
4. Conclusions 
 

A supramolecular compound with different topologies has 
been prepared and structurally characterized. Single crystal X-
ray diffraction studies led to unambiguous structure determi-
nation. The different hydrogen bond interaction modes led to 
stabilization and formation of co-crystals. Hydrogen bonds are 
viewed as the strongest and most directional of the inter-
molecular interactions which play an incomparable role in the 
formation of supramolecular structure. The dihedral angle 
between aminobenzothiazol and fluorobenzoic acid moieties is 
170.78(8)°. Hirshfeld surface analysis was done to quantify and 
identify the robust synthons and to understand the overall 
packing pattern of the co-crystal. 
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