Eurj**Chem** European Journal of Chemistry

Check for updates

A corrected benzene nitration three-step mechanism derived by DFT calculation and MO theory

Hongchang Shi 🕩 *

Department of Chemistry, Tsinghua University, Beijing 100084, China

* Corresponding author at: Department of Chemistry, Tsinghua University, Beijing 100084, China. e-mail: shihc@mail.tsinghua.edu.cn (H. Shi).

RESEARCH ARTICLE

doi 10.5155/eurjchem.14.1.39-52.2340

Received: 24 August 2022 Received in revised form: 26 September 2022 Accepted: 02 November 2022 Published online: 31 March 2023 Printed: 31 March 2023

KEYWORDS

Nitration σ-Complex LC-wHPBE Mixed acid Nitronium ion DFT calculation

ABSTRACT

Density-functional theory (DFT) calculations at the LC-wHPBE/6-311++G(d,p) level found that the textbook three-step nitration mechanism of benzene in mixed acids was seriously wrong. Step 1 of generating nitronium ion (NO2*) is not spontaneous, the NO2* is generated by Lewis collision, and needs to overcome a barrier $E_a = 18$ or 22 kcal/mol in mixed acid or in nitric acid. Obtaining the E_a of the Lewis collision by quantum chemical calculations is a highlight of the study. The reaction system $(NO_{2^{+}} + H_2O) + HSO_4$ or $+ NO_3$ or $+ nH_2O$ $(n \ge 1)$ can make NO_{2^+} spontaneously change to HNO_3 through a poly(≥ 3)-molecular acidification. Sulfuric acid can greatly reduce [H₂O] and increase [NO₂+]. Therefore, the nitration rate in mixed acid is much faster than that in nitric acid. Step 2, $C_6H_6 + NO_2^*$, is an electrophilic addition, follows the transition state theory, and needs to overcome a low barrier, $\Delta E^* = 7$ kcal/mol. The product of Step 2 is the σ -complex C₆H₆-NO₂⁺. The essence of the electrophilic addition is the transfer of HOMO-1 electrons of C_6H_6 to LUMO of NO₂⁺. Step 3 is a spontaneous Lewis acid-base neutralization without any barrier, and generates the target product nitrobenzene $C_6H_5NO_2$. NO_2^+ and σ -complex are the two active intermediates in nitration. The benzene nitration rate control step is not Step 2 of generating σ -complex, but is Step 1 to generate NO₂⁺. The DFT calculation obtains the barriers E_a and ΔE^* , the reaction heats ΔH_{σ} and ΔH_p of each step of the nitration, resulting in the total nitration reaction heat $\Delta H = -35$ kcal/mol. It is consistent with the experimental ΔH = -34 kcal/mol. Based on the results, a corrected benzene nitration three-step mechanism proposed.

Cite this: Eur. J. Chem. 2023, 14(1), 39-52

Journal website: www.eurichem.com

1. Introduction

The nitration of benzene in mixed acid is an important reaction in the electrophilic substitution of aromatics, and thus it is always an indispensable content in the authoritative general or advanced organic chemistry textbooks [1-6]. Benzene reacts slowly with hot concentrated nitric acid to yield nitrobenzene, but if the reaction is carried out by benzene with a hot mixture (usually 1:2-4) of concentrated nitric acid and sulfuric acid, then it is much faster as the following Equation (1). In nitration, sulfuric acid is not consumed, but it greatly accelerates the reaction.

Over a hundred years, the nitration reaction mechanism has been extensively investigated. In 1904, Euler [7] suggested that the nitronium ion (NO₂⁺) is the nitrating agent. The classic aromatic nitration mechanism finally was established through subsequent large number of studies from many chemists [8-20], which took about half a century. Among them, the contribution of the Ingold group [12-20] to the mechanism is the largest. In organic chemistry textbooks [1-6], the classic nitration mechanism is shown as Scheme 1.

Step 1 (Scheme 1) is the hydroxyl oxygen of HNO₃ being protonated by H_2SO_4 in the mixed acid to generate NO_2^+ , and is a chemical equilibrium without any barrier. However, Step 1 means that HNO₃ reacts with two H_2SO_4 molecules, and it is able

to generate another positive ion H_3O^+ and another negative ion HSO_4^- . However, there is a key question without answer: is the left \rightarrow right spontaneous or need to overcome a barrier for the generation of NO_2^+ ? If there is a barrier, is it how high? As early as 1945, Ingold [21] had raised the question; Forming NO_2^+ may be 'unimolecular' or 'bimolecular', according as the heterolysis of the nitric acid molecule to yield the NO_2^+ is rate-determining step or not? But in 1950, Ingold, based on the N_2O_5 -H₂O freezing point diagram, concluded that the NO_2^+ ion is generated by an automatic proton transfer and an ion self-dissociation of the 2 HNO₃ (Equation (2)) [13,16].

In March's advanced organic textbook [5], the HNO₃ + $2H_2SO_4$ and HNO₃ + HNO₃ are even considered as an acid-base reaction. Apparently, he also thinks that the formation of NO₂⁺ is achieved by automatic or spontaneous proton transfer to form O₂N-OH₂⁺, then dissociated into NO₂⁺. Therefore, the generation of NO₂⁺ in Step **1** (Scheme 1) has always considered as a spontaneous process without barrier. But the nitration is carried out at 50-60 °C, there must be a barrier, and thus the barrier is judged to appear in Steps **2** and **3** in Scheme 1. In organic chemistry textbooks, Step **2** marks by the adjective, *slow*, showing that Step **2** is the rate-controlling step. In Step **3**, the σ -complex transfers the H proton of benzene ring to HSO₄⁻ or H₂O, it is considered as also need to overcome a barrier, but its barrier is lower than that of Step **2**, thus mark by the

European Journal of Chemistry

ISSN 2153-2249 (Print) / ISSN 2153-2257 (Online) – Copyright © 2023 The Authors – Atlanta Publishing House LLC – Printed in the USA. This work is published and licensed by Atlanta Publishing House LLC – CC BY NC – Some Rights Reserved.

https://dx.doi.org/10.5155/eurichem.14.1.39-52.2340

View Journal Online
View Article Online

Scheme 1. The popular textbook three-step nitration mechanism of benzene in mixed acid.

 $2 \text{ HNO}_3 \rightarrow \text{O}_2\text{N-OH}_2^+ + \text{NO}_3^- \rightarrow \text{O}_2\text{N}^+ + \text{H}_2\text{O} + \text{NO}_3^-$

adjective, *fast*. Many textbooks often give a potential energy curve with two barriers, and the barrier of Step **2** is higher than that of Step **3**, which again shows that Step **2** is the rate-controlling step (Scheme 1).

However, NO_{2^+} is a high-potential cation. Isn't there any barrier to be overcome for forming such an ion? In 1978, Sheats and Strachan [22] performed a kinetic study on the nitration mechanism of toluene in mixed acids. By using a stopped-flow spectrometer, they obtained the kinetic parameters of toluene nitration in 77.3 or 78.45 wt % sulfuric acid (Nitric acid: sulfuric acid \approx 1:3.4 or 1:3.6) and the activation energy of forming NO_{2⁺} was obtained by kinetic calculation, $E_a = 18.3 \pm 4.0$ kcal/mol. The E_a of the reverse reaction is 10.5 or 12.0±4.0 kcal/mol. The E_a of CH₃-C₆H₅ + NO_{2⁺} generating σ -complex is 5.9±0.1 and 6.3±0.5 kcal/mol, respectively. The results indicate that the rate control step of the nitration in mixed acids is not Step 2 in Scheme 1, but is Step 1 of generating NO_{2^+} . The barrier data of toluene nitration in mixed acid is the only experimental one in the literature so far. However, their method cannot determine which one of the two steps of forming NO_{2⁺} and σ -complex follows the transition state theory and which one follows the Lewis collision theory.

Last over 30 years, many groups have made quantum chemistry study on the aromatic nitration mechanism [23-33], but no one paid attention to how the nitronium ion NO₂⁺ be formed, and all focus on the *"rate-controlling step"*, Step **2** in Scheme 1. These *ab-initio* or DFT calculation studies on the C₆H₆ + NO₂⁺ mechanism have yielded great results. The results confirmed that the C₆H₆ + NO₂⁺ reaction follows the transition state theory and the product is an σ -complex (arylium ion). A recent research of Brinck group [33] is representative. They get by DFT calculation at M06-2x/6-311G(d,p) level that the addition barrier of forming the σ -complex of benzene is low, 3.1 kcal/mol (H₂O as solvent), and the reaction heat is -13.0 kcal/mole.

The nitration mechanism given in Scheme 1 is a three-step process, NO₂⁺ and the σ -complex are two active intermediates, and these contents are correct. However, the DFT calculations show that the rate-controlling step of the benzene nitration is not Step 2 of generating σ -complex, but is Step 1 of generating NO₂⁺. Step 3 of generating the target product is a spontaneous Lewis acid-base neutralization without any barrier.

2. Computational methods and frontier orbital theory

The DFT computation was carried out with Gaussian 16, Revision B.01 program [34] and DFT methods. LC-wHPBE [35] is a recommended version of the long-range corrected ω PBE functional. In 2014, Galano [36] found that LC-wHPBE was the best among 18 functional for kinetic calculations of radical reactions by using 6-311++G(d,p) basis set and experimental data as reference; and found that the second best functional is M06-2x [37]. One of our recent research on the solvolysis mechanism [38] of *t*-butyl chloride or bromide shows that the LC-wHPBE also is a suitable functional. Considering that benzene is a large conjugate molecule, the hydroxyl group of H₂O is a key active group, and negative ions (HSO4⁻, NO3⁻) appear in the nitration, the DFT calculation also uses the 6-311++G(d,p) basis set.

Kenichi Fukui's frontier orbital theory (FO) [39-41] is the most widely used molecular orbital theory (MO) to demonstrate the electron transfer process of many organic reactions. In the frontier orbital theory (FO), the bonding three-principles [42] are the basic conditions for chemical bonding, of which symmetry matching is the most critical. In order to show the electron transfer process in nitration, many structures are attached with their HOMO and LUMO images. However, for organic reactions, especially poly-molecular reactions, the frontier MOs are diverse. The HOMO-1 or LUMO+1 or other MOs are also often frontier MOs.

The solvent of the nitration reaction is a mixture of containing strong polar HNO₃, H₂SO₄, H₂O and product C₆H₅NO₂. Nitration is carried out in such a solvent, and thus the solvent effect must be included in the DFT calculation. However, the Gaussian program cannot calculate the solvent effect of the two strong acids. In order to estimate the solvent effect of the nitration, HCONH₂ ($\epsilon = 108.9$) is used as solvents to perform the simulation calculation. HCONH₂ was chosen because it has the highest polarity (H₂SO₄ $\epsilon \cong 100$), and it had already been used in a study [32] of the benzene nitration mechanism performed by DFT calculation. The Tomasi's polarizable continuum model IEFPCM [43-46] is used to calculate the solvent effects.

In the study, the energies obtained by the DFT calculation all have included the zero-point correction and the thermal correction to the Gibbs free energy, which allows the calculation to obtain the E_a and ΔE^* , reaction heat ΔH_{σ} and ΔH_p of the three

Step	5
1	$HNO_3 + H_2SO_4 \longrightarrow H_2O^+-NO_2 + HSO_4^-$
2	$H_2O^+-NO_2$ NO_2^+ + H_2O
3	$H_2O + H_2SO_4 \longrightarrow H_3O^+ + HSO_4^-$
	$HNO_3 + 2 H_2SO_4 \longrightarrow NO_2^+ + H_3O^+ + 2 HSO_4^-$

Scheme 2. Generating NO_{2^+} and H_3O_+ by $HNO_3 + 2H_2SO_4$ in the textbook mechanism.

(a)
$$H_2SO_4 \rightleftharpoons HSO_4^- + H^+$$

(b) $HO-NO_2 + H^+ \leftrightarrows H_2O^{+}-NO_2$
(3)

$$H_2SO_4 + n H_2O \xrightarrow{n \ge 3} (n-1) H_2O \cdots H_3O^+ + HSO_4^-$$
(4)

steps at default 298.15 K, and enables the data obtained from the DFT calculation to be compared with the experimental data.

3. Results and discussions

3.1. Generation of NO₂* in textbook mechanism is a wrong description

For the nitration of benzene, the electrophile NO₂⁺ must first be generated, as shown in Step **1** in Scheme 1. Step **1** is a reaction between one nitric acid and two sulfuric acid molecules. The product is 1 NO₂⁺, 1 H₃O⁺, and 2 HSO₄⁻. How did the NO₂⁺ and H₃O⁺ formed? Some textbooks [1,4] already explain: Step **1** in Scheme 1 is a three-step reaction as shown in Scheme 2. Step **1** in Scheme 2 generates a key active intermediate through the automatic proton transfer to HNO₃, σ -complex H₂O⁺-NO₂. Step **2** in Scheme 2 is the formation of NO₂⁺ by a spontaneous dissociation of the σ -complex. Finally, another product H₂O from Step **2** in Scheme 2 is protonated by the second H₂SO₄ molecule to form H₃O⁺ in Step **3** (Scheme 2).

However, the study shows that the three Steps **1-3** in Scheme 2 all are wrong. First, the σ -complex H₂O⁺-NO₂ cannot be formed in mixed acid. Second, here H₂O cannot also be protonated by H₂SO₄ to H₃O⁺ because the H₂SO₄ molecule is not in water but is in mixed acid. Note that, in some textbooks [1,3], Step **1** in Scheme 1 is HNO₃ + H₂SO₄ \leftrightarrows NO₂⁺ + H₂O + HSO₄⁻, so only Steps **1** and **2** in Scheme 2 exist. Of course, these two steps are also wrong.

The DFT calculation shows that HNO₃ and H₂SO₄ or 2HNO₃ cannot react spontaneously to form σ -complex H₂O⁺-NO₂. Then, how is the H₂O⁺-NO₂ in the textbooks formed? Apparently, it is a classic acid-base neutralization process [5], HNO₃ + H₂SO₄ is through the reaction in Equation (3).

However, in mixed acid, there is no such H₂SO₄ automatic dissociation to form the free H⁺, because the O-H bond in the H₂SO₄ or HNO₃ molecule is an σ -bond with high strength, so there is no automatic protonation either.

The **1** is the optimized initial structural of H₂SO₄ (Figure 1) and **2** is the optimized product structure after H₂SO₄ being dissociated (Figure 1). From **1** and **2** (Figure 1), the dissociation energy is $\Delta E = E_1^* - E_1 = 0.235030$ a.u. = 147.4 kcal/mol. Also using *ab-initio* MP2 to perform this calculation, the $\Delta E = 0.237408$ a.u. = 148.9 kcal/mol. It has a high dissociation energy, indicating that it is impossible to generate free H⁺ ion by automatic dissociation of H₂SO₄ in mixed acid. The dissociation of H₂SO₄ in Equation (3a) does not exist in mixed acid.

The **3** is an initial structural setting of σ -complex H₂O⁺-NO₂ after HNO₃ is protonated by H⁺ (Figure 1) and **4** is the optimized

structure of **3** (Figure 1). The **4** shows that the σ -bond of H₂O⁺-NO₂ has been broken, that is, the H₂O⁺-NO₂ become to H₂O and NO₂⁺ after optimization. A stable σ -complex will definitely exist in its optimized structure (Ex. C₆H₆-NO₂⁺ behind). The above results show that there is no free H⁺, also no σ -complex H₂O⁺-NO₂ in the mixed acid. The formation of NO₂⁺ does not occur through the dissociation of H₂O⁺-NO₂, but rather through another pathway.

If the hydroxyl oxygen protonation of HNO₃ can form the H₂O⁺-NO₂, then H₂O + NO₂⁺ can also form the σ-complex, but why cannot the two form the σ-complex? The **5** and **6** is an optimized structure of NO₂⁺ + H₂O with HOMO and LUMO images and energy *E*' (Figure 1). This is an Opt = Modredundant calculation with freezing coordinates (H₂O···NO₂⁺ = 2.000 Å).

The nature of generating σ -complex by NO₂⁺ and H₂O is the transfer of HOMO electrons of H₂O to LUMO of NO₂⁺. According to the "+*" and "-*" in the HOMO of **5** and the "-*" in the LUMO of **6**, the symmetry of the two frontier MOs non-match (Figure 1). At the same time, the energy of internuclear repulsion increases N···O approaches each other. The energy *E'* of the systems **5** or **6** is 6.6 kcal/mole higher than the *E*₁ of **4**. If the σ -complex is set to H₂O···NO₂⁺ = 1.5 Å, the DFT calculation gives that its energy rises by 24.7 kcal/mol. These show that electron transfer HOMO \rightarrow LUMO cannot occur, and therefore, even though H₂SO₄ can automatically form H⁺ (Equation 3a), protonation (HNO₃ + H⁺) cannot also form the σ -complex intermediate H₂O⁺-NO₂ does not exist in the mixed acid, that is, the two chemical equilibriums **1** and **2** in Scheme 2 are wrong.

The following needs to continue to examine the Step **3** in Scheme 2. If the H_2SO_4 molecule is in water, the proton of its - OH group can easily be transferred to a H_2O molecule. However, the DFT calculation shows that the generation of H_3O^+ in water also is not a simple bimolecular reaction of $H_2SO_4 + H_2O$. It is a poly- $(n \ge 4)$ molecular proton-transfer process.

In Figure 2, the system **1** is the optimized initial structure of one H₂SO₄ molecule and three H₂O molecules, and system **2** is the optimized product structure. It can be seen from **2** (Figure 2), H₃O⁺ spontaneously formed and released reaction heat $\Delta H = E_p - E_1 = -0.018454$ a.u. = -11.6 kcal/mol. If the number of water molecules is increased, the bond length of the H₃O⁺ will be shorter and the reaction heat released will increase. Therefore, H₂SO₄ tends to form H₃O⁺ in water. The protonation of H₂O is a spontaneous poly-molecular (H₂SO₄ + nH₂O, $n \ge 3$) proton transfer. The generation of H₃O⁺ can be expressed as Equation (4). Note that it is not a chemical equilibrium.

Figure 1. 1 is the optimized structure of H_2SO_4 . **2** is the optimized product structure after H_2SO_4 proton dissociation. **3** is an initial structure setting of HNO_3 hydroxyl oxygen protonation; **4** is an optimized structure of **3** and energy E_1 . **5** and **6** are an optimized structure setting of $NO_2^+ + H_2O$ with HOMO and LUMO images and energy E'. The solvent is HCONH₂. In **2**, $-O^- \cdots H^+ = 3.500$ Å; In **5** and **6**, $H_2O \cdots NO_2^+ = 2.000$ Å, the Chem3D orbital iso-contour = 0.05.

Figure 2. The systems **1** and **2** are the formation of H_3O^+ in water by $H_2SO_4 + 3H_2O$. The systems **3** and **4** are H_2SO_4 and H_2O in mixed acid by Lewis collision to generate H_3O^+ . The systems **1** and **2**, H_2O as solvent. The systems **3** and **4**, HCONH₂ as solvent. The atom coordinates of structures **1-4** see the Supplementary material, S1.

Even in water, if H_2SO_4 molecules only interact with one or two H_2O molecules, they cannot spontaneously form H_3O^+ . Fortunately, H_2O molecules are everywhere in water.

The state of H_2SO_4 in mixed acid is completely different from that of water. The **3** in Scheme 2 gives a chemical equilibrium for the formation of H_3O_+ , but the authors [1,4,5] do not take into account that the H_2SO_4 molecule is in mixed acid and is not in water.

For the nitration in mixed acid, usually HNO₃:H₂SO₄ = 1:2-4. If the ratio is 1:2, and the nitric acid is with 30% water, it is easy to calculate that ten H₂SO₄ molecules in the mixed acid can only get eight H₂O molecules to complex with them, that is, on average, one H₂SO₄ molecule cannot get one H₂O molecule to complex. This makes the formed NO₂⁺ difficult to be acidified by H₂O molecules, which increases the lifetime of NO₂⁺. Therefore, NO₂⁺ is easy to survive in mixed acid. A potential energy surface scan (PES) calculation can show that in mixed acid the NO₂⁺ and H₃O⁺ can only be generated by a Lewis collision between H₂SO₄ and H₂O molecules.

The **3** is the optimized complex structure of $H_2SO_4 + H_2O$ (Figure 2). The distance between the hydroxyl H of H_2SO_4 and the O of H_2O is 1.521 Å, and thus it is a strong complex. The **4** is the product structure after the Lewis collision. It is an Opt = Modredundant calculation under freezing coordinates ($HOSO_3^-\cdots H_3O^+ = 3.200$ Å), because there is no the stable product structure of $H_3O^+ + HSO_4^-$. From Figure 2, the **3** and **4**, $E_a = E_p - E_1 = 0.043837$ a.u. = 27.4 kcal/mol, is a high barrier. The chemical Equilibrium (3) in Scheme 2 can be expressed as Equation (5).

Left \rightarrow right in Equation (5), H₂SO₄ and H₂O become into products H₃O⁺ + HSO₄⁻ is through a Lewis collision. It needs to overcome a high barrier 27.4 kcal/mol, which indicates that it is difficult to form H₃O⁺. The reverse process right \rightarrow left is a spontaneous bimolecular Lewis acid-base neutralization, indicating that once H₃O⁺ formed, no matter where it is around HSO₄⁻, these two will immediately change back to H₂SO₄ and H₂O, and release the same energy, -27.4 kcal/mole. This shows that the number of H₃O⁺ in mixed acids is actually zero because it is not a stable intermediate, that is, the chemical equilibrium Step **3** in Scheme 2 does not exist in mixed acid. Therefore, the Step **1** is wrong in Scheme 1. As you will see below, NO₂⁺ from Lewis collision is different from the H₃O⁺: it is a stable active intermediate in mixed acid.

3.2. Generating active intermediate NO_{2⁺} by Lewis collision

The study shows that the generation of NO₂⁺ is not through the formation and dissociation of the fictitious σ -complex H₂O⁺-NO₂ (Scheme 2, Steps **1** and **2**). NO₂⁺ is directly generated by the Lewis collision between a HNO₃ and a H₂SO₄ or between 2HNO₃ molecules, but it needs to overcome the highest-barrier in the three-step nitration. Generating NO₂⁺ by Lewis collision needs to meet three conditions.

First, the collision products must be good leaving groups. The generation of NO_2^+ in mixed acid can consider as a HNO_3 and a H_2SO_4 molecule collide to form a NO_2^+ , a H_2O and a HSO_4^- . These three products are good leaving groups in mixed acid or strong polar solvents. Second, the generation of NO_2^+ is through Lewis collision, which does not follow the transition state theory, and thus there is no transition state (TS) barrier in the collision path. A potential energy surface scan calculation shows that there is no transition state barrier along the collision path of forming NO₂. Figure 3 is the optimized initial structure with the collision path (red dotted line) between HNO3 and H₂SO₄. This is the most direct and reasonable Lewis collision path. The distance between the H atom of H₂SO₄ and the oxygen of the -OH group of HNO₃ is 1.870 Å. The optimization result also shows that HNO₃ cannot be automatically protonated by H₂SO₄ to form water and NO₂⁺. If the H···OH length is \leq 1.015 Å, it will bond to form H₂O. Therefore, the interval of the scan is 1.870-1.015 Å. Figure 4 shows the energy curve of the potential energy surface scan (PES). The energy keeps rising with the approach of the distance between the H atom of H₂SO₄ and the -OH of HNO₃, the energy is the highest at when it reaches 1.015 Å, and is higher 22.0 kcal/mole than that at 1.870 Å. This proves that there is no transition state barrier in the path of Lewis collision. Third, the opt calculation of the product system must show that the $NO_{2^{+}}$ from Lewis collision is a stable active intermediate, which ensures that NO2+ has a measurable concentration in solution. The barrier get by Lewis collision called activation energy E_{a} . Note that if a reaction follows the transition state theory, its barrier is called as the activation barrier. labeled as ΔE^* .

The E_a calculation only requires the energies of optimized initial structure and optimized product structure before and after collision of HNO₃ and H₂SO₄, but without having to consider how the collision proceeds [38]. The initial structure of the two molecules with the lowest energy before collision is generally easy to determine. However, the product structure after collision is often difficult to do because there are many different product configurations after collision, which needs to find the product system that NO₂⁺ is a stable intermediate.

The **1** is the optimized initial structure and the energy E_1 of HNO₃ + H₂SO₄ before collision (Figure 5); **2** is the optimized product structure and energy E_1^* after collision (Figure 5). For the optimized product **2**, here H₂O and HSO₄⁻ are on both sides of NO₂⁺, and NO₂⁺ has good linearity, \angle ON⁺O = 176.7°. This is an Opt calculation, the three are a stable product system, that is, the NO₂⁺ is an independent and stable active intermediate. Of course, \angle ON⁺O ≠ 180° showing that there is a weak electrostatic interaction between the three, but this is normal in solution.

The energy E_1^* of product **2** is higher than the energy E_1 of initial structure **1** (Figure 5). The elevated energy is the E_a of forming NO₂⁺, $E_a = E_1^* - E_1 = 0.028058$ a.u. = 17.6 kcal/mol, is not high, but in the three-step nitration of benzene, the barrier is the highest. The barrier obtained by the DFT calculation is consistent with Sheats' experimental E_a of toluene 18.3±4 kcal/mol [22]. Note that the structure of Figure 3 cannot be used for the initial structure, because the bimolecular system does not have the lowest energy; it is 2.8 kcal/mole higher than that of **1** (Figure 5). The calculation of E_a must use the **1** initial structure with the lowest energy (Figure 5).

Based on the barrier and the stability of NO_2^+ , $[NO_2^+]$ is high at 50-60 °C, that is, NO_2^+ is a measurably stable intermediate. Therefore, the Lewis collision reaction in Figure 5 can be expressed as Equation (6), a chemical equilibrium.

Left \rightarrow right shows that a H₂SO₄ and a HNO₃ molecule become to products NO₂⁺ + H₂O + HSO₄⁻ through a Lewis collision, which makes a bimolecular system becomes a trimolecular one, later will prove that right \rightarrow left is NO₂⁺ to be acidified back to HNO₃ and H₂SO₄, which is a spontaneous trimolecular electrophilic substitution, NO₂⁺ is the electrophile, and thus there is no reverse barrier in the equilibrium.

Figure 3. An optimized structure of H₂SO₄ and HNO₃ with a Lewis collision path (red dotted line).

Figure 4. The potential energy surface scan curve along the collision path R (HO₃SOH···O(H)NO₂).

Figure 5. Generating NO₂+ by Lewis collision of HNO₃ and H₂SO₄ in mixed acid. **1** is the optimized initial structure and energy E_1 ; **2** is the optimized product structure and energy E_1^* after an effective collision obtained by DFT calculation at the LC-wHPBE/6-311++G(d,p) level. The solvent is HCONH₂. The atom coordinate tables of structures **1** and **2** are presented in the Supplementary material, S2.

However, although the reverse reaction is spontaneous, the ternary molecule system in Figure 5, 2 takes quite a long time to form an effective tri-molecular acidification system, which gives NO_{2^+} a considerable lifetime, that is, it can form a measurable $[NO_{2^+}]$ in the H_2SO_4 + HNO_3 solution. Therefore, Equation (6) is a good chemical equilibrium.

Generating NO₂⁺ in nitric acid also occurs through the Lewis collision between two HNO₃ molecules. The **1** is the optimized initial structure and energy E_1 of 2HNO₃ before collision (Figure 6), **2** is the optimized product structure and energy E_1^* after collision (Figure 6). The optimized product structure **2** also is a stable opt structure, but different from the collision product structure between HNO₃ and H₂SO₄ (Figure 5), the products

H₂O and NO₃⁻ are on the same side of NO₂⁺ and are close to each other. Due to such a configuration, the three are easy to form a tri-molecular acidification system (See Section **3.3**, Figure 7, **5**). The \angle ON⁺O = 173.2°, showing that the NO₂⁺ linearity is worse than that in mixed acid. Therefore, the stability of NO₂⁺ in nitric acid is not as good as in mixed acid.

From Figure 6, the **1** and **2**, $E_a = E_1^* - E_1 = 0.034431$ a.u. = 21.6 kcal/mol, showing that the collision between the 2 HNO₃ needs to overcome a much higher barrier E_a than the HNO₃ + H₂SO₄ in mixed acid. The Lewis collision reaction in Figure 6 can be expressed as Equation (7).

Figure 6. Generating NO₂* by Lewis collision between two HNO₃ molecules: **1** is the optimized initial structure and energy E_1 of 2 HNO₃ before collision; **2** is optimized product structure and energy E_1^* after collision. The solvent is HCONH₂. The atom coordinate tables of structures **1** and **2** are presented in the Supplementary material, S3.

Equation (7) also is a chemical equilibrium [47], the left \rightarrow right shows that the two HNO₃ molecules become into the product NO₂⁺ + H₂O + NO₃⁻ through a Lewis collision, and that makes the bimolecular system becomes a tri-molecular one, but the E_a is much higher than in mixed acid. The right \rightarrow left is the NO₂⁺ to be acidified into 2 HNO₃, which is a spontaneous trimolecular electrophilic substitution. Due to the fact that NO₂⁺ is not an adequate stable ion in nitric acid, the rate at which NO₂⁺ is acidified is much faster than in mixed acid. Therefore, the [NO₂⁺] is much lower than that in mixed acid. Although Equation (7) is a chemical equilibrium, it is not a good one.

The E_a of generating NO₂⁺ is 21.6 kcal/mol, which is 4 kcal/mol higher than in mixed acid. This is a big increase for reaction barrier. Ingold [15,16] referred to the generation of NO₂⁺ in nitric acid as an automatic "*self-dissociation*" of 2HNO₃ molecules. However, the "*self-dissociation*" is not only incorrect, but also needs to overcome a barrier much higher than in mixed acid.

3.3. Acidification of NO_2^* is a spontaneous poly(\geq 3)molecular electrophilic substitution

The DFT calculation found that the nitronium ion NO₂⁺ is easily acidified back to the HNO₃ molecule. The system in mixed acid is a tri-molecular one NO₂⁺ + H₂O + HSO₄⁻ (Equation (6), right \rightarrow left). A similar tri-molecular system NO₂⁺ + H₂O + NO₃⁻ (Equation (7), right \rightarrow left) also exists in pure nitric acid. For the benzene nitration in nitric acid, the acidification system NO₂⁺ + nH₂O ($n \ge 2$) also exists because there are large amount of water in nitric acid. The acidification is a spontaneous poly(\ge 3)molecular electrophilic substitution. NO₂⁺ ion is the electrophile. The HSO₄⁻ or NO₃⁻ or H₂O is the proton acceptor.

It is generally believed that NO₂⁺ is acidified through a twostep reaction: NO₂⁺ + H₂O \rightarrow O₂N-OH₂⁺ + H₂O \rightarrow HONO₂ + H₃O⁺, but the two-step acidification is incorrect. As mentioned above (Section **3.1**), the NO₂⁺ and one H₂O molecule cannot form the σ -complex (Figure 1, **3-6**).

1 shows an initial tri-molecular structure setting of $NO_2^+ + H_2O + HSO_4^-$ (Figure 7), **2** is the optimized structure of **1**, the optimization generates a HNO₃ and a H₂SO₄ molecule (Figure 7). In the tri-molecular acidification, NO₂⁺ combines with the H₂O at the same time the HSO₄⁻ ion accepted a proton H⁺ of the H₂O, and thus a H₂SO₄ and a HNO₃ are formed. **1** \rightarrow **2** is the reverse reaction in Equation (6).

The electrophilic substitution process for acidification of NO_2^+ is also the transfer of frontier MO electrons of H_2O to LUMO of NO_2^+ . NO_2^+ and HSO_4^- are acidified to HNO_3 and H_2SO_4

in one step. The products **3** and **4** are the optimized structure of the setting **1** with HOMO-3 and LUMO images and energy E'(Figure 7). This also is an Opt = Modredundant calculation under freezing coordinates (H₂O···NO₂⁺ = 2.661 Å). Since HSO₄⁻ is a negative ion, the HOMO, HOMO-1 and HOMO-2 are all on it, so the frontier MOs of the optimized tri-molecular system are the HOMO-3 on H₂O and LUMO on NO₂⁺. The orbital symmetry of HOMO-3 (+*) and LUMO (+*) matches, and thus the electron transfer HOMO-3 \rightarrow LUMO can proceed. Similarly, **5** is an initial tri-molecular structure setting of NO₂⁺ + H₂O + NO₃⁻, **6** is the optimized structure of **5**, showing that the optimization spontaneously generates two HNO₃ molecules (Figure 7).

The electron transfer process of the tri-molecular acidification of $NO_2^+ + H_2O + NO_3$ is similar to $NO_2^+ + H_2O + HSO_4^-$ (Figure 7, 3 and 4) in mixed acid. However, in nitric acid, there is 30-35% water. $NO_2^+ + nH_2O$ ($n \ge 2$) is also easy to come back HNO₃.

 $NO_{2^{+}} + 2H_2O$ also is a tri-molecular electrophilic substitution and follows transition state theory, it is not a spontaneous reaction. This is because HSO_4^- , NO_3^- are strong Lewis alkali, but H_2O is weak one. **1** and **2** are the optimized initial structure with HOMO and LUMO and energy E_1 (Figure 8). The orbital symmetry of the HOMO (p orbital "+*", "-*" of H_2O 1, Figure 8) and the LUMO (p orbital "+*", "-*" of the N atom) in NO_2^+ is compatible. Therefore, the HOMO electrons of H_2O 1 (Figure 8) can be transferred to the LUMO of NO_2^+ .

The **3** is the transition state TS structure with HOMO-1 image, here a small amount of HOMO electrons has transferred to the two oxygen atoms of NO₂⁺ (see inside curly brackets) (Figure 8). Note that this is a tri-molecular reaction; the pair of HOMO electrons of H₂O (Figure 8) in **1** is not always in the HOMO orbital of thr reaction system during the electron transfer process. In the TS, the frontier MO electron of H₂O 1 (Figure 8) is now in the HOMO-1 (HOMO is not given here). From **1** and **3**, $\Delta E^* = 0.009029$ a.u. = 5.7 kcal/mol (Figure 8). The barrier is low, so the electron transfer is similar to be a spontaneous process.

4 is the optimized product structure with HOMO image of the tri-molecular acidification (Figure 8). The H_2O 1 in Figure 8 has completed the electron transfer and HNO₃ has been generated. At the same time, the H_2O 2 (Figure 8) molecule accepts the proton of H_2O 1, the H_3O^+ ion has been generated, and thus the tri-molecular electrophilic substitution is completed.

Figure 7. Products 1 and 5 are an initial tri-molecular structure setting of $NO_2^+ + H_2O + HSO_4^-$ and $NO_2^+ + H_2O + NO_3^-$. Products 2 and 6 are the optimized product structures of 1 and 5. Products 3 and 4 are the optimized initial structure setting of 1 with HOMO-3 and LUMO images and energy E' under freezing coordinates $H_2O \cdots NO_2^+ = 2.661$ Å. The solvent is HCONH₂. Chem3D Orbital iso-contour = 0.05.

The DFT calculation shows that if the acidification of NO₂⁺ is carried out under the action of 2-5H₂O molecules, it needs to overcome a barrier of 1-6 kcal/mol. The barriers are very low, and thus they are an approximately spontaneous reaction. The study found that if NO₂⁺ is to spontaneously complete the acidification by water, at least six H₂O molecules must participate in the reaction. The **1** is an initial structure setting of NO₂⁺ + 6H₂O, a seven molecular reaction system (Figure 9). The product **2** is the optimized product structure of **1** (Figure 9).

The acidification of NO₂⁺ in Figure 9 is a spontaneous sevenmolecular electrophilic substitution [38]. The products are HNO₃ and H₃O⁺. The four H₂O molecules, H₂O and H₂O 4-6 played a catalytic role in the reaction. Of course, such a spontaneous seven-molecular acidification is completely impossible in mixed acids. It is estimated that even in nitric acid, the chance of occurrence also is extremely small.

In mixed acid, although [H₂O] is greatly reduced, there is a content of ~10%. The tri-molecular acidification (Figure 7, $1\rightarrow 2$) is spontaneous and fast, and thus the benzene nitration often maintains at 50-60 °C and under effective stirring. This can increase [NO₂⁺], and enables that once NO₂⁺ is formed, benzene molecules can be nitrated immediately.

Nitric acid contains 30-35% water, which is very high. The molecular weight of HNO₃ is 3.5 times that of H₂O, that is, the mole amount of H₂O in nitric acid is about 1.5 times that of HNO₃. Therefore, in nitric acid, there is not only an acidification path of NO₂⁺ + H₂O + NO₃⁻, but also NO₂⁺ can be quickly acidified by water, and therefore [NO₂⁺] in nitric acid is extremely low. It is inevitable that the nitration of benzene is difficult to perform in nitric acid.

3.4. Generating σ -complex intermediate by electrophilic addition of C₆H₆ and NO₂⁺

The DFT calculation shows that the electrophilic addition of NO₂⁺ and C₆H₆ generate an σ -complex intermediate, it follows the transition state theory, and need to overcome a low activation barrier ΔE^* . NO₂⁺ is the electrophile. **1** and **2** show the optimized initial structure with HOMO and HOMO-1 of C₆H₆ and energy E_1 (Figure 10). The HOMO and HOMO-1 are two degenerate orbitals. The orbital energy difference of HOMO and HOMO-1 is also a frontier MO (Figure 10). **3** is the optimized initial structure with LUMO image of NO₂⁺ (Figure 10). Note that the LUMO and LUMO+1 of NO₂⁺ both are approximately the degenerate

47

Figure 8. The systems **1** and **2** are the optimized initial structure with HOMO and LUMO images, and Energy E_1 of NO₂⁺ + 2H₂O system. **3** is the transition state TS with HOMO -1 and energy E_1^* , **4** is the optimized product structure with HOMO images and energy E_p . Chem3D, Orbital iso-contour = 0.05. The solvent is HCONH₂. The coordinate tables of structures **1-4** see Supplementary material, S4.

Figure 9. The acidification of NO_2^* + $6H_2O$ is a spontaneous seven-molecular electrophilic substitution. 1 is the initial structure setting of the seven-molecular system. 2 is the optimized product structures of 1.

orbitals (ΔE_{LL+1} = 0.01 eV). Therefore, LUMO+1 is also a frontier MO. However, the LUMO+1 and the HOMO or HOMO-1 do not match, so the optimized initial structure with the LUMO+1 image is not shown.

The $C_6H_6 + NO_2^*$ is an electrophilic addition between both. The essence of the addition is the transfer of HOMO-1 electrons of C_6H_6 in **2** to the LUMO orbital of NO_2^* in **3** (Figure 10). From **2** and **3**, the orbital symmetry of the HOMO-1 (+*, **) of C_6H_6 and the LUMO (+*, -*) of NO_2^* matches (Figure 10). Therefore, the HOMO-1 electrons of C_6H_6 can transfer to the LUMO of NO_2^* .

4 is the transition state (TS) structure with the HOMO image and the energy E_1^* (Figure 10). The C···NO₂⁺ distance is 2.261 Å (Figure 10). The transfer of HOMO electrons of C₆H₆ in TS to the LUMO of NO₂⁺ does not appear. This is the inevitable result of the symmetry mismatch between **1** and **3**. **5** is the TS structure with HOMO-1 image. In the TS, many HOMO-1 electrons of C_6H_6 have transferred to the C- - NO₂⁺ region (see inside blue braces). This is also the inevitable result of the symmetry match between **2** and **3**. **4** and **5** indicate that the symmetry matching between two frontier MOs is a necessary condition for the realization of electron transfer. It can be seen from Figure 10 **2**, **3** and **5**, the frontier MOs electron-transfer of the electrophilic addition is HOMO-1 **2** \rightarrow LUMO **3**.

From the initial structure energy E_1 and the energy E_1^* of TS, the activity barrier of NO₂⁺ and C₆H₆ electrophilic addition $\Delta E_1^* = E_1 - E_1^* = 0.010975$ a.u = 6.7 kcal/mol (Figure 10). The barrier (HCONH₂ as solvent) is consistent with Sheats's [22] two barriers 5.9±0.1 and 6.3±0.5 kcal/mol of the generated toluene σ -complex.

Table 1. The optimized initial energy E_1 , the TS energy E_1^* , the optimized σ -complex energy E_σ , activation barrier ΔE^* , reverse barrier ΔE_r^* and the reaction heat ΔH_σ of generating σ -complex in HCONH₂ obtained by DFT calculation at the LC-wHPBE, M06-2x, M05-2x/6-311++G(d,p) level.

DFT method	E1 (a.u.)	<i>E</i> ₁ * (a.u.)	<i>E</i> σ (a.u.)	ΔE^*	ΔE_{r}^{*}	ΔH_{σ} (kcal/mol)	
LC-wHPBE	-436.701413	-436.690750	-436.717861	6.7	17.0	-10.3	
M06-2x	-436.820069	-436.815555	-436.838644	2.8	14.5	-11.7	
M05-2x	-436.937376	-436.935834	-436.959364	1.1	14.8	-13.8	

Figure 10. The **1**, **2** and **3** are the optimized initial structure with HOMO, HOMO-1 and LUMO, and system energy *E*₁; **4** and **5** are the transition state TS structure with HOMO, HOMO-1 images and energy *E*₁*. **6** is an optimized product structure with HOMO-1 and energy *E*₀. Orbital iso-contour = 0.04. The bond distance is in Å. Angle is in degree. The solvent is HCONH₂. The atom coordinate tables of structures **1**-6 see the Supplementary material, S5.

It is reasonable that toluene has a lower barrier of generating σ -complex than benzene, because toluene has a higher reactivity than benzene.

The **6** is the optimized product structure with the HOMO-1 image and energy E_{σ} (Figure 10). The σ -complex of C₆H₆ + NO₂⁺ has been generated. The σ -C-NO₂⁺ bond is 1.517 Å. At this time, almost all HOMO-1 electrons have transferred to the σ -C-NO₂

area. This further shows that the essence of the electrophilic addition is the transfer of HOMO-1 electrons of C₆H₆ to LUMO of NO₂⁺. From **2** and **6**, the reaction heat is $\Delta H_{\sigma} = E_{\sigma} - E_1 = -0.016448$ a.u. = -10.3 kcal/mol, showing that the σ -complex is a stable intermediate (Figure 10). Since the electrophilic addition of NO₂⁺ + C₆H₆ follows the transition state theory, there is an inverse barrier ΔE_r^* for the addition.

Table 2. The optimized initial structure energy E_1 , optimized product structure energy E_p , and released reaction heat ΔH_p of generating final products of σ -C₆H₆-NO₂⁺ + HSO₄⁻ or + NO₃⁻ or + H₂O in HCONH₂.

Reaction	<i>E</i> ₁ (a.u.)	<i>E</i> _p (a.u.)	$\Delta H_{\rm p}$ (kcal/mol)
$1 \rightarrow 2 \sigma$ -C ₆ H ₆ -NO ₂ ⁺ + HSO ₄ ⁻ \rightarrow C ₆ H ₅ NO ₂ + H ₂ SO ₄ (Figure 11)	-1136.310969	-1136.380100	-43.4
$3 \rightarrow 4 \sigma$ -C ₆ H ₆ -NO ₂ ⁺ + NO ₃ ⁻ \rightarrow C ₆ H ₅ NO ₂ + HNO ₃ (Figure 11)	-717.088022	-717.167531	-49.9
$5 \rightarrow 6 \ \sigma\text{-}C_6H_6\text{-}NO_2^+ + H_2O \rightarrow C_6H_5NO_2 + H_3O^+ (Figure 11)$	-513.105180	-513.140748	-22.3

Table 3. $E_{a_p}\Delta H_{a_p}$ and ΔH_p (here take the integer according to rounding after the decimal point) and total reaction heat ΔH of benzene nitration obtained by DFT calculation at the LC-wHPBE/6-311++G(d,p) level. HCONH₂ as solvent.

Nitration solvent	Ea	ΔH_{σ}	$\Delta H_{\rm p}$	ΔH (kcal/mole)
Mixed acid	18	-10	-43	-35
Nitric acid	22	-10	-50	-38

From **5** and **6**, $\Delta E_r^* = 0.027111$ a.u. = 17.0 kcal/mol (Figure 10). Sheats [22] gave the reverse activation energy of toluene generating NO₂⁺ to be 10.5 or 12.0±4.0 kcal/mol. The barrier is consistent with the inverse barrier 17.0 kcal/mol for C₆H₆ + NO₂⁺. This is because Sheats's detection method cannot determine whether the reaction follows the transition state theory or is through Lewis collision, so he cannot determine the reverse barrier should attribute to the ΔE_r^* of toluene generating σ -complex.

Table 1 lists the activation barriers ΔE^* and the reaction heat ΔH_{σ} of the forming σ -complex obtained by the DFT calculation at the LC-wHPBE/6-311++G(d,p) level. The barrier is consistent with the experimental data [22]. The reaction heat ΔH_{σ} from the DFT calculation are -10.3 kcal/mol, showing that the σ -complex is a stable intermediate. The ΔH_{σ} is closer to the experimental value (-7.4 kcal/mol) than that (-13.0 kcal/mol) of Brinck group [33].

Table 1 also presents the results of the DFT calculation at the M06-2x and M05-2x/6-311++G(d,p) level [48]. Clearly, the barriers ΔE^* of generating σ -complex of C₆H₆ + NO₂⁺ are much lower than those obtained by LC-wHPBE, but the released reaction heats ΔH_{σ} are much larger than those obtained by LCwHPBE. These ΔE^* , ΔE_r^* , and ΔH_{σ} data are greatly deviated from the experimental results [22]. Especially the results of M05-2x are the worst.

Furthermore, if the old functional B3LYP or B3P86 or B3PW91 is used in the DFT calculation, the $C_6H_6 + NO_2^+$ addition is spontaneous without any barrier, the result is highly inconsistent with the experiment [22]. Therefore, these old functionals are more than not suitable for the study of the mechanism of benzene nitration. In fact, the LC-wHPBE functional is the best for mechanism research [36].

3.5. Last Step 3 of benzene nitration is a spontaneous Lewis acid-alkali neutralization

The DFT calculations found that the σ -complex C₆H₆-NO₂⁺ can complete the last Step **3** (Scheme 1) with the HSO₄⁻ or NO₃⁻ ions or the H₂O molecule through a spontaneous Lewis acid-base neutralization, and release a lot of heat. That is, Step **3** in Scheme 1 of generating product nitrobenzene is a spontaneous reaction and does not need to overcome any barrier.

The **1**, **3**, and **5** show the optimized initial structures of σ -C₆H₆-NO₂⁺ + HSO₄⁻ or + NO₃⁻ or + H₂O (Figure 11). The HSO₄⁻ or NO₃⁻ or H₂O definitely is on the side of σ -C₆H₆-NO₂⁺, which can ensure that it is a stable initial structure. There is considerable electrostatic interaction between the positive and negative two ions. It is important to include the energy of the interaction between the two ions to correctly calculate the reaction heat of Step **3** (Scheme 1). The **2**, **4** and **6** show the optimized product structures of σ -C₆H₆-NO₂⁺ + HSO₄⁻ or + NO₃⁻ or + H₂O (Figure 11). The product nitrobenzene C₆H₅-NO₂ + H₂SO₄ or + HNO₃ or + H₃O⁺ all generated, showing that the nitration reaction has ended.

The optimized initial system energies E_1 , optimized product energy E_p , and released reaction heat ΔH_p of $\mathbf{1} \rightarrow \mathbf{2}, \mathbf{3} \rightarrow \mathbf{4}$ and $\mathbf{5} \rightarrow \mathbf{6}$ (Figure 11) are listed in Table 2.

From Table 2, the $1 \rightarrow 2$ and $3 \rightarrow 4$ are a strongly exothermic reaction, the heats are -43.4 and -49.9 kcal/mole (Figure 11). The reason for releasing so much heat is that the σ -C₆H₆-NO₂⁺ is a strong Lewis acid, HSO₄⁻ or NO₃⁻ is a strong Lewis base, and therefore $1 \rightarrow 2$ and $3 \rightarrow 4$ are a strong acid-base neutralization.

The $\mathbf{5} \rightarrow \mathbf{6}$, ΔH_{p} is -22.3 kcal/mol (Figure 11). The heat released is much less than that of $\mathbf{1} \rightarrow \mathbf{2}$ and $\mathbf{3} \rightarrow \mathbf{4}$, which is because H₂O is a neutral molecule, a weak Lewis base. The reaction product is C₆H₅NO₂ + H₃O⁺. The occurrence of $\mathbf{5} \rightarrow \mathbf{6}$ in mixed acids is negligible because even a trace amount of H₃O⁺ is generated, it will immediately will immediately acid-base neutralize with HSO₄⁻ to form H₂SO₄. However, in nitric acid there will be a considerable amount of occurrence of $\mathbf{5} \rightarrow \mathbf{6}$ because nitric acid contains 30-35% water. Of course, the H₃O⁺ will also be neutralized by NO₃⁻ soon.

The total nitration reaction is $C_6H_6 + HNO_3 \rightarrow C_6H_5-NO_2 + H_2O$, which is a strongly exothermic reaction. The experimental reaction heat of benzene nitration in mixed acid is $\Delta H = -34$ kcal/mol (-142 kJ/mol) [49]. According to the results above, the total nitration reaction heat ΔH released by the three steps in mixed acid or nitric acid is expressed as Equation (8),

$$\Delta H = E_a + \Delta H_{\sigma} + \Delta H_{\rm p} \tag{8}$$

The E_a , ΔH_σ , ΔH_p and ΔH data of nitration in mixed acid and in nitric acid are given in Table 3.

The released nitration reaction heat in mixed acid is $\Delta H = -35$ kcal/mol, which is good consistent with the experimental reaction heat $\Delta H = -34$ kcal/mol. We have not found the experimental reaction heat ΔH of benzene nitration in nitric acid, and thus lack a comparison with its experimental data. If there is no the experimental result in nitric acid so far, the DFT calculation result can regard as a prediction for the reaction heat ΔH .

3.6. A corrected benzene nitration three-step mechanism

Based on the above calculation results, the classic nitration mechanism in mixed acid is corrected as following Scheme 3. The E_{a} , ΔH_{σ} , and ΔH_{p} values (Table 3, Scheme 3) are from the DFT calculation results of benzene nitration in HCONH₂ with the highest polarity ($\epsilon = 108.9$; H₂SO₄ $\epsilon \cong 100$).

Step **1** shows the formation of nitronium ions NO₂⁺ by Lewis collision of HNO₃ and H₂SO₄ in mixed acid and the collision needs to overcome a barrier $E_a = 18$ kcal/mol. The study also shows how to calculate its activation energy E_a for Lewis collision reaction (see Section **3.2**).

Step **2** is the electrophilic addition of $C_6H_6 + NO_2^*$, NO_2^* is the electrophile (Scheme 3). The addition follows the transition state theory and needs to overcome a low barrier $\Delta E^* = 7$ kcal/mol. The product is an σ -complex C_6H_6 -NO₂⁺. The activation barrier ΔE^* of the generating σ -complex also is consistent with Sheats's that obtained by stopped flow spectrometer [22]. Generating σ -complex is an exothermic reaction, $\Delta H_{\sigma} = -10$ kcal/mol. Therefore, the σ -complex is a stable intermediate, which agrees with the experimental facts [23].

Figure 11. Systems 1, 3 and 5 are the optimized initial structure of σ -C₆H₆-NO₂⁺ + HSO₄⁻ or + NO₃⁻ or + H₂O. Systems 2, 4, and 6 are the optimized product structure. The solvent is HCONH₂. The bond distance is in Å. Angle is in degree. The atom coordinate tables of 1-6 are given in the Supplementary material, S6.

Scheme 3. A corrected three-step mechanism of benzene nitration in mixed acid (HNO₃ + H₂SO₄) obtained by DFT calculation at the LC-wHPBE/6-311++G(d,p) level.

2023 - European Journal of Chemistry - CC BY NC - DOI: 10.5155/eurjchem.14.1.39-52.2340

The DFT calculation found that the nature of the electrophilic addition of the generated σ -complex is the transfer of the HOMO-1 electrons of C₆H₆ to the LUMO of NO₂⁺. The inverse barrier $\Delta E_r^* = 17$ kcal/mol is much higher than the addition barrier $\Delta E^* = 7$ kcal/mol, and thus Step 2 is not a chemical equilibrium, is a one-way reaction (Scheme 3). Step **3** is a spontaneous Lewis acid-base neutralization, and is a strongly exothermic reaction $\Delta H_p = -43$ kcal/mol, and thus it also is a one-way reaction (Scheme 3). The results of the DFT calculation indicate that the rate control step of benzene nitration is not step **2** of generating σ -complex, but is Step **1** of generating NO₂⁺ (Scheme 3).

Quantum chemistry calculations can obtain the barrier or reaction heat of each step, but it is impossible to get these data using classical research methods. Chemical kinetic study [15] shows that benzene nitration exhibits second-order kinetics in sulfuric acid, $V = k \times [C_6H_6] \times [HNO_3]$. Step **1** in Scheme 3 shows that the [NO₂⁺] is proportional to [HNO₃], and the probability of forming σ -complex is proportional to the reaction probability between C_6H_6 and NO_2^+ , that is, the rate proportional to [C_6H_6] and [HNO_3], which is consistent with the second-order kinetics. In nitric acid, $V = k \times [C_6H_6]$, because [HNO_3] = constant. Therefore, the corrected mechanism in Scheme 3 is consistent with the experimental result [**15**,16].

In kinetic study of nitration reaction, often by comparing deuterated, tritiated aromatic nitration rate to determine whether the C-H bond of σ -complex is broken in ratecontrolling step. Melander's experiment [50] shows that there is no isotopic effect in the nitration of most aromatic compounds including benzene. The nitration of benzene is a three-step reaction, and the first step is a rate-controlling step. Steps **2** and **3** determine whether there is an isotope effect in the nitration (Scheme 3). Step 2 generates the σ -complex, which needs to overcome a barrier (7 kcal/mole), which is a slow (K1) step. Step 3 is to remove the proton, it is a spontaneous Lewis acid-base neutralization, so it is a very fast (K_2) step. Hence $K_1 \square$ *K*₂, which is consistent with the Melander's experimental result. The textbook mechanism in Scheme 1 is qualitatively consistent with the experiment, because step 2 and step 3 both need to overcome the barriers, and the rate of step 2 is slow, that of step 3 is fast. However, no one knows how high the two barriers are. Therefore, there is a lack of quantitative comparison on these two barriers.

For Step **3** of the nitration mechanism, some textbooks use HSO_4^- as the proton acceptor [1,2], but the others [3,4] use H_2O as the acceptor. Which one is right, or which one is better? The DFT calculation shows that the correct choice should be HSO_4^- in mixed acid.

4. Conclusions

The study shows that in organic chemistry textbooks the benzene nitration mechanism is a three-step reaction, and NO2+ and σ -complex C₆H₆NO₂+are the two active intermediates of benzene nitration, which are correct. However, no correct answers are given as to how to generate these two active intermediates and how to complete these three nitration steps. Step 1 of generating NO_{2⁺} is not a spontaneous reaction. Its generation occurs through Lewis collision and must overcome an no-high barrier $E_a = 18$ kcal/mol, but the NO₂⁺ can return to HNO₃ through a spontaneous $poly(\geq 3)$ -molecular acidification. Step 2 is the electrophilic addition of $NO_{2^+} + C_6H_6$. The product is an σ -complex. The addition follows the transition state theory and needs to overcome a much lower barrier $\Delta E_1^* = 7$ kcal/mol than Step 1 of generating NO₂₊. The essence of electrophilic addition is the transfer of HOMO-1 electrons of C6H6 to LUMO of NO₂₊. Step 3 is a spontaneous Lewis acid-base neutralization, generates the target product nitrobenzene, and releases a lot of heat ΔH_p = -43 kcal/mol. The final step does not need to

overcome any barrier. Therefore, the rate-controlling step of the benzene nitration is not Step **2** of generating σ -complex, but is step **1** of generating NO₂⁺ The DFT calculation obtains the total nitration reaction heat $\Delta H = -35$ kcal/mol. It is consistent with the experimental $\Delta H = -34$ kcal/mol, indicating that the corrected benzene nitration three-step mechanism has been experimentally confirmed.

Acknowledgement

I am grateful to Professor Guoshi Wu, Institute of Physical Chemistry, Tsinghua University, for his effective support in quantum chemistry calculation.

Supporting information S

The atom coordinate tables of reaction structures in Figures. **S1**, Structures **1-4** in Figure 2; **S2**, Structures **1** and **2** in Figure 5; **S3**, Structures **1** and **2** in Figure 6; **S4**, Structures **1-4** in Figure 8; **S5**, Structures **1-6** in Figure 10; **S6**, Structures **1-6** in Figure 11.

Disclosure statement DS

Conflict of interest: The author declares that he has no conflict of interest. Ethical approval: All ethical guidelines have been adhered.

CRediT authorship contribution statement CR

Conceptualization, Methodology, Formal Analysis, Investigation, Data Curation, Writing - Original Draft, Writing - Review and Editing, Visualization, Project Administration: Hongchang Shi. The selection of topic, literature search, DFT calculation, data sorting, structure diagram production, and paper writing were all done by the author.

ORCID 厄 and Email 🖾

Hongchang Shi
shihc@mail.tsinghua.edu.cn
https://orcid.org/0000-0001-7505-4976

References

- Graham Solomons, T. W. Organic Chemistry; 6th ed.; John Wiley and Sons (WIE): Brisbane, QLD, Australia, 1995.
- [2]. Carey, F. A. Organic Chemistry; 2nd ed.; McGraw-Hill: New York, NY, 1992.
- [3]. Vollhardt, K. P. C.; Schore, N. Organic Chemistry; 2nd ed.; W.H. Freeman: New York, NY, 1993.
- [4]. Xing Q. Y.; Pei W. W.; Xu R.; Pei Q. J. Foundation of Organic Chemistry, Third Edition (Chinese); Higher Education Press: Beijing, China, 2005.
- [5]. Smith, M. B.; March, J. March's advanced organic chemistry: Reactions, mechanisms, and structure; 7th ed.; Wiley-Blackwell: Hoboken, NJ, 2012.
- [6]. Carey, F. A.; Sundberg, R. J. Advanced organic chemistry: Part A: Structure and mechanisms; 5th ed.; Springer: New York, NY, 2007.
- [7]. Euler, H. Zur Kenntniss der aliphatischen Amine. Justus Liebigs Ann. Chem. 1904, 330, 280–291.
- [8]. Westheimer, F. H.; Kharasch, M. S. The kinetics of nitration of aromatic Nitro compounds in sulfuric acid. J. Am. Chem. Soc. 1946, 68, 1871– 1876.
- [9]. Bennett, G. M.; Brand, J. C. D.; Williams, G. 188. Nitration in sulphuric acid. Part I. The nature of the nitrating agent in nitric-sulphuric acid mixtures. J. Chem. Soc. 1946, 869–875.
- [10]. Olah, G. A. Aromatic substitution. XXVIII. Mechanism of electrophilic aromatic substitutions. Acc. Chem. Res. 1971, 4, 240–248.
- [11]. Ridd, J. H. Mechanism of aromatic nitration. Acc. Chem. Res. 1971, 4, 248–253.
- [12]. Hughes, E. D.; Ingold, C. K.; Reed, R. I. Kinetics of aromatic nitration: The nitronium ion. *Nature* **1946**, *158*, 448–449.
- [13]. Hughes, E. D.; Ingold, C. K.; Reed, R. I. 493. Kinetics and mechanism of aromatic nitration. Part II. Nitration by the nitronium ion, NO2 +, derived from nitric acid. J. Chem. Soc. 1950, 2400–2440.
- [14]. Gold, V.; Hughes, E. D.; Ingold, C. K.; Williams, G. H. 495. Kinetics and mechanism of aromatic nitration. Part IV. Nitration by dinitrogen pentoxide in aprotic solvents. J. Chem. Soc. 1950, 2452–2466.
- [15]. Gold, V.; Hughes, E. D.; Ingold, C. K. 496. Kinetics and mechanism of aromatic nitration. Part V. Nitration by acyl nitrates, particularly by benzoyl nitrate. J. Chem. Soc. 1950, 2467–2473.

- [16]. Gillespie, R. J.; Hughes, E. D.; Ingold, C. K. 504. Cryoscopic measurements in nitric acid. Part I. The solutes dinitrogen pentoxide and water. The self-dissociation of nitric acid. *J. Chem. Soc.* 1950, 2552–2558.
- [17]. Ingold, C. K.; Millen, D. J.; Poole, H. G. 506. Vibrational spectra of ionic forms of oxides and oxy-acids of nitrogen. Part I. Raman-spectral evidence of the ionisation of nitric acid by perchloric, sulphuric, and selenic acids. Spectroscopic identification of the nitronium ion, NO2 +. J. Chem. Soc. 1950, 2576–2589.
- [18]. Ingold, C. K.; Millen, D. J. 510. Vibrational spectra of ionic forms of oxides and oxy-acids of nitrogen. Part V. Raman spectral evidence of the ionisation of dinitrogen pentoxide in nitric acid, and of the constitution of anhydrous nitric acid. J. Chem. Soc. 1950, 2612–2619.
- [19]. Bunton, C. A.; Hughes, E. D.; Ingold, C. K.; Jacobs, D. I. H.; Jones, M. H.; Minkoff, G. J.; Reed, R. I. 512. Kinetics and mechanism of aromatic nitration. Part VI. The nitration of phenols and phenolic ethers: the concomitant dealkylation of phenolic ethers. The role of nitrous acid. *J. Chem. Soc.* **1950**, 2628–2656.
- [20]. Ingold, C. K. Structure and mechanism in organic chemistry; 2nd ed.; HarperCollins Distribution Services: Glasgow, Scotland, 1970.
- [21]. Benford, G. A.; Bunton, C. A.; Halbertstadt, E. S.; Hughes, E. D.; Ingold, C. K.; Minkoff, G. J.; Reed, R. I. Univalent electron transfers in aromatic nitration? *Nature* **1945**, *156*, 688–688.
- [22]. Sheats, G. F.; Strachan, A. N. Rates and activation energies of nitronium ion formation and reaction in the nitration of toluene in ~78% sulphuric acid. *Can. J. Chem.* **1978**, *56*, 1280–1283.
- [23]. Politzer, P.; Jayasuriya, K.; Sjoberg, P.; Laurence, P. R. Properties of some possible intermediate stages in the nitration of benzene and toluene. J. Am. Chem. Soc. **1985**, 107, 1174–1177.
- [24]. Olah, G. A.; Malhotra, R.; Narang, S. C. Nitration: Methods and mechanisms; Wiley-Interscience: Newy York, 1989.
- [25]. Cardoso, S. P.; Carneiro, J. W. de M. Nitração aromática: substituição eletrofílica ou reação com transferência de elétrons? *Quim. Nova* 2001, 24, 381–389.
- [26]. Gwaltney, S. R.; Rosokha, S. V.; Head-Gordon, M.; Kochi, J. K. Chargetransfer mechanism for electrophilic aromatic nitration and nitrosation via the convergence of (ab initio) molecular-orbital and Marcus-Hush theories with experiments. J. Am. Chem. Soc. 2003, 125, 3273–3283.
- [27]. Esteves, P. M.; De M Carneiro, J. W.; Cardoso, S. P.; Barbosa, A. G. H.; Laali, K. K.; Rasul, G.; Prakash, G. K. S.; Olah, G. A. Unified mechanistic concept of electrophilic aromatic nitration: convergence of computational results and experimental data. J. Am. Chem. Soc. 2003, 125, 4836–4849.
- [28]. Nieves-Quinones, Y.; Singleton, D. A. Dynamics and the regiochemistry of nitration of toluene. J. Am. Chem. Soc. 2016, 138, 15167–15176.
- [29]. Peluso, A.; Del Re, G. On the occurrence of an electron-transfer step in aromatic nitration. J. Phys. Chem. 1996, 100, 5303–5309.
- [30]. Chen, L.; Xiao, H.; Xiao, J.; Gong, X. DFT study on nitration mechanism of benzene with nitronium ion. J. Phys. Chem. A 2003, 107, 11440– 11444.
- [31]. Parker, V. D.; Kar, T.; Bethell, D. The polar mechanism for the nitration of benzene with nitronium ion: ab initio structures of intermediates and transition states. J. Org. Chem. 2013, 78, 9522–9525.
- [32]. Koleva, G.; Galabov, B.; Hadjieva, B.; Schaefer, H. F., 3rd; Schleyer, P. von R. An experimentally established key intermediate in benzene nitration with mixed acid. *Angew. Chem. Int. Ed Engl.* 2015, 54, 14123–14127.
- [33]. Liljenberg, M.; Stenlid, J. H.; Brinck, T. Mechanism and regioselectivity of electrophilic aromatic nitration in solution: the validity of the transition state approach. J. Mol. Model. 2017, 24, 15.
- [34]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.;

Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 16, revision BO.1., Gaussian, Inc., Wallingford CT, 2004.

- [35]. Henderson, T. M.; Izmaylov, A. F.; Scalmani, G.; Scuseria, G. E. Can short-range hybrids describe long-range-dependent properties? *J. Chem. Phys.* 2009, 131, 044108.
- [36]. Galano, A.; Alvarez-Idaboy, J. R. Kinetics of radical-molecule reactions in aqueous solution: a benchmark study of the performance of density functional methods. *J. Comput. Chem.* 2014, 35, 2019–2026.
- [37]. Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. *Theor. Chem. Acc.* 2008, 120, 215–241.
- [38]. Shi, H. A solvent-catalyzed four-molecular two-path solvolysis mechanism of t-butyl chloride or bromide in water or alcohol derived by density functional theory calculation and confirmed by highresolution electrospray ionization-mass spectrometry. *React. Kinet. Mech. Catal.* 2020, 129, 583–612.
- [39] Fukui, K.; Yonezawa, T.; Shingu, H. A molecular orbital theory of reactivity in aromatic hydrocarbons. J. Chem. Phys. 1952, 20, 722–725.
- [40]. Fukui, K.; Yonezawa, T.; Nagata, C.; Shingu, H. Molecular orbital theory of orientation in aromatic, heteroaromatic, and other conjugated molecules. J. Chem. Phys. 1954, 22, 1433–1442.
- [41]. Fukui, K. Frontier orbitals and reaction paths: Selected papers of Kenichi Fukui: Selected papers of Kenichi Fukui; Fukui, K., Ed.; World Scientific Publishing: Singapore, Singapore, 1997.
- [42]. Coulson, C. A. Coulson 's Valence; 3rd ed.; Oxford University Press: London, England, 1979.
- [43]. Barone, V.; Cossi, M.; Tomasi, J. Geometry optimization of molecular structures in solution by the polarizable continuum model. *J. Comput. Chem.* **1998**, *19*, 404–417.
- [44]. Barone, V.; Cossi, M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. *J. Phys. Chem. A* **1998**, *102*, 1995–2001.
- [45]. Cancès, E.; Mennucci, B.; Tomasi, J. Analytical derivatives for geometry optimization in solvation continuum models. II. Numerical applications. J. Chem. Phys. 1998, 109, 260–266.
- [46]. Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models. *Chem. Rev.* 2005, 105, 2999–3093.
- [47]. Belson, D. J.; Strachan, A. N. Aromatic nitration in aqueous nitric acid. *J Chem Soc Perkin Trans 2* 1989, 15–19.
- [48]. Zhao, Y.; Schultz, N. E.; Truhlar, D. G. Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J. Chem. Theory Comput. 2006, 2, 364–382.
- [49]. Zhou, X.; He, C.; Zhang, Z.; Cao, C. Experimental investigation on nitration of benzene at different molar ratio of sulfuric acid and nitric acid, J. Qinghai Univ. 2010, 2010 (4), 12-15.
- [50]. Winkler, F. J. Reaction rates of isotopic molecules. VonL. Melander und W. H. saunders, Jr. Wiley, New York 1980. XIV, 391 S., geb. £ 16.30. Angew. Chem. Weinheim Bergstr. Ger. 1981, 93, 220–220.

EXAMPLE Copyright © 2023 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurichem.com/index.php/eurichem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).

52