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Hydrazine and its derivatives, as harmful substances, seriously risk the health of humans 
and the environment. On the basis of the admirable luminescent properties and low 
biological harmfulness of the biphenyl moiety, a biphenyl moiety can be combined with a 
naphthalene ring via the chalcone scaffold easily traced by a nucleophilic group. Therefore, 
biphenyl chalcones (BPCs) decorated with various naphthalene systems as fluorescent 
sensors for hydrazine are synthesised by Claisen-Schmidt condensation. The present work 
describes the comparative studies of two different protocols for the synthesis of three 
different BPCs. The structures of all novel BPCs were investigated by FT-IR, NMR, and HRMS 
spectroscopy. These BPCs show a red shift with a fluorescent peak and an enhancement in 
intensity with increasing solvent polarity from hexane to methanol. Methanol shows strong 
fluorescence emission; therefore, methanol is used as the solvent in hydrazine sensing 
experiments. The BPCs display fluorescent variation from yellow to blue fluorescence after 
binding with hydrazine. These BPCs sensors are able to identify hydrazine in a fast response 
rate and 5 min response time. The screening study of hydrazine in various soil samples by 
prepared BPCs is highly efficient. A study of the pH dependence of these probes shows 
excellent sensitivity in the pH range of 5 to 10.  
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1. Introduction 
 

Inorganic, colourless hydrazine is a highly toxic reducing 
chemical that is used as rocket fuel [1]. It can procedure liquid 
propellant with an oxidiser and is extensively used in attitude 
regulators of satellites and military missiles [2]. During World 
War II, German scientists used hydrazine for the first time as a 
fuel [3], and afterward hydrazine and its various derivatives 
prospered during the postwar era [4]. Due to the hypergolic 
propellant and a monopropellant nature [5,6], widespread 
acceptance of hydrazine was there as a consistent and potent 
propellant with liquid stuffs like water (Figure 1) [7]. 

Hydrazine is also known as a strong reducing agent and 
high alkalinity [8-10] for the synthesis of plastics, rubber 
foaming agents, isoniazid, and other drugs. It has also been used 
in the manufacture of polyamide and epoxy resin and other 
aspects [11-13]. Although these commercial advantages make 
it perfect for use in precise aerospace and rocket applications, 
hydrazine poses a danger to human environmental safety. It is 
miscible in polar solvents such as water and alcohol, and has 
saviour effects on human organs [14]. Hydrazine and its 
derivatives have a neurotoxic effect and due to their reducing 
ability, even small amounts of hydrazine can cause soft tissue 

injury, lung damage, seizures, coma, and death [15]. The dawn 
limit observed by the US Environmental Protection Agency is 10 
ppb [16,17]. Therefore, it is vital to design a reliable, real-time, 
and effective method for the detection of even small amounts of 
hydrazine.  
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Figure 1. Hydrazine: A privileged structure in chemical sciences. 
 
Certain detection approaches based on the basicity and 

nucleophilicity of hydrazine have been reported, including the 
cleavage type [18-22], nucleophilic addition reaction [23-25], 
and the nucleophilic cascade reaction [26-30].  
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Probe Catalyst Reaction time (hr) Yield % 
BPC1 KOH 3 72 

Pyrrolidine 5 94 
BPC2 KOH 4 70 

Pyrrolidine 6 90 
BPC3 KOH 4 65 

Pyrrolidine 7 87 
 

 
Scheme 1. The synthetic route of probe BPCs. 

 
A ratiometric fluorescent sensor of coumarin chalcone for 

hydrazine with cyclization reaction has been reported [31,32]. 
Therefore, on the basis of the robust fluorescence properties of 
the biphenyl group connected with the typical hydrazine 
detection group, chalcone, biphenyl chalcone derivatives 
(BPCs) decorated by various naphthalene terminal groups as 
fluorescent sensors for hydrazine are developed, studied, and 
presented here. BPCs have identified hydrazine by UV-vis 
absorption and fluorescence emission studies with a low 
exposure limit, good selectivity, and a fast response rate. 
 
2. Experimental 
 
2.1. General information and material  
 

All chemicals were obtained from Sigma-Aldrich and used 
without further purification. Solvents were dried over 
molecular sieves if necessary.  The 1H, H-H Cosy and HETCOR, 
13C NMR spectra were recorded in CDCl3 or DMSO-d6 at room 
temperature using a Bruker Avance III 500 MHz (AV 500) NMR 
spectrometer, and TMS was used as an internal reference 
standard. Infrared (IR) spectra were recorded neat by ATR on a 
Thermo Nicolet iS50 FT-IR spectrometer and are reported in 
cm-1. HR-MS data were obtained in a methanol with Thermo 
Scientific Orbitrap Elite mass spectrometer. The melting points 
were measured by an open capillary method using the Sigma 
melting point apparatus. Single-crystal structural data were 
recorded on a Bruker Kappa APEXII. High-performance liquid 
chromatography (HPLC) was performed on JASCO instruments 
at 210 nm using Daicel CHIRALCEL OJ-H 4.6 mm × 25 cm. 
Optical rotations were measured on a Rudolph Autopol IV 
digital polarimeter. For thin layer chromatography (TLC) 
analysis throughout this work, Merck precoated TLC plates 
(silica gel 60 GF254, 0.25 mm) were used. The products were 
purified by recrystallisation or column chromatography on 
silica gel 60 (Merck, 230-400 mesh).  
 
2.2. General process for synthesis of probes BPCs 
 

To a stirred solution of 1-([1,1'-biphenyl]-4-yl)ethan-1-one 
(1) (1.62 g, 10 mmol) in ethanol (5 mL), the naphthaldehyde 
derivatives (2a-c) (10 mmol) dissolved in ethanol (2-3 mL) was 
added portion wise (Scheme 1). The reaction mixture was 
stirred at room temperature for 20 min, during which it turned 

to a homogeneous solution. Then a catalytic amount of KOH/ 
pyrrolidine was added and the resultant mixture was stirred at 
room temperature for 2-3/5-6 h. The reaction was monitored 
on TLC. After completion of the reaction, the precipitated 
products of BPCs were collected by filtration. The crude product 
was purified by recrystallisation from CHCl3: MeOH (1:1, v/v, 10 
mL) to afford (65-72/87-94 % yield) the product as yellow to 
light brown color (BPC1-BPC3). 

(E)-3-([1,1'-biphenyl]-4-yl)-1-(naphthalen-1-yl)prop-2-en-1-
one (BPC1): Color: Yellow solid. Yield: 80/92 % (KOH/ 
Pyrrolidine). M.p.: 158-160 °C. FT-IR (KBr, ν, cm-1): 1708 (C=O) 
(ketone), 1624 (C=C) (propene).  1H NMR (500 MHz, DMSO-d6, 
δ, ppm): 8.73 (d, J = 15.5 Hz, 1H, α-H), 8.31 (d, J = 8.5 Hz, 1H, Ar-
H), 8.19 (d, J = 8.5 Hz, 2H, Ar-H), 7.97-7.92 (m, 3H, Ar-H), 7.78 
(d, J = 8.5 Hz, 2H, Ar-H), 7.72 (s, 1H, Ar-H), 7.70-7.68 (m, 2H, Ar-
H, β-H), 7.65-7.61 (m, 1H, Ar-H), 7.59-7.55 (m, 2H, Ar-H), 7.53-
7.50 (m, 2H, Ar-H), 7.44 (tt, J = 7.5, 2.0 Hz, 1H, Ar-H). 13C NMR 
(125 MHz, DMSO-d6, δ, ppm): 189.77 (C=O), 145.65 (Ar-C), 
141.70 (Ar-C), 139.96 (Ar-C), 136.90 (Ar-C), 133.78 (Ar-C), 
132.47 (Ar-C), 131.81 (Ar-C), 130.83 (Ar-C), 129.23 (Ar-C), 
128.98 (Ar-C), 128.78 (Ar-C), 128.25 (Ar-C), 127.36 (Ar-C), 
127.32 (Ar-C), 127.01 (Ar-C), 126.34 (Ar-C), 125.47 (Ar-C), 
125.13 (Ar-C), 124.69 (Ar-C), 123.56 (Ar-C). HRMS (ESI, Ion 
Trap, m/z) [M+H]: Calculated (C25H18O) 334.1400, Observed 
335.1552. HPLC (Isocratic; ACN:H2O 85:15, 30 min; Flow 1 
mL/min): r.t. 12.80 min, purity = 98.12 %. 

(E)-3-([1,1'-biphenyl]-4-yl)-1-(naphthalen-2-yl)prop-2-en-1-
one (BPC2): Color: Yellow solid. Yield: 84/95 % (KOH/ 
Pyrrolidine). M.p.: 178-180 °C. FT-IR (KBr, ν, cm-1): 1689 (C=O) 
(ketone), 1605 (C=C) (propene). 1H NMR (500 MHz, DMSO-d6, 
δ, ppm): 8.57 (d, J = 0.5 Hz, 1H, Ar-H), 8.12 (dd, J = 8.5, 8.5 Hz, 
2H, Ar-H), 8.03 (d, J = 7.5 Hz, 2H, Ar-H), 7.98 (d, J = 8.5 Hz, 1H, 
Ar-H), 7.94 (d, J = 8.5 Hz, 1H, Ar-H), 7.87 (d, J = 16, 1H, β-H), 
7.81-7.79 (m, 3H, Ar-H+ α-H), 7.78 (s, 1H, Ar-H), 7.76-7.74 (dd, 
J = 6.5, 7 Hz, 2H, Ar-H), 7.68-7.64 (m, 2H, Ar-H), 7.63-7.59 (m, 
2H, Ar-H). 13C NMR (125 MHz, DMSO-d6, δ, ppm): 189.49 (C=O), 
142.02 (Ar-C), 139.30 (Ar-C), 135.70 (Ar-C), 135.00 (Ar-C), 
132.72 (Ar-C), 132.53 (Ar-C), 130.24 (Ar-C), 129.58 (Ar-C), 
128.85 (Ar-C), 127.91 (Ar-C), 128.85 (Ar-C), 127.91 (Ar-C), 
127.02 (Ar-C), 125.09 (Ar-C), 124.30 (Ar-C), 118.42 (Ar-C), 
113.52 (Ar-C). HRMS (ESI, Ion Trap, m/z): [M+H]: Calculated 
(C25H18O) 334.1400, Observed 335.1592. HPLC (Isocratic; 
ACN:H2O 85:15, 30 min; Flow 1 mL/min): r.t. 13.28 min, purity 
= 97.30 %. 
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Figure 2. UV-vis absorption spectra of (a) BPC1, (b) BPC2, and (c) BPC3 in various solvents with 10 μM concentration. 
 
(E)-3-([1, 1'-biphenyl]-4-yl)-1-(6-methoxynaphthalen-2-yl) 

prop-2-en-1-one (BPC3): Color: Yellow solid. Yield: 74/90 % 
(KOH/Pyrrolidine). M.p.: 212-214 °C. 1H NMR (500 MHz, DMSO-
d6, δ, ppm): 8.17 (d, J = 10.5 Hz, 2H, Ar-H), 8.04-8.00 (m, 2H, Ar-
H), 7.83-7.76 (m, 5H, Ar-H + β-H), 7.70-7.66 (m, 3H, Ar-H + α-
H), 7.51 (t, J = 10.0 Hz, 2H, Ar-H), 7.43 (t, J = 9.0, 1H, Ar-H), 7.23.-
7.17 (m, 2H, Ar-H), 3.98 (s, 3H, OCH3). 13C NMR (125 MHz, 
DMSO-d6, δ, ppm): 189.96 (C=O), 158.97 (Ar-C), 145.42 (Ar-C), 
145.15 (Ar-C), 140.01 (Ar-C), 137.14 (Ar-C), 135.91 (Ar-C), 
130.55 (Ar-C), 130.25 (Ar-C), 129.11 (Ar-C), 128.96 (Ar-C), 
128.77 (Ar-C), 128.18 (Ar-C), 127.54 (Ar-C), 127.30 (Ar-C), 
124.42 (Ar-C), 121.06 (Ar-C), 119.53 (Ar-C), 106.04 (Ar-C), 
55.41 (OCH3).  HRMS (ESI, Ion Trap, m/z) [M+H]: Calculated 
(C26H20O2) 364.1500, Observed 365.0452. HPLC (Isocratic; 
ACN:H2O 85:15, 30 min; Flow 1 mL/min): r.t. 10.74 min, purity 
= 95.70 %. 
 
2.3. Photophysical properties and response to hydrazine 
 

Stock solutions of all BPCs (5 mg) were prepared in differ-
rent HPLC-grade solvents (5 mL). Working solutions of all BPCs 
with 5 μM concentrations for the investigation of UV-Vis 
absorption (Shimadzu UV-1900i spectrophotometer) and 
fluorescence emission (Shimadzu RF-6000 fluorescence 
spectrometer) investigation were prepared by serial dilution in 

respective HPLC-grade solvents. Both spectral titrations were 
carried out in methanol with 5 μM concentration of BPCs vs 
various concentrations of hydrazine. A representative compe-
titive selectivity with different analytes, pH dependence and 
different types of soils studies for BPC3 were carried out in 
methanol with a 5 μM concentration. 
 
3. Results and discussion 
 
3.1. Synthesis of novel biphenyl chalcone (BPCs) probes   
 

Initially, all probes were prepared by our earlier developed 
KOH catalyzed process [32-34]. Thereafter, to have the compa-
rative investigation, we tried to prepare the same probes with 
the use of pyrrolidine as a catalyst by keeping the remaining 
parameters same. During this study, it was very much clearly 
observed that pyrrolidine is an effective alternative of KOH. In 
the case of KOH catalyzed process, we were able to complete the 
reaction in a short time but with significantly low yield com-
pared to pyrrolidine. This could be because of the strong 
alkaline nature of KOH. The structures of all synthesized probes 
were confirmed by IR, NMR, and mass spectral analysis. The 
spectral data and illustrations have been presented in 
supporting information. 
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Figure 3. Normalised fluorescence spectra of (a) BPC1, (b) BPC2, and (c) BPC3 in various solvents with 5 μM concentration. 
 
3.2. Photophysical properties of the probes 
 

First, the photophysical natures of the probes in various 
solvents with various polarities were explored and the corres-
ponding absorption spectra are shown in Figure 2. The 
absorption spectra of BPC1 in various solvents except that in 
water are similar with a main absorption peak at ~310 nm and 
a shoulder absorption peak at ~350 nm. The longer absorption 
peaks (vibrated structure at 315 and 345 nm) in acetonitrile 
and lower absorbance (at 300 nm, ε = 2.65×10-4 cm-1M-1) of the 
BPC1 probe in water may be derived from its poor solubility. 
Similarly, the absorption spectra of BPC2 in various solvents, 
except that in water and MeOH (main absorption peak at ~280 
nm) are similar to the main absorption peak at ~345 nm. The 
longer absorption peak at 345 nm in acetonitrile and the lower 
absorbance (at 280 nm, ε = 1.35×10-4 cm-1M-1) of the BPC2 
probe in water are also due to its poor solubility. The 
absorption spectra of BPC3 in various solvents except that in 
water (main absorption peak at ~250 nm) have a main 
absorption peak in the range of 250 to 390 nm. The longer 
absorption peak at 350 nm in acetonitrile and the lower 
absorbance (at 250 nm, ε = 1.35×10-4 cm-1M-1) of the BPC3 
probe in water is due to its solubility difference. 

Thereafter, the photophysical properties of these probes in 
various solvents with various polarities were also studied by 

emission spectra as presented in Figure 3. The fluorescence 
spectra were normalised to compare the changes of fluores-
cence peak position more clearly with the solvent polarity. As 
expected, with the increase of the solvent polarity, the 
fluorescence peak positions of all probes have shown an 
obvious red shift up to 100 nm from hexane to methanol.  This 
red shift was observed more in the case of BPC3, which could 
be due to the presence of the methoxy group. Their fluorescent 
colour can also achieve a corresponding change from blue to 
orange-red. On the basis of the fluorescence emission of all 
probes in methanol that was better than that in other solvents, 
the test environment for the identification properties of 
hydrazine was carried out in methanol. The results obtained 
show that the probe detection is also dependent on the solvent-
salute interaction.  
 
3.3. Titration experiment 
 

The UV-Vis absorption titration spectra (concentration 10 
μM) are shown in Figure 4. The absorption peaks of the 
compound BPC1 itself at 310 nm (ε = 2.00×10-4 cm-1M-1) and 
350 nm (ε = 1.68×10-4 cm-1M-1) gradually increase and 
decrease, respectively, with continuous addition of hydrazine. 
At equal weight, the ration of BCP1/NH2NH2 absorption peak at 
350 nm completely disappeared.  
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 (a) 
 

 (b) 
 

 (c) 
 

Figure 4. UV-Vis absorption spectra of the 10 μM probe BPC1 (a), BPC2 (b) and BPC3 (c) solution in MeOH after the addition of hydrazine. 
 
The absorption peak at 310 nm was with the highest 

absorption. The colour changes from light yellow to colourless. 
This shows that the CBP1 probe can be used as a naked eye 
probe of hydrazine. In the case of BPC2, the absorption peak of 
at 335 nm (ε = 1.87×10-4 cm-1M-1) gradually decreases with 
continuous addition of hydrazine. In addition, there was a blue 
shift by a continuous decrease in wavelength by 25 nm. The 
equal weight ration of the absorption peak of BCP2 / NH2NH2 
was shifted to 310 nm. The colour change from light yellow to 
colourless was also there in BPC2. This shows that the CBP2 
probe can also be used as a naked eye probe of hydrazine. The 
continuous addition of hydrazine to the probe solution BPC3 
has shown a gradual decrease in absorption peaks at 350 nm (ε 
= 1.78×10-4 cm-1M-1) and 368 nm (ε = 1.54×10-4 cm-1M-1). 
However, there was no significant colour change after the 
titration was complete.  

The BPC1 probe itself presents an obvious fluorescence 
peak at 500 nm, which corresponds to bright yellow fluores-
cence under the fluorescent lamp. The addition of hydrazine 
leads to a decrease in the fluorescence peak at 500 nm (Figure 
5, λex = 350 nm).  With increasing hydrazine, a new peak of the 
fluorescence signal at 400 nm appears and continuously 
increases under the excitation of 350 nm (Figure 3). In addition, 
the fluorescence colour before and after titration changes from 
bright yellow to blue-purple. 

The BPC2 probe shows a minor fluorescence peak at 490 
nm, which corresponds to the light-yellow fluorescence under 
the fluorescent lamp. The addition of hydrazine leads to a 
decrease in the fluorescence peak at 490 nm (Figure 5, λex = 330 
nm). With increasing hydrazine, a new peak of the fluorescence 
signal appears at 410 nm and continuously increases under 330 
nm excitation (Figure 3). The fluorescence colour before and 
after titration changes from light yellow to light purple 
(concentration 5 μM).  

The BPC3 probe shows a major fluorescence peak at 538 
nm, which corresponds to the light orange fluorescence under 
the fluorescent lamp. The addition of hydrazine leads to a 
decrease in the fluorescence peak at 538 nm (Figure 5, λex = 368 
nm). The fluorescence colour before and after titration changes 
from light orange to light blue. Visible changes in fluorescence 
colour in all three probes show that these probes achieve a 
ratiometric fluorescent detection for hydrazine. Selectively, the 
fluorescence detection limit of BPC3 [35] was calculated based 
on the fluorescence intensity at 538 nm as 1.4 nM. This result 
shows that BPC3 is very sensitive for the detection of hydrazine 
in the nanomolar range. The results indicate that the probe 
BPC3 can be used for real-time detection of hydrazine in 
environment.  
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Figure 5. Fluorescence spectra of the 5 μM probes BPC1 (a), BPC2 (b), and BPC3 (c) solution in MeOH after the addition of hydrazine. 
 
Furthermore, the time-dependent test of PBC on hydrazine 

(Figure 5) indicates that with an increase in time, the 
fluorescence intensity at 538 nm continues to decrease and 
reaches the ground around 15 min. The developed method and 
the results obtained are comparable with those of the existing 
literature. [31]   
 
3.4. Investigation of the sensing mechanism 
 

In order to study the chemical reaction involve sensing of 
hydrazine by BPCs, a mechanistic investigation is performed. In 
this study, a probe solution in methanol was injected into LC-
MS before (BPC 10 μL) and after (BPC 10 μL + NH2NH2 10 μL) 
sensing studies (Figure 6). 

The BPC1 solution injected before the addition of hydrazine 
shows a molar ion peak at 335.1552 m/z corresponding to the 
hydrogen adduct of BPC1. However, a solution of BPC1 injected 
after 15 minutes of hydrazine addition shows a major molar ion 
peak at 347.1632 m/z corresponding to the pyrazole derivative 
of BPC1. This study shows that the hydrazine detection is 
occurring in 15 minutes and through the reaction shown in 
Scheme 2. 

   

3.5. The practical applications of the probe (Selectively 
BPC3)  
 

Discrimination, anti-interference, and pH obligations are 
prerequisites for a probe in the material application. Therefore, 
a competitive selectivity experiment of the BPC3 probe was 
conducted for other interference substances, including metal 
ions, anions, amines, and biological species (Figure 6). Appa-
rently, BPC3 as a fluorescent probe for hydrazine has outstan-
ding discrimination and antiinterference. The pH-dependent 
experiment of the BPC3 probe (Figure 6) indicates that the 
probe has excellent recognition properties for hydrazine in the 
pH range of 5-10. 

The application of the BPC3 probe in the recognition of 
hydrazine in soils [37,38] was also examined. First, 1 g of field 
soil/clay soil/sandy soil was added to the BPC3 solution (10 
μM), bright orange fluorescence was observed under a 365 nm 
UV lamp (Figure 8), which indicated that the analytes in the soil 
did not affect the fluorescence properties of BPC3. The 
fluorescence spectra of the supernatants were also measured 
(Figure 8), which shows that there was no major effect of 
different soil samples on the emission of BPC3. In the second 
experiment, 1 g of field soil/clay soil/sand soil was treated with 
hydrazine and then the soil was added to the solution of BPC3 
(10 μM).  
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Figure 6. HRMS of probe BPC1 before and after hydrazine addition. 
 

 (a) 

 (b) 
 

Figure 7. (a) Competitive selectivity of BPC3 (5 μM; 538 nm) to different analytes; (b) pH dependence of BPC3 (5 μL; 538 nm). 
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Scheme 2. The mechanistic route of the hydrazine sensing study. 
 
The solutions exhibit light blue fluorescence under a 365 

nm UV lamp. The fluorescence spectra of the supernatants had 
shown a major decrease in the emission of BPC3. 

On the basis of the quick response time, profound detection 
performance, outstanding selectivity, and antiinterference of 
probe BPCs, the detection effect of the probe on hydrazine in 

actual water samples may further be explored. We know that 
water contains some minerals including Na+, Mg2+, Fe3+, Cu2+, 
ClO⎺ and so on. According to the competitive selectivity (Figure 
8), these substances do not interfere with the recognition of 
BPC3 in hydrazine.  
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(a) 
 

 (b) 
 

Figure 8. (a) Photographs and fluorescence spectra of the BPC3 probe (0.5 μM; 538 nm) after the addition of different soils in methanol with and without NH2NH2. 
(b) A & D sand soil, B & E field soil, C & F clay soil, before & after addition of hydrazine, respectively. 

 
According to the pH dependence, the probe has excellent 

recognition properties for hydrazine in the pH range of 5-10. 
These probes may have excellent recognition for hydrazine in 
real water samples. 
 
4. Conclusions 
 

In summary, biphenyl fluorescent probes for hydrazine 
were synthesised by attaching chalcone with various napht-
halene moieties to accelerate the sensing rate through pyrazole 
ring formation. Probable detection mechanisms of hydrazine 
follow the subsequent addition, cyclization processes forming a 
dihydropyrazole ring. The probe successfully realises the 
ratiometric identification for hydrazine with a detection limit of 
1.4 nM, good selectivity, and anti-interference. Compared to the 
other hydrazine probes, these probes have a fast response rate 
with a reaction complete in 15 min. As a real-time application, 
the prepared probes can successfully detect hydrazine in 
different soil samples. A study of the pH dependence of the 
probe has shown excellent sensitivity in the pH range of 5 to 10. 
On the basis of these studies, a real-time hydrazine detection 
device can be developed from the prepared probes.  
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