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Chalcones are versatile scaffolds for the synthesis of various heterocyclic systems with 
commercial utility. This work describes the synthesis of five novel chalcone derivatives. 
Syntheses were performed by a simple one-pot, straightforward Claisen-Schmidt 
condensation catalyzed with pyrrolidine and KOH. The chalcones were prepared by 
condensation of 4-formylbenzonitrile with different aromatic ketones at room temperature. 
The structures of all compounds have been investigated by FT-IR, NMR, and HR-MS 
spectroscopy. In addition, one chalcone structure was characterized by single-crystal XRD 
study. Crystal data for C21H15NO2 (Ch2): monoclinic, space group P21/c (no. 14), a = 
6.5694(3) Å, b = 33.2697(15) Å, c = 7.4516(4) Å, β = 97.563(2)°, V = 1614.47(14) Å3, Z = 4, T 
= 293(2) K, μ(MoKα) = 0.083 mm-1, Dcalc = 1.289 g/cm3, 16000 reflections measured (4.898° 
≤ 2Θ ≤ 49.99°), 2822 unique (Rint = 0.0249, Rsigma = 0.0196) which were used in all 
calculations. The final R1 was 0.0484 (I > 2σ(I)) and wR2 was 0.1257 (all data). The 
absorption maxima of all novel products were evaluated by UV-visible spectroscopy. These 
well-established structures of all newly prepared chalcone scaffolds with reactive functional 
groups (i.e. nitrile and 2-propenone) can be exploited as a crucial intermediate in the 
synthesis of new heterocyclic scaffolds with fluorescence and other applications. 
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1. Introduction 
 

Chalcones are privileged structures and have been widely 
used as an effective template in medicinal chemistry for 
potential drug findings [1,2]. It is a simple, versatile scaffold 
established from many naturally occurring compounds [3]. 
Several chalcone derivatives have also been synthesized due to 
their convenient synthesis [4]. Various natural products and 
their modified compounds with chalcone skeleton (Figure 1) 
have shown plentiful exciting biological activities with medical 
potential against various diseases [5,6]. Chemically, they 
consist of two aromatic rings joined by a three-carbon, α,β-
unsaturated carbonyl system. Their diverse structures allow 
them to cyclize and produce a variety of heterocyclic 
compounds with various biological activities [7-9]. Many 
synthetic equivalents, such as aza-chalcone and chalcone 
derivatives incorporating isoxazole, pyrazole, and indole, have 
been developed in recent decades [10]. Antioxidant, anticancer, 
antibacterial, antiprotozoal, antiulcer, antiviral, antihistaminic, 
anti-HIV, cytotoxic and anti-inflammatory actions have been 
demonstrated (Figure 1) in natural and synthesized chalcone 
derivatives [8-11]. 

In recent years, chalcone and its derivatives have exhibited 
numerous other properties, such as optical, photochemical, and 
nonlinear optic properties (Figure 1), and have been used as 
fluorescent dyes in light-emitting diodes, fluorescent sensors, 
and as fluorescent probes [12-16]. Due to its π-conjugated 
system, the optical characteristics of chalcone and its deriva-
tives have received substantial attention due to their nonlinear 
optical and fluorescence nature due to the delocalization of the 
electronic charge and overlapping π-orbitals [17]. Because of 
their bioactivity and optoelectronic applications, many 
researchers have recently provoked the multifunctional 
behavior of chalcones. 

The chalcone scaffolds with reactive functional groups can 
enlarge the importance of the chalcone moiety for its synthetic 
utility. In this paper, we describe the synthesis of five novel 
chalcone molecules with a reactive functional group. These 
molecules were prepared by base-catalyzed Claisen-Schmidt 
condensation. During this investigation, two different catalysts, 
pyrrolidine and potassium hydroxide, were studied to develop 
two different protocols and have comparative studies. The 
spectral behavior of chalcones is an important key factor in 
understanding the formation of chalcone.  
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Figure 1. Chalcone: A privileged structure in chemical sciences. 
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Scheme 1. Synthesis of chalcone from 4-formylbenzonitrile. 
 
All newly prepared chalcones were analyzed by UV-vis, 

FTIR, and NMR spectroscopy. These chalcone derivatives can be 
used as a key intermediate for the synthesis of new novel 
heterocyclic scaffolds. 
 
2. Experimental 
 
2.1. Materials and methods 
 

All required chemicals were obtained from commercial 
sources and used without further purification. Solvents were 
dried over molecular sieves if necessary.  1H NMR spectra were 
recorded in CDCl3 or DMSO-d6 at room temperature using a 
Bruker AVANCE III 500 MHz (AV500) multi-nuclei solution 
NMR spectrometer, TMS was used as internal reference, 
integration, multiplicity (s = singlet, d = doublet, t = triplet, q = 
quartet, quin = quintet, m = multiplet, br = broad, app = 
apparent), coupling constants (J, Hz), and assignment. 13C and 
DEPT-135 NMR spectra were measured on a Bruker AVANCE 
III 125 MHz (AV125) instrument with complete proton 
decoupling. Chemical shifts in ppm from the residual solvent 
were reported as an internal standard. Infrared (IR) spectra 
were recorded neat by ATR on a Thermo Nicolet iS50 FT-IR 
spectrometer and are reported in cm-1. HR-MS data were 
obtained in methanol with Thermo Scientific Orbitrap Elite 
mass spectrometer. The melting point is measured by the open 
capillary method using a Sigma melting point apparatus. Single-
crystal structural data were recorded on Bruker Kappa APEXII. 
For thin layer chromatography (TLC) analysis throughout this 
work, Merck precoated TLC plates (silica gel 60GF254, 0.25 mm) 
were used. The products were purified by recrystallisation or 

column chromatography on silica gel 60 (Merck, 230-400 
mesh). 
 
2.2. General process for pyrrolidine-catalyzed chalcone 
synthesis 
 

To a stirred solution of 4-formylbenzonitrile (A, 1.62 g, 10 
mmol) in ethanol (5 mL), aryl methyl ketone derivatives (K1-
K5; 10 mmol) dissolved in ethanol (2-3 mL) were added 
portion-wise (Scheme 1). The reaction mixture was stirred at 
room temperature for 20 min, during which time it turned into 
a homogeneous solution. Then 2 mL of pyrrolidine or 1 mL 0.5 
mM KOH was added dropwise and the resulting mixture was 
stirred at room temperature for 6-8 h and the reaction mixture 
was neutralized by 0.1-0.2 N HCl where precipitation occurred. 
The precipitated product of chalcone was then collected by 
filtration. The crude product was purified by recrystallisation 
from CHCl3:MeOH (1:1, v/v, 10 mL) to produce the product (80-
85% yield) as yellow to light brown needles (Ch1-Ch5). A single 
crystal suitable for X-ray diffraction of chalcone was obtained 
by recrystallization of Ch2 from a saturated solution in DMSO. 

(E)-4-(3-(naphthalen-2-yl)-3-oxoprop-1-en-1-yl)benzonitrile 
(Ch1): Color: Yellow solid. M.p.: 158-160 °C. 1H NMR (500 MHz, 
DMSO-d6, δ, ppm): 8.570-8.569 (d, J = 0.5 Hz, 1H, Ar-H), 8.137-
8.116 (dd, J = 8.5, 8.5 Hz, 1H, Ar-H), 8.040-8.025 (d J = 7.5 Hz, 
1H, Ar-H), 7.995-7.978 (d, J = 8.5 Hz, 1H, Ar-H), 7.948-7.931 (d, 
J = 8.5 Hz, 1H, Ar-H), 7.885-7.853 (d, J = 16, 1H, α-CH), 7.812-
7.794 (m, 2H, Ar-H and β-CH), 7.781 (s, 1H, Ar-H), 7.764-7.747 
(dd, J = 6.5, 7.0 Hz, 2H, Ar-H), 7.680-7.648 (m, 1H, Ar-H), 7.632-
7.599 (m, 1H, Ar-H). 13C NMR (125 MHz, DMSO-d6, δ, ppm): 
189.49 (1C, C=O), 142.02 (1C, CH), 139.30 (1C, Ar-C), 135.70 
(1C, Ar-C), 135.00 (1C, Ar-C), 132.72 (1C, Ar-C), 132.53 (1C, Ar- 
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Table 1. Comparative yield for two different processes. 
Compounds Catalyst and Yield (%) 

KOH Pyrrolidine 
Ch1 80 82 
Ch2 76 79 
Ch3 85 86 
Ch4 80 83 
Ch5 84 86 
 
C), 130.24 (1C, Ar-C), 129.58 (1C, Ar-C), 128.85 (1C, Ar-C), 
127.91 (1C, Ar-C), 128.85 (1C, Ar-C), 127.91 (1C, Ar-C), 127.02 
(1C, Ar-C), 125.09 (1C, Ar-C), 124.30 (1C, CH), 118.42 (1C, CN), 
113.52 (1C, Ar-C). DEPT-135 (125 MHz, DMSO-d6, δ, ppm): 
142.03, 132.72, 130.24, 129.58, 128.85, 128.77, 127.92, 127.02, 
125.08, 124.30. HR-MS (EI, m/z) calcd. for C20H14ON: 284.1067; 
Found: 284.1070. 

(E)-4-(3-(6-methoxynaphthalen-2-yl)-3-oxoprop-1-en-1-yl) 
benzonitrile (Ch2): Color: Yellow solid. M.p.: 172-174 °C. 1H 
NMR (500 MHz, DMSO-d6, δ, ppm): 8.500-8.498 (d J = 1 Hz, 1H, 
Ar-H), 8.114-8.094 (dd, J = 8.5, 8.5 Hz, 1H, Ar-H), 7.919-7.901 
(d, J = 9 Hz, 1H, Ar-H), 7.863-7.858 (d, J = 2.5 Hz, 1H, Ar-H), 
7.841-7.832 (d, J = 4.5 Hz, 1H, Ar-H) 7.800-7.790 (m, 2H, Ar-H, 
α-CH), 7.780-7.769 (m, 1H, β-CH), 7.748-7.731 (dd, J = 6.5, 7 Hz, 
2H, Ar-H), 7.265-7.242 (dd, J = 9, 9 Hz, 1H, Ar-H), 7.208-7.203 
(d, J = 2.5 Hz, 1H, Ar-H), 3.986 (s, 3H, CH3-O). 13C NMR (125 MHz, 
DMSO-d6, δ, ppm): 189.01 (1C, C=O), 160.04 (1C, Ar-C), 141.58 
(1C, CH), 139.43 (1C, Ar-C), 137.48 (1C, Ar-C), 133.00 (1C, Ar-
C), 132.69 (1C, Ar-C), 132.02 (1C, Ar-C), 131.18 (1C, Ar-C), 
130.18 (1C, Ar-C), 129.67 (1C, Ar-C), 128.71 (1C, Ar-C), 127.84 
(1C, Ar-C), 127.52 (1C, Ar-C), 125.08 (1C, Ar-C), 125.05 (1C, CH), 
119.96 (1C, Ar-C), 118.45 (1C, CN), 113.37 (1C, Ar-C), 105.90 
(1C, Ar-C), 55.49 (1C, CH3-O). DEPT-135 (125 MHz, DMSO-d6, δ, 
ppm): 141.59, 132.69, 131.19, 130.18, 128.72, 127.52, 125.07, 
125.06, 119.97, 105.89, 55.49. HR-MS (EI, m/z) calcd. for 
C21H16O2N: 314.1176, Found 314.1176. 

(E)-4-(3-(2-nitrophenyl)-3-oxoprop-1-en-1-yl)benzonitrile 
(Ch3): Color: Yellow solid. M.p.: 156-158 °C. 1H NMR (500 MHz, 
DMSO-d6, δ, ppm): 8.241-8.223 (dd, J = 8, 8 Hz, 1H, Ar-H), 7.979-
7.962 (dd, J = 6.5, 7 Hz, 2H, Ar-H), 7.947-7.915 (m, 1H, α-CH), 
7.909-7.892 (dd, J = 6.5, 7 Hz, 2H, Ar-H), 7.853-7.819 (m, 1H, β-
CH), 7.768-7.750 (dd, J = 7.5, 8 Hz, 1H, Ar-H), 7.484 (s, 2H, Ar-
H). 13C NMR (125 MHz, DMSO-d6, δ, ppm): 192.57 (1C, C=O), 
147.07 (1C, Ar-C), 143.85 (1C, CH), 139.01 (1C, Ar-C), 135.53 
(1C, Ar-C), 135.03 (1C, Ar-C), 133.22 (1C, Ar-C), 132.17 (1C, Ar-
C), 129.93 (1C, Ar-C), 129.60 (1C, Ar-C), 129.12 (1C, Ar-C), 
125.11 (1C, CH), 118.98 (1C, CN), 113.18 (1C, Ar-C). DEPT-135 
(125 MHz, DMSO-d6, δ, ppm): 143.86, 135.04, 133.23, 132.17, 
129.93, 129.60, 129.12, 125.12. 

(E)-4-(3-(3-nitrophenyl)-3-oxoprop-1-en-1-yl)benzonitrile 
(Ch4): Color: Yellow solid. M.p.: 126-128 °C. 1H NMR (500 MHz, 
DMSO-d6, δ, ppm): 8.874-8.867 (t, 1H, Ar-H), 8.636-8.618 (m, 
1H, Ar-H), 8.534-8.511 (m, 1H, α-CH), 8.211-8.180 (d, J = 16 Hz, 
1H, β-CH), 8.165-8.148 (d, J = 8.5 Hz, 2H, Ar-H), 7.971-7.955 (d, 
J = 8 Hz, 2H, Ar-H), 7.918-7.902 (d, J = 8 Hz, 1H, Ar-H), 7.892-
7.886 (d, J = 3 Hz, 1H, Ar-H). 13C NMR (125 MHz, DMSO-d6, δ, 
ppm): 188.02 (1C, C=O), 148.74 (1C, Ar-C), 143.63 (1C, CH), 
139.43 (1C, Ar-C), 138.86 (1C, Ar-C), 135.31 (1C, Ar-C), 133.21 
(1C, Ar-C), 132.58 (1C, Ar-C), 131.15 (1C, Ar-C), 130.20 (1C, Ar-
C), 128.11 (1C, Ar-C), 125.16 (1C, Ar-C), 123.49 (1C, CH), 119.07 
(1C, CN), 113.11 (1C, Ar-C). DEPT-135 (125 MHz, DMSO-d6, δ, 
ppm): 143.63, 135.32, 133.21, 132.59, 131.15, 130.20, 128.11, 
125.15, 123.49. 

(E)-4-(3-(4-nitrophenyl)-3-oxoprop-1-en-1-yl)benzonitrile 
(Ch5): Color: Yellow solid. M.p.: 170-172 °C. 1H NMR (500 MHz, 
DMSO-d6, δ, ppm): 8.028-7.977 (t, 3H, Ar-H and α-CH), 7.941-
7.924 (d, J = 8.5 Hz, 2H, Ar-H), 7.887-7.870 (d, J = 8.5 Hz, 2H, Ar-
H), 7.640-7.609 (d, J = 16 Hz, 1H, β-CH), 6.645-6.628 (d, J = 8.5 
Hz, 2H, Ar-H). 13C NMR (125 MHz, DMSO-d6, δ, ppm): 186.13 (1C, 
C=O), 154.49 (1C, Ar-C), 140.24 (1C, CH), 139.74 (1C, Ar-C), 
133.11 (1C, Ar-C), 131.82 (1C, Ar-C), 129.53 (1C, Ar-C), 126.32 

(1C, Ar-C), 125.5 (1C, CH), 119.18 (1C, CN), 113.20 (1C, Ar-C), 
112.17 (1C, Ar-C). DEPT-135 (125 MHz, DMSO-d6, δ, ppm): 
139.74, 133.12, 131.82, 129.54, 126.30, 113.20.  
 
2.3. Single-crystal XRD data collection 
 

Single-crystal XRD analysis including data collection, cell 
refinement, and data reduction was performed with a Stoe 
IPDS2 area detector using Stoe IPDS2 software [18] and 
graphite-monochromated MoKα (λ = 0.71073 Å) at 100(2) K 
Twin integration. The structure was solved by direct methods 
using SIR2004 [19] and all non-hydrogen atoms were 
anisotropically refined by full-matrix least squares on F2 using 
SHELXL [20]. Cell refinement: APEX2 and SAINT [21,22]; Data 
reduction: SAINT and XPREP [22,23]; Program(s) used to refine 
structure: SHELXL [20]; molecular graphics: ORTEP-3 [24] for 
Windows and Mercury [25] software used to prepare material 
for publication: SHELXL [20] and PLATON [26]. The integration 
and scaling were performed to obtain reflection profiles from 
each of the twin components. A component was used to 
determine the space group, followed by the determination of 
the initial structure by the direct method (SHELX) [27] using 
the crystallographic CRYSTALS program [28]. 
 
3. Results and discussion 
 
3.1. Synthesis of five novel chalcone molecules (Ch1-5)  
 

Initially, all molecules were prepared by our earlier 
developed KOH-catalyzed process [29,30]. Thereafter, to have a 
comparative investigation, we tried to prepare all five 
structures with the use of pyrrolidine as the catalyst while 
remaining all parameters. During this study, pyrrolidine was 
clearly observed to be an effective alternative to KOH. In both 
processes, we were able to obtain a greater amount of yield 
with pyrrolidine than KOH (Table 1). The structure of the 
synthesized compounds was confirmed by infrared (IR), NMR, 
HR-MS, UV-vis, and single-crystal XRD spectral analysis. 
 
3.2. FT-IR and HR-MS spectroscopic studies 
 

The vibrational stretching frequency of the aromatic 
chalcones was analyzed by FT-IR spectroscopy. The FTIR spect-
rums of all prepared chalcones have shown a characteristic 
absorption band at 2260-2222 cm-1 corresponding to the CN 
stretching frequency. The existence of the C=O group was 
confirmed by IR spectral data, which showed sharp bands in the 
range of 1625-1660 cm-1 in the presence of conjugated ketones, 
suggesting the presence of the described compounds. The 
absorption band at 1627 cm-1 indicates the presence of α,β-
unsaturated ketone which confirms the formation of chalcone.  
 
3.3. NMR spectroscopic studies 
 

Spectral analysis by 1H NMR and 13C NMR revealed the 
structure of all these compounds (Ch1-5). The chalcones 
appeared to be geometrically pure and configured trans (JHa-Hb 
= 16 Hz) according to 1H NMR spectra. The methoxy proton in 
Ch2 chalcone was observed at δ 3.986 ppm. In the 13C NMR 
spectrum, carbonyl carbon was observed at δ 198 ppm and 
aromatic carbons were observed in the range of δ 150 to120 
ppm.  
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Table 2. Crystal data and structure refinement for (E)-4-(3-(6-methoxynaphthalen-2-yl)-3-oxoprop-1-en-1-yl)benzonitrile (Ch2). 
Empirical formula C21H15NO2  
Formula weight (g/mol) 313.34  
Temperature (K) 293(2)  
Crystal system Monoclinic  
Space group P21/c  
a, (Å) 6.5694(3)  
b, (Å) 33.2697(15)  
c, (Å) 7.4516(4)  
β (°) 97.563(2)  
Volume (Å3) 1614.47(14)  
Z 4  
ρcalc (g/cm3) 1.289  
μ (mm-1) 0.083  
F(000) 656.0  
Crystal size (mm3) 0.3 × 0.25 × 0.2  
Radiation MoKα (λ = 0.71073)  
2Θ range for data collection (°) 4.898 to 49.99  
Index ranges -7 ≤ h ≤ 7, -37 ≤ k ≤ 39, -7 ≤ l ≤ 8  
Reflections collected  16000  
Independent reflections  2822 [Rint = 0.0249, Rsigma = 0.0196]  
Data/restraints/parameters  2822/0/217  
Goodness-of-fit on F2  1.088  
Final R indexes [I≥2σ (I)]  R1 = 0.0484, wR2 = 0.1141  
Final R indexes [all data]  R1 = 0.0657, wR2 = 0.1257  
Largest diff. peak/hole (e.Å-3) 0.17/-0.17  
 
Table 3. Bond lengths for (E)-4-(3-(6-methoxynaphthalen-2-yl)-3-oxoprop-1-en-1-yl)benzonitrile (Ch2).  

 

 
 

Figure 2. Molecular structure displacement ellipsoid plot drawn at 40% probability (Ch2). 
 
Nitrile (CN) is typically observed in the range between δ 

115-125 ppm deshielding due to nitrogen. The DEPT spectrum 
of all prepared compounds clearly confirms the presence of the 
corresponding quaternary carbons in the molecules.  
 
3.4. UV-Visible spectroscopy 
 

The π → π* transition (bathochromic shift) and the n → π* 
transition (hypsochromic shift) are the two main absorption 
maxima in chalcone derivatives [31-33]. The absorption 
maxima at 370 and 371 nm, respectively, in the UV-Visible 
spectra of chalcones Ch1 and Ch2, and the UV-Visible spectrum 
of the chalcone Ch3 to Ch5 and the absorption maxima at 372, 
373, and 373 nm, are attributable to the π → π* transition, 
respectively. The productions of chalcone Ch1 to Ch5 were also 
confirmed by their absorption maxima seen in their respective 
UV spectrums.  
 

3.5. Single-crystal XRD study 
 

Clearly, the structure of 4-(3-(6-methoxynaphthalen-2-yl)-
3-oxoprop-1-en-1-yl)benzonitrile (Ch2) was well recognized by 
its single-crystal XRD studies (Figure 2). Crystal data and 
structure refinement for Ch2 are listed in Table 2. The H atoms 
were comprised in calculated positions and treated as riding 
atoms: C–H = 0.93–0.96 Å with Uiso(H) = 1.5 Ueq(C-methyl) and 
1.2 Ueq(C) for all other H atoms in the compound [34]. The 
structure was refined for the molecule as a two-component 
twin: 180 rotations about the axis a; BASF = 0.063(1). The 
molecular geometry of the compound is very similar, with bond 
distances and angles in the expected range (Tables 3 and 4). In 
a single crystal structure, the polynuclear naphthalene ring and 
the aromatic phenyl ring with the nitrile group are almost 
coplanar with the α,β-unsaturated carbonyl moiety. 
 
 
 

Atom Atom Length (Å)   Atom Atom Length (Å) 
C1 C2 1.355(3)   C11 O1 1.426(3) 
C1 C6 1.409(3)   C12 C13 1.485(3) 
C2 C3 1.411(3)   C12 O2 1.220(2) 
C3 C4 1.361(3)   C13 C14 1.311(3) 
C3 O1 1.363(2)   C14 C15 1.461(3) 
C4 C5 1.412(3)   C15 C16 1.387(3) 
C5 C6 1.421(3)   C15 C20 1.386(3) 
C5 C10 1.412(3)   C16 C17 1.377(3) 
C6 C7 1.406(3)   C17 C18 1.384(3) 
C7 C8 1.371(3)   C18 C19 1.374(3) 
C8 C9 1.418(3)   C18 C21 1.439(3) 
C8 C12 1.479(3)   C19 C20 1.374(3) 
C9 C10 1.356(3)   C21 N1 1.136(3) 
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Table 4. Bond angles for (E)-4-(3-(6-methoxynaphthalen-2-yl)-3-oxoprop-1-en-1-yl)benzonitrile (Ch2). 
Atom Atom Atom Angle (°)   Atom Atom Atom Angle (°) 
C2 C1 C6 121.19(19)   C8 C12 C13 119.26(17) 
C1 C2 C3 120.44(19)   O2 C12 C8 120.68(18) 
C4 C3 C2 120.08(19)   O2 C12 C13 120.05(18) 
C4 C3 O1 125.59(19)   C14 C13 C12 121.62(19) 
O1 C3 C2 114.33(18)   C13 C14 C15 127.7(2) 
C3 C4 C5 120.63(18)   C16 C15 C14 123.05(19) 
C4 C5 C6 119.22(17)   C20 C15 C14 119.26(19) 
C10 C5 C4 122.88(18)   C20 C15 C16 117.7(2) 
C10 C5 C6 117.89(18)   C17 C16 C15 121.4(2) 
C1 C6 C5 118.39(18)   C16 C17 C18 119.8(2) 
C7 C6 C1 122.41(18)   C17 C18 C21 120.8(2) 
C7 C6 C5 119.19(17)   C19 C18 C17 119.5(2) 
C8 C7 C6 121.96(18)   C19 C18 C21 119.7(2) 
C7 C8 C9 118.35(18)   C18 C19 C20 120.3(2) 
C7 C8 C12 123.01(18)   C19 C20 C15 121.3(2) 
C9 C8 C12 118.62(17)   N1 C21 C18 178.4(3) 
C10 C9 C8 120.97(18)   C3 O1 C11 117.73(16) 
C9 C10 C5 121.61(18)           
 

 
Figure 3. Unit cell diagram of (E)-4-(3-(6-methoxynaphthalen-2-yl)-3-oxoprop-1-en-1-yl)benzonitrile (Ch2). 

 
In the packing structure, molecules are placed close to each 

other on the phenyl ring with the nitrile group, this could be due 
to the linear structure of the nitrile group attached to the fourth 
position of the phenyl ring (Figure 2). However, the 
naphthalene sites with the methoxy group are quite far from 
each other, which could be because of the nonlinear structure 
on the methoxy group and the bulky naphthalene ring system. 
As expected, the bond angles at the fusion of two rings in the 
naphthalene ring were significantly higher than the expected 
value of 120° for sp2 hybridization. The molecule is packed with 
weak intermolecular C–H···O, C–H···C and C–H···N interactions 
using nitrile nitrogen, oxygen from methoxy and carbonyl 
groups. In addition, weak π-π stacking interactions are 
observed between naphthalene and phenyl rings. The 
molecular packing in the unit cell viewed from the axis a is 
presented in Figure 3. 
 
4. Conclusions 
 

Claisen-Schmidt condensations, catalyzed by pyrrolidine/ 
potassium hydroxide as a base catalyst, were used to synthesize 
Ch1 to Ch5 derivatives. The prepared molecules were then 
characterized by HR-MS, FT-IR, and NMR spectroscopy. 
Selectively, the structure of Ch2 was established by single 
crystal X-ray diffraction (XRD) study. The optical properties of 
the chalcones were examined by using ultraviolet-visible (UV-
vis) spectral data. The FT-IR spectrum of all prepared molecules 
shows a characteristic peak at 1660-1630 cm-1, which corres-
ponds to the C=O group of the stretching frequency, which 

confirms the formation of chalcones. Compounds (Ch1-Ch5) 
were also confirmed by 1H NMR spectral analysis. The 1H NMR 
spectra suggested that the chalcones were geometrically pure 
and configured trans (JHa-Hb = 16 Hz) to prove the formation of 
derivatives of the chalcones. These well-characterized struc-
tures of chalcone scaffolds with reactive functional groups (i.e. 
nitrile and 2-propenone) can be oppressed as a crucial 
intermediate in the synthesis of various novel heterocyclic 
scaffolds with numerous applications. 
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