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Initiation and progression of several diseases by post-translational histone modifications 
are considered a worldwide problem. Enhancer of Zeste Homologue 2 (EZH2), which 
belongs to the histone-lysine N-methyl transferase (HKMT) family, has been emphasised as 
a promising target for cancer therapy. It is a major challenge for the scientific community to 
find novel approaches to treating this disease. In this study, a series of 51 derivatives of the 
benzofuran and indole families, previously experimentally evaluated against HKMT, was 
used to develop the best model with promising anticancer activity. The multiple linear 
regression (MLR) method, implemented in QSARINS software, was used with a genetic 
algorithm for variable selection. According to QSARINS, the model with two descriptors 
(minHBint4 and Wlambdal.unity) was found to be the best and its parameters fit well, and 
its validation was well established. The applicability domain was also validated for this 
model. Furthermore, its robustness (R2 = 0.9328), stability (Q2LOO = 0.9212, Q2LMO = 0.9187), 
and good predictive power (R2ext = 0.929) were also verified. Hence, this model was assumed 
to have predictive HKMT anticancer activity for designing active compounds. Molecular 
docking was also performed to identify binding interactions, and new molecules with better 
predicted biological activity (pIC50) were designed. The binding energy of the three designed 
compounds demonstrated higher binding activity at the target receptor, followed by 
complex stability, determined by a 100 ns molecular dynamics simulation and binding free 
energy calculation. Density functional theory (DFT) and pharmacokinetic analyses also 
confirmed their drug-like properties. Finally, it can be declared that the proposed tools allow 
rapid and economical identification of potential anti-HKMT drugs (anticancer drugs) for 
further development. 
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1. Introduction 
 

Several studies recommend that abnormal post-trans-
lational histone modifications have a significant character in the 
initiation and progression of numerous diseases [1]. Post-trans-
lational modifications (PTMs) mention chemical adjustments of 
a protein after translation, which controls gene expression by 
varying the chromatin conformation and transcription factor 
activity [2,3]. Small basic proteins such as histones are found in 
the nucleus of eukaryotic cells that are tightly bound to the DNA 
of eukaryotic chromosomes. The positively charged N-terminal 
tail of their subunits is vulnerable to covalent modifications [4]. 
Covalent histone modifications, such as phosphorylation, 
ubiquitination, acetylation, and methylation, are important for 
controlling chromatin dynamics and function [5]. Methylation 
of specific lysine residues in the N-terminal tail of histones is 
essential to regulate gene expression and transduction of 
cellular signalling [6-8]. By transferring the methyl group of S-
adenosyl methionine (SAM) to equivalent specific lysine, 
histone lysine methyl transferases (HKMTs) behave as the 
‘drivers’ of histone methylation, which regulate biological 
processes [9,10]. Lysine methyl transferases (KMT) regulate 
the monomethylation, dimethylation and trimethylation of N-

lysine in histone and non-histone substrates [11]. Enhancer of 
Zeste Homologue 2 (EZH2) belongs to the HKMTs family, which 
is responsible for the methylation of lysine-9 and lysine-27 of 
histone H3, via methyl group transfer from SAM 5 cofactor, 
which leads transcriptional repression of the affected genes. 
Trimethylation of lysine-27 suppresses many specific genes, 
including tumour suppressor genes [12]. Thus, these proteins 
have been associated with several diseases such as cancer and 
neurodegeneration [11]. In numerous types of cancer, it has 
been revealed that high EZH2 expression is associated with a 
poor prognosis, a high grade, and a high stage [13]. In tumours, 
increased EZH2 activity has been associated with suppression 
of differentiation. Overexpressed of EZH2 such as breast, 
bladder, endometrial, liver, ovarian, prostate, small cell lung 
cancer (SCLC), melanoma, glioblastoma, and pediatric glioma, 
as well as lymphomas, are correlated with progression and 
poor prognosis. Increasing EZH2 activity in SCLC, associated 
with rapid inactivation of the retinoblastoma (RB1) tumour 
suppression gene, regulates tumour growth and standard of 
care chemotherapy resistance. Somatic activating mutations in 
EZH2 have been recognised in diffuse large B cell lymphoma 
(DLBCL) and follicular lymphoma (FL), resulting in higher 
H3K27me3.  It implies that EZH2 overexpression silences target  
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Figure 1. Flowchart of this work. 
 
genes important in tumour growth and survival due to the 
dysregulation of H3K27me3 [1]. This has led to the identi-
fication of EZH2 as a possible target for cancer therapy. Thus, 
many pharmaceutical companies and academic institutes have 
been involved in small molecule EZH2 inhibitors in the 
treatment of cancer, and several EZH2 inhibitors have been 
reported [14,15]. Unfortunately, there are only a few scaffolds 
among the known EZH2 inhibitors. 

Therefore, we made the decision to find novel classes of 
EZH2 inhibitors that have the same scaffolds as existing EZH2 
inhibitors. In this study, a quantitative structure-activity 
relationship (QSAR) was established on a set of benzofuran and 
indole derivatives. Benzofuran and indole moieties have been 
widely used in many drugs due to their extensive anticancer 
activity [16]. Nowadays, drug resistance is a universal problem 
of morbidity and mortality in cancer, causing great concern in 
cancer therapy [17,18]. Hence, novel anticancer agents are 
urgently needed to overcome intrinsic or developed resistance 
[19]. Benzofuran and indole are considered outstanding 
heterocyclic compounds due to their diverse biological 
activities [20]. The various pharmacological properties of 
indole include antibacterial, anticonvulsant, antifungal, anti-
inflammatory, antimalarial, antitubercular, antiviral, and anti-
cancer activities. The anticancer activity of these derivatives 
includes mechanisms such as apoptosis (myeloid cell leukemia-
1 inhibitors), signal transduction (proviral insertion site in 
Moloney murine leukemia virus inhibitors), replication and 
transcription (DNA topoisomerase), epigenetic modifications 
(histone deacetylase inhibitors, histone acetyltransferase 
inhibitors, and silent mating type information regulation 2 
homolog inhibitors), and cell mitosis (tubulin inhibitors) [19]. 
However, benzofuran derivatives have antiviral, immunosupp-
ressive, antioxidant, antifungal, anti-inflammatory, analgesic, 
antimicrobial, and antitumor activities [20]. After our in silico 
approach was successful, we found three designed molecules: 
H53av, H53bb, and H53y, which bind strongly to the active site 
of the receptor without any significant change in the protein 
during the entire MD simulation. Therefore, these molecules 
could be exploited as novel, potent, and selective inhibitors for 
EZH2 and further subjected to in vitro and in vivo studies. The 
flow of the work of this study is shown in Figure 1.  
 
2. Materials and methods 
 
2.1. Database of inhibitor compounds 

 
The database used consists of 51 molecules derived from 

benzofuran and indole, extracted from the bindingdb database 

(https://www.bindingdb.org/bind/index.jsp), which were 
used to develop a model with inhibitory activity of HKMT EZH2. 
The chemical structures and experimentally reported biological 
activity data of the used molecules are shown in Tables 1-3. 
According to the database, the activity data was taken using the 
values of pIC50 (9-log10IC50) as a dependent variable. The IC50 
denotes the molar concentration of the drug required to reach 
50% protection against the HKMT target. 
 
2.2. Molecular descriptors 

 
The PaDEL 2.18 software [21] was used to calculate the 

molecular descriptors. This software is an application for 
calculating molecular descriptors, originally developed by Chun 
Wei Yap, the Laboratory of Pharmaceutical Data Exploration of 
the National University of Singapore, and provides more than 
1875 molecular descriptors that are divided into logical groups. 
All 1D-3D descriptor families were included in this study by 
removing constant or near-constant variables. To properly use 
3D descriptors, it was essential to optimise all of the molecules 
previously, to minimise the energy of the conformation. In this 
sense, we use the Merck molecular force field (MMFF94) force 
field in the Avogadro suite [22]. 
 
2.3. QSAR modelling 

 
Based on the experience of the Insubria QSAR Research 

Unit, a QSAR multiple linear regression model (MLR) was 
established using the QSARINS software [23]. This software 
permits the development of QSAR-MLR models by the ordinary 
least squares (OLS) method according to Equation (1), 
 

𝑌𝑌𝑖𝑖 = 𝑏𝑏0� 𝑏𝑏𝑗𝑗𝑋𝑋𝑖𝑖𝑗𝑗
𝑛𝑛

𝑗𝑗=1
+ 𝑒𝑒𝑖𝑖    (1) 

 
In this mathematical equation, a linear relationship is 

shown between the studied response (Yi) and the selected 
values of the descriptors (Xij), where ei is the random error. 
Therefore, the intersection (b0) and the coefficients (bj) must be 
calculated. The chemometric approach was used to validate the 
obtained models. In order to choose the best model, they were 
analysed by the QSARINS according to various parameters: fit 
(higher R2), robustness (higher Q2LOO), stability (lower R2-
Q2LOO), correlation of descriptors (low KXX), correlation with 
response (high dK), and the root of the mean error squared over 
(a) training calculation (RMSEtr), (b) training prediction by 
leaving one out (RMSECV), and (c) external prediction set 
(RMSEext).  

https://www.bindingdb.org/bind/index.jsp
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Table 1. List of chemical compounds with their IC50 values. 

R1

H
N O

H
N

O
O

R3
R2

R5 R4  
Compound R1 R2 R3 R4 R5 IC50 (nM) 
H2 Methoxy Ethyl 

Et
NSO

O
 

H H 0.8 

H4 Methoxy Methyl 

Et
NNS

O

O  

H H 0.9 

H5 Methoxy Ethyl 

Et
NO

 

N

 

H 1.2 

H6 Methoxy Ethyl 

Et
NO

 

N
 

H 1.7 

H7 Methoxy Methyl 

Et
NO

 

H H 2.3 

H8 Methoxy Methyl 

Et
NO

 

Trifluoromethyl H 2.7 

H9 Methoxy Ethyl 

Et
N

F
F

 

H H 2.7 

H10 Methoxy Ethyl 

Et
NSO

O
 

H H 2.7 

H11 Methoxy Methyl 

Et
NO

 

Methyl H 2.8 

H12 Methoxy Methyl 

Et
NNH3COC

 

H H 2.8 

H13 Methoxy Methyl 

Et
NO

 

H H 2.9 

H14 Methoxy Ethyl 

Et
NO

 

-CH2N(CH3)2 H 2.9 

H15 Methoxy Methyl 
 

Et
NO

 

Methyl H 2.9 

H16 Methoxy Methyl 

Et
NNS

O

O  

H H 3.2 

H17 Methoxy Methyl 

Et
N(H3C)2N

 

H H 3.4 

H18 Methoxy Ethyl 

Et
NO

 

F H 3.5 

H19 Methoxy Ethyl 

Et
NO

 

N F
F

 

H 3.5 

H20 Methyl Ethyl 

Et
NO

 

N
 

H 4 

H21 Methoxy Ethyl 

Et
NF

F
 

H H 4 

H22 Methyl Ethyl 

Et
NO

 

N
 

H 4 

H23 Methoxy Methyl 

Et
NO

 

H H 4 
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Table 1. Continued. 

R1

H
N O

H
N

O
O

R3
R2

R5 R4  
Compound R1 R2 R3 R4 R5 IC50 (nM) 
H24 Methoxy Ethyl 

Et
N

F
F

 

H H 4.5 

H25 Methoxy Methyl 

Et
NO

 

H H 4.8 

H26 Methoxy Methyl 

Et
NO

 

H -CH3 5.6 

H27 Methyl Ethyl 

Et
NO

 
N N

OH

 

H 5.6 

H28 Methyl Ethyl 

Et
NO

 

N

 

H 5.7 

H29 Methyl Ethyl 

Et
NO

 

N
 

H 5.7 

H30 Methoxy Methyl 

Et
NO

 

H -CH3 5.9 

H31 Methoxy Ethyl 

Et
NO

 

N

 

H 6.2 

H32 Methoxy Ethyl 

Et
NO

 

N
 

H 6.4 

H34 Methoxy Ethyl 

NO

 

Cyclopropane H 6.8 

H35 Methoxy Ethyl 

Et
NO

 

N O

 

 
H 
 

7.8 

H36 Methyl Ethyl 

Et
NO

 

Cyclopentane H 9.6 

H37 Methoxy Ethyl 

Et
NO

 

N
 

H 9.9 

H38 Methoxy Ethyl 

Et
NO

 

N N

 

H 10 

H39 Methoxy Ethyl 

NNF3CH2C

 

H 
 

H 14 

H40 Methoxy Methyl 

Et
NO

 

N
 

H 14 

 
Therefore, the selected model must be the most stable, 

predictive, and generalisable because of the least difference 
between the adjustment, cross-validation, and external 
validation. Consequently, it must have RMSE values that are as 
close as possible [24]. 
 
2.4. Model validation by OECD principles 

 
It should be remembered that QSAR modelling is not a 

trivial approach, and the outcomes of correlation are not as easy 

as ‘pressing a button’. In recent years, the QSAR community has 
given specific consideration to the validation of these models, 
with an emphasis on the applicability domain (AD) and 
predictive power to increase assurance in the consistency of the 
data predicted by them. According to existing regulatory 
principles, five fundamental characteristics (OECD principles) 
must be satisfied for the suggested model to be predictive [24]. 
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Table 2. List of chemical compounds with their IC50 values. 

S

H
N O

H
N

O
N R2

 
Compound R2 IC50 (nM) 
H45 O N

 

0.059 

H47 NO

 

0.063 

H48 N

HO  

0.067 

H49 NO

 

0.072 

H51 NO
F

F
 

0.100 

H52 NO
 

0.120 

H53 
HN

 

0.130 

H54 NO
F F

F
 

0.140 

H55 

O

O
N

 

0.160 

H56 N

F F
F

 

0.180 

H57 NF
F

 

0.180 

 
Table 3. List of chemical compounds with their IC50 values. 

S

H
N O

H
N

O

N

N R2

R1

 
Compound R1 R2 IC50 (nM) 
H44 H NO

 

0.057 

H46 F O N
 

0.060 

H50 Cl NO

 

0.092 

 
Principle I is related to the definition of the measurement 

point in which it measures the physicochemical, biological, or 
pharmacological properties of the developed model. The goal of 
this approach is to provide transparency at the measurement 
point anticipated by a particular model [24]. In this study, the 
measurement point is the molar concentration of the inhibitor 
required to achieve 50% protection against the cancer effect of 
HKMT EZH2 (IC50), expressed as pIC50. 

In Principle II, the QSAR model is expressed in the form of 
definite algorithms, taking into consideration how the 
descriptors of the chemical structure are related to biological 

activity [24]. Here, the algorithm used in this QSAR modelling is 
a mathematical model of multiple linear regression (MLR). 

In accordance with Principle III, the applicability domain 
(AD) of a QSAR model is mentioned. It is difficult to assume 
accurate predictions of the modelled property for the whole 
universe of chemical compounds, even from a strong, 
significant, and validated QSAR model. In fact, extrapolations of 
the models are not considered valid; only predictions for 
compounds that fall inside the application domain are 
considered [24].  
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N
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F F
F S

O

N
H

O

N
NH

H53av

O

NH2

S

O

N
H

O
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NH
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N
NH
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Figure 2. Compounds used for virtual screening derived from compound H53 of the database. 
 
In this study, two approaches provided by QSARINS were 

used to explain the AD of the model. First, the Williams plot was 
used to ensure that compounds outside the range can be 
considered outliers, while the accurate prediction of the model 
has leverage values below the critical leverage of ±3 standard 
deviations. Second, the Insubria plot was used to estimate the 
reliability of the predictions of compounds that exhibit no 
experimental response and to compare them with the 
predictions from the database. 

On the other hand, appropriate measurement of goodness-
of-fit, robustness, and predictivity of the model are discussed in 
Principle IV [24]. In this regard, the coefficient of determination 
R2 is used to assess the fit, and the effectiveness of the model is 
evaluated using the modified form of R2adj. 

In this study, the cross-validation strategies implemented in 
QSARINS were also used to check the robustness of the model. 
LOO (leaving one out), which is known as a widely used 
technique in QSAR, was also discussed here, in which a 
compound is repeatedly excluded from the data set and the 
model with the remaining compounds is calculated. However, a 
single compound disturbance is too small to establish the real 
robustness of the model in large databases. On the other hand, 
LMO (leaving many out), implemented in QSARINS, is also used 
to study the behaviour of the model when a large number of 
compounds are excluded [24]. The Y-randomization procedure 
is applied to demonstrate that the model is not the result of a 
casual correlation.  

When the model is internally validated and the probability 
of casual correlation is excluded, an external validation can be 
executed, which predicts new compounds. The procedure is 
performed by applying the model equation, obtained from the 
training set compounds, to a prediction set of compounds, 
which are excluded and will never be used in the calculation of 
the model. Performance can be measured using a variety of 
factors, including RMSEext, Q2F1, Q2F2, Q2F3, and CCC. Although 
Principle V is optional, we will come to an understanding based 
on the relationship established between the inhibitory activity 
of benzofuran and indole derivatives against HKMT EZH2, and 
the molecular descriptors included in the model. 
 
2.5. Molecular docking study  

 
The molecular docking procedure is broadly used for 

calculating the binding affinities for a number of ligand 
molecules. Transitional steps, such as PDBQT files for protein 
and ligand preparation and grid box creation, were 
accomplished using the graphical user interface of Autodock 
Tools (ADT) [25]. It allocates polar hydrogens, aggregate atom 
Kollman charges, solvation parameters, and fragmental volume 
to the protein structure. The three-dimensional X-ray crystal 
structure of the human enhancer of zeste homolog 2 (EZH2) 

protein, deposited in the RCSB Protein Data Bank 
(https://www.rcsb.org/), with PDB ID: 4MI0, was downloaded. 
The cofactors and water molecules were excluded from the 
protein moiety. Autodock saved the organized file in PDBQT 
format. Auto Grid was used for preparing the grid map using a 
grid box. The size of the grid box was set to 60×60×60 xyz points 
with a spacing of 0.375 Å and the centre of the grid box was 
selected at dimensions (x, y, and z): 13.862, 49.626 and 20.597. 
In order to minimize the computation time, a scoring grid is 
calculated from the ligand structure. Autodock Vina [26] was 
used to perform the docking using protein and ligand 
information along with grid box properties. During docking, 
both the protein and ligands were considered rigid. The pose 
with the highest negative energy of binding affinity was 
selected and aligned with the protein structure for further 
analysis. 
 
2.6. Virtual screening 

 
The validation movements designated for the proposed 

model have proven their effectiveness for the application and 
are therefore used in the identification or selection of new 
compounds as HKMT EZH2 inhibitors. However, it is not 
suitable to screen structurally different compounds based on 
the characteristics of the database (all compounds have a 
common scaffold). Because it is very likely that they were 
outside the domain of application of the model, they would not 
be considered reliable predictions. In response, the three best-
designed compounds derived from H53 in this database were 
screened using the model formed by the described techniques. 
The chemical structure of these compounds is shown in Figure 
2. 
 
2.7. Molecular dynamics (MD) simulation 

 
MD simulation was performed on the H53y-associated 

complex from the molecular docking trajectory with GROMACS 
5.1 software. The force fields utilised to simulate the protein 
complex were the CHARMM36 force field [27] and the TIP3P 
water model [28]. Hydrogens were ignored during the 
production of the protein topology file because they will be 
added later. Periodic boundary conditions were applied to the 
simulation at 310 K and 1 atm pressure. The Avogadro software 
[22] was used to add hydrogen atoms to the docked H53y 
molecule. All topology information for the ligand was done with 
the CHARMM General Force Field (CGenFF) server [29,30].  

Now, the equilibration of the system was carried out in two 
phases: NVT ensemble (constant number of particles, volume, 
and temperature), followed by the NPT ensemble (constant 
number of particles, pressure, and temperature). Here, 1000 ps 
NVT equilibration was accompanied by positional restraint to 

https://www.rcsb.org/
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the protein and ligand. The algorithm is based on a leap-frog 
integrator with a modified Berendsen thermostat temperature 
coupling with two FS time steps. Furthermore, the NPT 
equilibration was executed using the same protocol. Finally, a 
100 ns MD simulation run was executed for data collection and 
analysis.  
 
2.8. MM-PBSA (molecular mechanic-Poisson Boltzmann 
surface area) calculation 

 
The binding free energy for the protein-H53y complex was 

calculated from simulated MD trajectories using the g_mmpbsa 
script of the MM-PBSA method [31,32]. The free binding energy 
(ΔGbinding) of the protein-ligand complex is expressed by 
Equation (2): 
 
∆Gbinding = Gcomplex  − (Gprotein  + Gligand)  (2) 
 
where Gcomplex is the total free energy of the protein-ligand 
complex, and Gprotein and Gligand are the total free energies of the 
protein and ligand in the solvent, respectively. The combined 
effects of solvent-accessible surface area (SASA), polar 
solvation, van der Waals, and electrostatic energies represent 
the final binding free energy of the complex.  
  
2.9. In silico drug-likeness and toxicity prediction 

 
In this study, the designed compounds were assessed using 

the PreADMET web server (https://preadmet.webservice. 
bmdrc.org/) for testing drug-likeness and bioactivity scores. 
Furthermore, the toxicological evaluation was performed using 
the OSIRIS [33] property explorer, which was checked for 
maximum toxicity. 
 
2.10. DFT study  

 
Quantum chemical calculations of the designed molecules 

with better inhibitory activity and binding affinity were 
performed using Gaussian 16W [34] and GaussView 6.0 [35], a 
molecular visualisation programme. The chemical structure of 
designed compounds was optimized by density functional 
theory (DFT) using restricted Becke’s three parameter hybrid 
functional (B3LYP) with the latest 6-311++G(d,p) basis set [36]. 
The DFT studies were completed to identify the energies of the 
highest occupied molecular orbital (EHOMO), lowest unoccupied 
molecular orbital (ELUMO), and the band gap (∆EHL), which 
correlate with biological activity. Using EHOMO and ELUMO, other 
important global reactivity descriptor parameters such as the 
ionization potential (I), electron affinity (A), chemical potential 
(µ), global hardness (η), global softness (S), electronegativity 
(σ) and electrophilicity index (ω) were calculated: 
 
I = −𝐸𝐸HOMO      (3) 

 
A = −𝐸𝐸LUMO     (4) 
 
µ =  1

2 � (𝐸𝐸LUMO + 𝐸𝐸HOMO)    (5) 

 
η =  1

2 � (𝐸𝐸LUMO − 𝐸𝐸HOMO)    (6)
    
𝑆𝑆 = 1 η�       (7) 
 
σ =  −µ      (8) 
 
ω = µ2

2η
      (9)

  
 

3. Results and discussion 
 
3.1. QSAR-MLR model 

 
After selection of the descriptors, thousands of different 

models were calculated during a typical QSAR session. Models 
with inadequate quality were excluded to avoid a useless list of 
final outputs. In this study, a model with lower correlation 
(Table S1) between the descriptors was selected, in which the 
model has low multicolinearity and a good correlation with the 
modelled response. 

The best MLR model obtained with its statistical 
parameters is 
 
pIC50 = 10.2512 − 1.2283(minHBint4)− 
                        0.3777(Wlambdal. unity)                    (10) 
 
Fitting criteria: R2: 0.9328, R2adj: 0.930, R2-R2adj: 0.0034, LOF: 
0.0467, Kxx: 0.4597, Delta K: 0.0903, RMSEtr: 0.196, MAEtr: 
0.1557, RSStr: 1.6521, CCCtr: 0.9652, s: 0.2032, F: 277.734 
 
Internal validation criteria: Q2LOO: 0.9212, R2-Q2LOO: 0.0117, 
RMSEcv: 0.2124, MAEcv: 0.1683, PRESScv: 1.939, CCCcv: 0.9592, 
Q2LMO: 0.9187, R2Yscr: 0.0471, Q2Yscr: -0.1027 
 
External validation criteria: RMSEext: 0.2191, MAEex: 0.1978, 
PRESSext: 0.384, R2ext: 0.929, Q2F1: 0.9302, Q2F2: 0.9249, Q2F3: 
0.9161, CCCext: 0.9612. 
 
where R2, R2adj and LOF are the coefficient of determination, 
adjusted coefficient of determination, and Friedman’s lack of 
adjustment, respectively. Furthermore, KXX is the global 
correlation between the descriptors and Delta K is the 
difference in the correlation between the descriptors (KX) and 
the response (KXY). RMSEtr is the root of the mean error squared 
over the training calculation, MAEtr is the absolute error 
(average) in the adjustment calculated in the training series, 
RSStr is the sum of the squared residuals in the adjustment, s is 
the standard estimation error, CCCtr is the correlation 
coefficient of concordance in the training and F is the Fisher 
value. 

The best model has an R2 value of 0.9328; therefore, it 
exhibits a good fit to the model with the inhibition of the HKMT 
EZH2 target. Additionally, it has an R2adj value of 0.930, which 
indicates the ease of adding new descriptors to the model. As a 
result, with a low LOF parameter of 0.0467, it can be concluded 
that the model is not overfit because it has a good fit with a 
minimum of two descriptors. 

Since the KXX is low (0.4597) and the correlation between 
the model's descriptors is small, we may assume that the 
descriptors we have chosen do not include any redundant 
information. Furthermore, according to the Delta K parameter 
(0.0903), with a small error on training calculations and 
parameter estimation (RMSEtr = 0.196; MAEtr = 0.1557; s = 
0.2032), the correlation between the descriptors and the 
modelled response is satisfactory. The plot of predicted versus 
experimental responses (Figure 3) enables easy detection of 
systematic trends or grouping of data with probable outliers. 

This graph compares the experimental values of pIC50 with 
the values predicted by the model equation for the training and 
prediction series. It is seen that most of the points are close to 
the line, and no unusual behaviour of the other compounds in 
the database has been found. The experimental pIC50 for HKMT 
EZH2 and the results predicted by the MLR model for the 
training and prediction series are shown in Table S2. 
 
3.2. Analysis of the model with OECD regulatory principles 

 
Although the first stage in a QSAR analysis is to calculate the 

model, which is not sufficient to guarantee its validity.  
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Figure 3. Values predicted by the model against observed values. The light circles represent the training set compounds and the dark circles represent the 
prediction set. 

 

 
 

Figure 4. Williams graph for the applicability domain of the model. 
 
The model must be thoroughly validated using the 

chemometric technique, paying close attention to conformity 
with the regulatory guidelines outlined by the OECD. In this 
regard, the section titled "Model validation by OECD principles" 
clarifies Principles I and II [24]. 

In this work, the leverage (h) and standardised residuals 
techniques were used to test AD (Principle III). The Williams 
graph of the model for the training and prediction series is 
shown in Figure 4. All compounds are included in the AD of the 
model with critical leverage, as seen in this figure (h* = 0.209). 

Furthermore, QSARINS software offers a new method for 
determining AD based on leverage and model predictions. On 
the other hand, the Insubria graph is very valuable to assess the 
position of a molecule.  

The Insubria graph (Figure S1) shows that the results 
resemble the Williams plot, so it must be remembered that 
these compounds might be considered influential compounds.  

Several criteria were taken into account to evaluate 
Principle IV. In the previous section, the fit of the model was 
discussed. The results obtained from the internal validation 
show the robustness and stability of the model. According to the 

variance explained in the prediction by LOO (Q2LOO = 0.9212), it 
confirms good internal predictions. The Q2LOO parameter 
(0.9212) has a high value similar to R2 = 0.9328, and therefore 
the model is considered internally stable or robust, with small 
errors in the predictions of RMSEcv (0.2124) and MAEcv 
(0.1683). 

Figure S2 shows the predicted values by LOO versus the 
experimental values of pIC50 for the training and prediction 
sets. Because the compounds are close to the straight line, as 
predicted by the model, this provides the hypothesis that the 
model is stable and robust. 

LMO, where 30% of the compounds of the training set are 
removed, is a more powerful technique used in QSARINS. The 
model is considered robust and stable because the values of R2 
(0.9328), Q2LOO (0.9212), and Q2LMO (0.9187) are comparable. 
Figure 5 shows Q2LMO versus KXY (correlation between 
descriptors and inhibition of HKMT EZH2). It is observed from 
the figure that the Q2LMO values (red circles) are very similar to 
each other and comparable with the KXY values, which agrees 
that the model is stable and robust. 
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Figure 5. LMO values in cross-validation based on the correlation of the descriptors with the modelled response. 
 

 
 

Figure 6. Y-scrambling graph in internal validation. 
 

Additionally, the Y-scrambling graph states that the model 
is not obtained by casual correlation because the performance 
of the model decreases significantly with the placement of 
random answers (R2Yscr = 0.0471 and Q2Yscr = −0.1027). Figure 6 
displays the values of R2Yscr and Q2Yscr vs R2 and Q2 of the model. 
Here, the last two parameters are very far from the values of the 
Yscr, which specifies that the model is not obtained by casual 
correlation. 

However, external validation parameters validate their 
capacity to predict new compounds. The obtained parameters, 
such as R2ext = 0.929, provide accurate results for the R2 value of 
the model, and RMSEext = 0.2191, MAEext = 0.1978, PRESSext = 
0.384, Q2F1 = 0.9302, Q2F2 = 0.9249, Q2F3 = 0.9161, CCCext = 
0.9612, r2m aver = 0.8952, and r2m delta = 0.0558 are also 
good. On the basis of these consequences, the model has good 
predictive power and is suitable for the prediction of novel 
compounds that have not undergone experimental evaluation. 
Table S2 displays the predictions of the MLR model for the 
prediction set. 

According to the descriptors present in the model, Principle 
V is taken into consideration. With just two predictive variables, 
the developed model can explain the variance of the 
experimental data to inhibit HKMT EZH2. In the model 
equation, these variables negatively influence the value of the 

pIC50 response, so the value of pIC50 should increase with a 
decrease in the value of these molecular descriptors. The first 
descriptor consists of the two-dimensional descriptor 
minHBint4 [37], which is an atom-type electrotopological state 
that mainly encodes the minimum E-state descriptor of 
strength for potential hydrogen bonds of path length 4 in the 
molecule. However, the second descriptor Wlambdal.unity is a 
three-dimensional Weighted Holistic Invariant Molecular 
(WHIM) that encodes the atomic environment, weighted by unit 
weights. 

Additionally, molecular docking studies were performed 
with these 51 inhibitors to validate the virtual screening 
structure-activity relationship. Here, the high values of the 
biological property (pIC50) would correspond to a decrease in 
the values of the variables that negatively contribute to the 
model, which are minHBint4 and Wlambdal.unity. From the 
original dataset, few molecules were found to have better 
predicted pIC50 values (>10 nM). A representative molecule 
(H53) from the database has the highest negative binding 
energy of −8.8 kcal/mol with a considerable predicted pIC50 
(>10 nM). Therefore, new molecules with an extremely 
predicted pIC50 (>10 nM) were designed by various substitu-
tions at the H53 molecule, followed by a better binding affinity 
(Table S3).  
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Figure 7. Three-dimensional and two-dimensional molecular docking interactions of three designed compounds (a) H53y, (b) H53av, and (c) H53bb with the 
target receptor of human EZH2 (PDB ID: 4MI0). 
 
3.3. Molecular docking studies 

 
The molecular docking was performed in order to study 

possible interactions between the receptor and the ligand 
molecules [38]. In the present manuscript, we attempt to study 
the interactions of new benzofuran and indole hybrids with 
EZH2. In order to study the binding efficacy of all the designed 
compounds, molecular docking studies were performed in the 
binding pockets of human EZH2 [PDB ID: 4MI0]. Compound 
H53 from the data set is taken as a reference standard due to its 
highest binding energy (−8.8 kcal/mol). On the other hand, all 
the designed compounds with considerable biological activity 

(pIC50) exhibited better binding scores, ranging from −6.9 to 
−9.3 kcal/mol.  

The binding energy of the two designed compounds (H53p 
and H53ck) has shown the same binding energy as that of the 
target. Only three molecules, such as H53y, H53av, and H53bb, 
emerged as the best derivatives because of their higher binding 
energies compared to reference. Docking interactions of the 
best active compounds are shown in Table S4, while Figure 7 
represents the binding interactions of the best-designed 
compounds on the human EZH2 protein. Among them, H53y 
has shown the highest binding energy of −9.2 kcal/mol, having 
two hydrogen bonds with the residues Asp676 and Leu666 of 
the receptor.  
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Figure 8. RMSD of protein-ligand complex during 100 ns MD simulation. 
 

(a) 
(b) 

 

(c) (d) 
 

Figure 9. (a) Rg, (b) SASA, (c) RMSF, and (d) H-bond plot of protein-ligand complex during 100 ns MD simulation. 
 
The remaining two compounds (H53av and H53bb) have 

also shown the same but higher binding energy (−8.9 kcal/mol) 
compared to the reference. In this case, one hydrogen bond is 
formed by both molecules. 
 
3.4. MD simulation analysis 

 
Molecular docking is unable to distinguish the confor-

mational changes of the protein-ligand complex. Hence, MD 
simulation is carried out providing depth and detail in the 
structural information of the docked protein-ligand system. It 
gives complete information about the stability or flexibility of 
the ligand molecule on the protein surface [39]. Here, the best 
docked molecule (H53y) was subjected to MD simulation for a 
time period of 100 ns, and various MD simulation analyses were 
carried out. 

The root mean square deviation (RMSD) is an important 
parameter that gives information on the structural stability of 
protein-ligand complexes [40]. It was observed that the RMSD 
for H53y increased by up to 5 ns (Figure 8). Subsequently, the 
RMSD of the simulated complex was stabilised and equilibrated 
throughout the simulation time period. The average RMSD 
value for H53y was 0.49 nm.  

Radius of gyration (Rg) gives information about the 
compactness of the simulated complex during MD simulation 
[40]. Here, the Rg of the protein for the H53y-complex was 
calculated during the simulation, as shown in Figure 9a. The 
average Rg of the protein in the complex was found to be 1.90 
nm, satisfying no considerable change in the Rg value and 
maintaining stability. Similarly, the solvent accessible surface 
area (SASA) provides information related to the contact area of 
the ligand with the receptor [40]. Here, the average SASA value 
of the protein with the ligand was found to be 130.31 nm2 
(Figure 9b).  

Furthermore, root mean square fluctuation (RMSF) was 
performed to analyse the fluctuation of each amino acid residue 
of the protein during MD simulation. The fluctuation of amino 
acids in the complex was determined for a period of 100 ns. 
Figure 9c represents the RMSF plot of H53y. The amino acid 
residues at positions 656-663 showed higher fluctuations, but 
none of the residues (666, 668, and 676) constitute H-bond 
interactions at the active site of the receptor. Overall, the critical 
residues of the active site showed slight fluctuations during 
simulation.  
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Figure 10. Contribution energy (kJ/mol) of each amino acid residue after MD simulation. 
 

(a) 
 

(b) 

(c) 
 

Figure 11. HOMO-LUMO of the best-designed compounds. 
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In addition, the stability of a protein-ligand complex is 
determined by the hydrogen bond between the ligand and the 
receptor. Hydrogen bond increase stability and specificity due 
to their favourable distance and geometric restrictions. Various 
computational techniques are now used to access the number 
of hydrogen bonds in several studies of drug discovery [40]. In 
this study, a hydrogen bond analysis of H53y was performed to 
validate the result. Here, the H53y formed approximately two 
hydrogen bonds (Figure 9d) during the simulation, which was 
supported by molecular docking interactions. 

 
3.5. MM-PBSA analysis   

 
MM-PBSA is a computational method that accesses the free 

binding energy of the ligand and protein in a dynamic 
environment. The binding free energy of the H53y-associated 
complex is calculated for 100 ns of MD simulated trajectories. 
The van der Waals energy, electrostatic energy, polar solvation 
energy, and SASA energy are contributed towards the overall 
free binding energy calculated in MM-PBSA. Here, the H53y 
complex exhibited a free binding energy of −63.557 ± 0.365 
kJ/mol (Table S5).  

Apart from the binding energy, the contribution of each 
amino acid residue was also analysed towards the binding free 
energy of the selected complex. The analysis gives information 
on the contribution of important amino acid residues towards 
the binding site of the receptor (Figure 10). Amino acid residues 
Phe665 (−3.542 kJ/mol), Leu666 (−3.3181 kJ/mol), Phe667 
(−1.6175 kJ/mol), Val674 (−1.4084 kJ/mol), Thr678 (−1.0595 
kJ/mol), and Tyr726 (−5.2858 kJ/mol) contributed more 
favourably in the case of the H53y-complex. 

All these analyses showed that the molecule H53y 
performed better during the entire MD simulation. The protein-
ligand complex remains stable at the binding site of the receptor 
and comes out as potent, as suggested by MM-PBSA analysis.  
 
3.6. Drug-likeness and toxicity prediction 

 
Many computational techniques have been established to 

identify the drug-likeness ranging from basic schemes such as 
Lipinski’s rule of five from PreADMET (Table S6) in predicting 
the activity and toxicity prediction from OSIRIS property 
explorer (Table S7). One designed compound (H53av) has 
satisfied Lipinski’s rule of five, as it exhibits better drug like 
physicochemical properties, namely, the LogPo/w values for 
this compound were <5. The remaining two compounds violate 
this criterion because of their higher molecular weight (MW) 
and LogPo/w. Plasma protein binding (PPB) data of these three 
compounds have represented moderate binding (>80%). On 
the other hand, human intestinal absorption (HIA) data have 
shown good absorptivity (>94%) for these designed 
compounds. Additionally, the values of blood-brain barrier 
(BBB) penetration data tabulated in Table S6 have shown that 
the two molecules (H53av and H53bb) have moderate 
absorptivity, while H53y has high absorptivity toward the 
central nervous system.  

In evaluating the toxicity for the designed compounds, all 
molecules were devoid of important organ toxicities like 
mutagenicity, tumorogenicity, irritant, and reproductive 
effects. Topological polar surface area (TPSA) indicates drug 
permeability and is an important parameter for oral absorption 
and CNS penetration. The designed molecules were within the 
range of not exceeding 140 Å2. Furthermore, their drug score 
values ranged from 0.16 to 0.37. 
 
3.7. DFT analysis 

 
The chemical reactivity and kinetic stability of the 

compound depend on the frontier molecular orbitals of HOMO 

and LUMO [41]. The energies between the molecular orbitals 
(HOMO and LUMO) were calculated, listed in Table S8. The 
HOMO and LUMO energies describe the electron-donating and 
accepting abilities of the molecules, respectively. The gap 
between them, referred to as the orbital energy band gap 
(ΔEHL), plays a vital role in determining the electron 
transportation capacity of the molecule. A larger gap alludes to 
the fact that the molecule is chemically hard, stable, and 
unreactive, while a molecule with a smaller orbital energy gap 
is soft, unstable, and reactive [41]. 

It was found from the Table S8 that the ΔEHL for the 
compounds studied ranged from 3.1 to 3.8 eV, in which H53y 
was the lowest (3.15 eV) (Figure 11). Hence, it was considered 
the softest molecule among them, being both highly polarizable 
as well as highly reactive. H53y was found to have the highest 
dipole moment value of 7.94 debye, which indicates a better 
tendency to participate in strong intermolecular interactions. 
The softness parameter, which is a characteristic of the 
chemical reactivity of the molecule, and the inverse values of 
the hardness. The chemical softness of the designed compounds 
was found to be between 0.53 and 0.63 eV-1, while the chemical 
hardness was found to be between 1.58 and 1.89 eV. 
 
4. Conclusions 
 

In this present study, the QSAR study confirmed that the 
model with two descriptors (minHBint4 and Wlambdal.unity) 
was found to be robust and stable and successfully predicted 
the pIC50 values associated with anticancer activity. The MLR 
approach in the QSARINS suite was used to develop the best 
model equation using molecular descriptors of benzofuran and 
indole derivatives, calculated by PaDEL software. The OECD 
principles were successfully followed to design and select new 
compounds for anticancer drugs with robustness, stability, and 
good predictive power of R2 = 0.9328, Q2LOO = 0.9212, Q2LMO = 
0.9187, and R2ext = 0.929, respectively. In addition, none of the 
compounds were found to be outliers in the Williams plot. The 
compound H53 from the original data set was set as a reference 
in the molecular docking. Finally, three designed compounds 
(H53av, H53bb, and H53y) with predicted pIC50 values greater 
than 10 were found to be the best due to better binding activity, 
as well as pharmacological properties, modified by the rational 
drug design of the reference molecule. Therefore, these three 
molecules could be exploited as the most promising inhibitors 
in in vitro and in vivo experiments against the human EZH2 
target.  
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