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Nanometal oxides have attracted considerable research interest because of the widespread 
applications in which nanomaterials can be synthesised in various oxide forms that can 
adopt various structural geometries with unique electronic band structures. Additionally, 
nanometal oxides provide unique features imputed to quantum confinement effects that 
stimulate changes in their optical, electrical, and optoelectronic behaviours. Meanwhile, 
introducing such nanometal oxides into host polymeric materials enables the formation of 
advanced polymeric nanocomposites with versatile properties. Even so, the utilisation of 
such nanocomposites in diverse potential applications requires a fundamental 
understanding of their inherent material functionalities. Therefore, this document aims to 
demonstrate the importance of polymer nanocomposites with a special focus on the impact 
of nanometal oxides to enhance the optical and electrical behaviours of polymer composites 
for advanced optoelectronic and energy storage applications. 
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1. Introduction 
 

Today, intercalated polymer nanocomposites (NCs) with 
nanometal oxides are gaining significant interest in both 
academic and industrial scenarios. It involves the selection of 
polymers and metal oxides on the nanoscale from various 
numbers of polymers and nanomaterials available today for the 
desired properties. Metal oxides are well-known materials for 
sensors, photocatalytic, fuel cells, coatings, optoelectronic 
devices, etc. [1-6]. The surface of metal oxides is a key factor for 
effective interaction with target molecules, however, reducing 
the size of metal oxide particles to the nanoscale increases the 
active surface area and induces a new effect due to quantum 
confinement such as band gap widening, UV-absorption, room 
temperature, and photoluminescence [7-9]. Compared to 
traditional spherical nanometal oxide, its excellent electrical 
properties and unique geometry can increase the bulk 
conductivity of typical engineering polymers by ∼1010-1014 S 

such as resistors, inductors, and capacitors, which are steadily 
increasing in the electronic industries. The surface of the 
nanometal oxides provides vacancies orbital’s to interact with 
the host polymers leads to charge transfer between it. The 
characteristics of individual polymeric nanocomposites are 
affected by the structure of the components, the content and 
shape of the nanometal oxides, the morphology of the 
composites, in addition to the nature of interactions at the 
interfaces between components in the NC [10,11]. Therefore, 
the improvement of such properties and interfacial interactions 
between polymers and nanometal oxides acquire a role in 
decorated the optoelectrical properties of polymeric 
nanocomposites. In this chapter, the authors have focused on 
the effect and role of different nanometal oxides in the 
modification of the optical and electrical properties of host 
polymers to be suitable for optoelectronic and industrial 
applications. 
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Figure 1. (a) Hexagonal structure and (b) schematic diagram of energy band with some of the defect levels in ZnO structures [24,25]. 
 

2. Nanometal oxide features  
 

Nanometal oxide semiconductors are ecofriendly and low-
toxic materials with a high surface area, are chemically stable, 
and exhibit fast electron transfer character, which is required 
to enhance the performance of nanocomposites. Generally, 
nanostructured metal oxides, such as ZnO, CuO, NiO, TiO2, ZrO2, 

WO3, Fe3O4, Co3O4 and SnO2, have unique magnetic and super 
hydrophobic properties. It has different and attractive 
morphologies such as nanospheres, nanoflowers, nanorods, 
nanotubes, and nanowires, which convenient and it’s important 
applications such as catalysis, solar energy transformation, gas 
sensor, magnetic storage media, electronics, electrical and 
optical switching devices [12-15].  

Generally, in the electronic structure of inorganic transition 
metal oxides, the band gap increases as the ionicity increases, 
and it may be due to the energy difference between the cation 
and the orbital of the anion. It implies the splitting of the 
dangling bond orbital’s increases, moving them closer to the 
band edges. The existence of additional interactions with 
occupied or unoccupied orbital’s (e.g., d-orbitals of transition 
metals) gives rise to secondary bonding-antibonding interac-
tions. Such situations support defect tolerance, since lattice 
defects (e.g., point defects, grain boundaries) are less likely to 
create deep defect states within the band gap [16].  

In nanometal oxides, optical absorption features are 
generally affected by 'non-stoichiometry' size-dependent defect 
effects. Typical point defects in nanometal oxides concern 
oxygen or cation vacancies and/or the presence of Alien’s 
species, like Cu2+ and Ce3+ (Alien cations display specific 
features, such as the localized d-d or f-f transitions of Cu/Ce). 
Vacancy defects introduce gap states in proportion to the defect 
number; in fact, a random distribution of (equal) vacancy 
defects introduces a Gaussian-like density of states that can 
produce mid-gap states and/or be localised near the valence 
and conduction bands depending on the electronic nature 
(donor/acceptor) of the defect and gives characteristic 
'localised' features in the UV-visible spectrum.  

Furthermore, metal oxides can exhibit ionic or mixed 
ionic/electronic conductivity, and it is experimentally well 
established that both can be influenced by the nanostructure of 
the solid. The number of electronic charge carriers in a metal 
oxide is a function of the band-gap energy according to the 
Boltzmann statistics. Electronic conduction is referred to as (n 
or p-hopping type) depending on whether the principal charge 
carrier is correspondingly electrons or 17 holes. The number of 
'free' electrons or holes of a metal oxide can be enhanced by 
introducing nonstoichiometry and it is balanced by much less 
mobile oxygen/cation vacancies. 

The presence of undercoordinated atoms (like corners or 
edges) or O valences in metal oxide NPs should produce specific 
geometrical arrangements as well as occupied electronic states 
located above the valence band of the corresponding bulk 
material, enhancing the chemical activity of the system. 

The semiconductors including ZnO, TiO2, and In2O3 are well 
known as n-type transparent conducting metal oxides; 
however, other main group oxides such as CuO, NiO, MgO, and 
Al2O3 are classified as p-type semiconductors.  
 
2.1. Nano zinc oxide  
 

Among nanometal oxides, ZnO has attracted great attention 
due to its multiple advantages, such as a direct and wide band 
gap (3.37 eV) with a large exciton binding energy (60 meV), 
morphological diversity, and low-cost production. It possesses 
a hexagonal wurtzite structure with exciting optoelectronic 
device applications such as light-emitting diodes (LEDs) and 
efficient laser diodes [17]. The transparent conducting ZnO has 
native donor defects (n-type semiconductor), where its donor 
level is often deep inside the band gap, and thermal ionisation 
can contribute to the n-type conductivity. However, it is 
challenging in ZnO to achieve p-type conductivity and to 
develop a p-n homojunction [18,19]. The difficulty may be 
related to the formation of compensating defects; the low 
solubility (typically < 1018 cm-3) of the acceptor dopants and the 
high ionisation energy (170-380 meV) of all acceptor 
candidates [20,21]. Many scientists have been carried out by 
doping ZnO with other p-type materials, eg, p-Ga N, p-Si and p-
type organic materials [22]. The ZnO has a piezoelectric 
effective, i.e., generate an electric charge in response to applied 
mechanical stress. In its most common form, the hexagonal 
wurtzite structure of ZnO has two different surfaces; one is the 
polar plane and the other is the non-polar plane as shown in 
Figure 1 [23-25]. The schematic diagram shows the visible 
emission of ZnO, which is due to the presence of defect levels in 
ZnO (Vo, VZn oxygen and zinc vacancies, Oi, Zni oxygen, and zinc 
interstitial). The exits of such point of defects in the crystal 
structure are exploited for optoelectronic devices [23]. 
 
2.2. Titanium oxide 
 

Nanosized titanium oxide (TiO2) is considered a nearly 
perfect material due to its remarkable and unique optical 
properties. It is another n-type semiconductor with a wide band 
gap ranging from 3.2 to 3.6 eV. The so-called “quantum 
confinement” or “quantum size effect” is restricted in TiO2 to 
very low sizes, below 10 nm, due to its rather low exciton Bohr 
radius. The Ti-O bond appears to have an increasing covalent 
character with the oxygen content of the oxide, so the departure 
of Tin+ from the formal oxidation state increases from + 2 to + 4. 
TiO2 NP can be used in several potential applications such as 
chemical sensors, solar cells, catalysis, magnetism, dielectric 
materials for ultrathin film capacitors, optoelectronic devices, 
cosmetics and biomedical fields [26,27]. The chemical and 
physical properties of TiO2 depend on its microstructure, such 
as the morphology, size, and orientation of the constituent 
grains.  
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Figure 2. (a) The rutile and (b) anatase phases of TiO2 structure [31]. 

 

(a) (b) 
 

Figure 3. (a) Monoclinic unit cell and (b) TEM micrographs of CuO structure [34,35]. 
 
Uniform-sized TiO2 NPs with diverse morphologies were 

successfully synthesised by different methods such as 
hydrothermal, sol-gel, chemical precipitation, and microwave-
assisted methods [28,29]. There are three different polymorphs 
of TiO2 NP known as anatase, rutile, and brookite structures. 
Figure 2 displaces the rutile and anatase phases of TiO2 NP. The 
anatase phase has a higher density of localised states, leading to 
higher photocatalytic activity compared to other crystalline 
forms [30,31]. In TiO2, the oxygen vacancy defect state is 
created predominantly by the Ti-d orbitals. Therefore, the 
electronic behaviour of the VO (oxygen defect) is strongly 
influenced by the propensity of Ti to assume a Ti ion oxidation 
state when the Fermi level lies close to the conduction band of 
TiO2. 
 
2.3. Copper oxide  
 

Copper oxide (CuO) is a native p-type semiconductor with 
an indirect narrow energy band gap of 1.2-1.9 eV and a 
refractive index of around 2.63. It is a suitable material for high-
efficiency solar cells, because their direct band gaps are close to 
the ideal energy gap for solar cells and well matched with the 
solar spectrum. CuO has been used as a hole transfer layer and 
a barrier layer for dye-sensitive solar cells [32]. Figure 3 shows 
the monoclinic crystal structure and CuO TEM image that has 
the space group 2/m or C2h and lattice parameters of 0.468 nm, 
0.342 nm and 0.513 nm, at β = 99.55° [33-35]. It has a unique 
monoxide as a square planar coordination in a unit cell where 
the copper atom is surrounded by four oxygen atoms in the 
configuration [33]. CuO NPs are nontoxic and have a low 
production cost, high surface area to volume ratio, good 
electrochemical activity, and electron transfer at lower 
potential. It can be synthesised in different shapes by various 
techniques such as hydrothermal, sol-gel, and combustion 
methods. 

The unique features of CuO NPs make it suitable for many 
technological fields such as active catalysts, gas sensor, 
magnetic recording medium, and high critical temperature 
superconductor [36,37]. Raman spectra of different grain sizes 
CuO NPs at different temperatures revealed that the intensity of 
the spectrum is related to the size of the NPs, where the smaller 

NPs showed stronger and sharp peaks and shifted to smaller 
wave numbers, which may be explained by the phonon 
confinement effect in nanometre-sized materials. The number 
of crystal defects increases rapidly as the size of the NPs 
decreases due to the large surface/volume ratio and the 
contribution of the vibration of oxygen atoms [38,39]. Besides, 
the luminescence of CuO NPs is generally supposed to show the 
existence of defects, where the deep emissions may be due to 
the existence of Cu vacancies, which are the most stable defects 
in CuO. However, the formation energy of oxygen vacancies or 
interstitial defects (O, Cu) is not much different from the 
formation energy of Cu vacancies [40]. 
 
2.4. Nickel (II) oxide  
 

It is another native p-type 3d transition metal oxide 
semiconductor with small size (< 100 nm). Nickel (II) oxide 
(NiO) NP has multifunctional properties, such as wide band gap 
(~3.88 eV), specific capacitance (~390 F/g), high discharge 
capacity (~638 mA h/g), high carrier density (~7.35 - 1018 cm-

3), and photon to current conversion efficiency (~45%), in 
addition to excellent catalytic activity (42.3 gm-2) for CO 
oxidation. It shows good electrical, electrochromic, and thermo-
electric properties as well as high chemical resistance. 
Therefore, NiO NPs are a highly desirable candidate for appli-
cations in electronics, electrochemical devices, photovoltaics 
(PVs), sensors, and catalysis [41,42]. The crystal structures of 
NiO are commonly known as a cubic rock salt structure; the 
nickel atom is placed in a six-fold octahedral coordination, as 
shown in Figure 4, along with the TEM image of NiO NPs 
[43,44]. 

Among several different approaches to produce NiO NPs, 
hydrothermal method is the fever is technique for growing the 
NiO NPs due to inexpensive apparatus, low temperature 
operation, and it is substrate independent. However, the 
hydrothermal method produces impure NiO material as a result 
of the hydroxide produced in the growth solution. The impure 
NiO NPs was annealed at 300-500 °C to produce its pure 
nanostructured phase [45]. 
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Figure 4. (a) Cubic rock phase and (b) TEM micrographs of NiO structure [43,44]. 
 
2.5. Tungsten oxide  
 

Nanosized tungsten trioxide (WO3) is one of the transition 
metal oxides that is known to be an important p-type 
semiconductor with a bandgap of 2.5-3.0 eV. The crystal 
structure of WO3 can be orthorhombic, hexagonal, tetragonal, 
or monoclinic. It has several potential applications, such as 
electrochromic windows, information storage media, optical 
devices, photocatalysts, and gas sensors [46]. Much effort has 
been exerted to synthesise WO3 NPs in different nanostructurer 
shapes (nanotubes, nanowires, nanoplatelets, etc.) by various 
techniques [47,48]. The synthesis of WO3 NP as hollow spheres 
can be adjustable by calcinating acid-treated PbWO4 and SrWO4 
at 500-600 °C for 2 hours [49]. Furthermore, tungstic acid 
(H2W15O55·H2O) hollow spheres and nanotubes have been 
synthesised via a nonaqueous and surfactant-free through 
solvothermal reaction for WCl6/urea/ethanol system in the 
presence of WO3 and subsequent slow calcination [50]. The 
Hollow structure of WO3 resulting nanoporous walls make it as 
a promising material for energy storage fields, catalysis and bio-
technology applications. 
 
3. Polymer nanocomposites  
 

Today, within the limits of materials technology, the 
concept of mixing different types of materials through synergy 
is one of the most effective ways to achieve specific objectives 
with the highest efficiency in properties and cost-effectiveness. 
Therefore, significant efforts have been made to control the 
nanostructures via innovative synthetic methods. The features 
of nanocomposites (NCs) depend on the nature, composition, 
and properties of nanomaterials with their morphology and 
interfacial characteristics. It can be widening the application 
window of the NCs by an optimised fabrication process and 
controlled nanosized dispersion, thermal stability, and 
mechanical properties such as toughness, hardness, adhesion 
resistance, and flexural strength. The high volume-to-surface 
and aspect ratios of nanometal oxides (nanoparticles) make it 
highly preferred to utilise it as a filler in polymeric matrices. 
Generally, solution casting, melt mixing, and in situ 
polymerisation approaches have been used to fabricate 
polymer-based NCs. 

In solution casting, the polymeric matrix completely 
dissolves in a suitable solvent, and then the nanometal oxide 
will be homogeneously dispersed in the solution by ultra-
sonication followed by evaporation of the solvent to a typical 
dry film forming. The solvent assists in the segmental motions 
of the polymeric chains which lead to perfectly dispersive 
nanometal oxide inside the polymeric chains. Whereas melt 
blending needs a high processing temperature, it does not 
require solvent as an intermediate between nanometal oxide 
and polymer, where both components are added to the 
extruder with intensive mixing for some time, and the NCs come 
out of the die. The mobility of polymeric chains simply comes 
from thermal energy. However, in the case of in situ 

polymerisation, the monomer and nanometal oxide are mixed 
initially. Monomers are allowed to disperse between nanometal 
oxide particles, where monomer polymerisation may occur on 
the surface of nanoparticles (NPs) as a core-shell or coating on 
the NPs [51-53]. Figure 5 shows the steps of some approaches 
to the preparation of polymer-based NC films. The content of 
nanometal oxide has a high impact on the properties of polymer 
NCs where the interparticle distances are small and the 
conversion of a large fraction of the polymer matrix near its 
surface into an interphase of different properties as well as a 
change in the morphology [54-57]. At lower doses of nanometal 
oxide, the uniform dispersion of particles in NCs can occur. In 
addition, the geometrical shape of the nanoparticles plays an 
important role in determining the properties of NCs. 

Furthermore, the preparation of high-quality polymer NCs 
containing high nanometal oxide content has faced common 
problems which represent barriers to the development of 
polymer NCs, such as dispersion, the interface between NP and 
polymer, alignment of NPs and quality of nanostructures [58]. 
A homogeneous dispersion of NPs is crucial in polymer-NCs. 
Agglomeration may occur in poorly dispersed NPs creating 
micron-sized aggregates. Air may trap inside the aggregates 
which may cause void within NCs lowering its properties [59]. 
Modifying the surface of NPs may be needed to improve their 
dispersion in the polymeric solution, which is important to 
maintaining transparency after the formation of NC films. As 
presented in Figure 6, organo-silane compounds like 
(RSi(OMe)3 (R = 3-Methacryloxypropyl)) have been used 
successfully to modify the surface of Al2O3 NP [60]. In addition, 
carboxylic acids, phosphorus coupling reagents, and 
surfactants have generally been utilised for surface 
modification of TiO2, ZnO, Al2O3 and SiO2 NPs to reduce their 
aggregations, which enhances their uniform and stable 
dispersion in the polymers [61-64]. In addition, physical 
treatment may also help in the dispersion of NPs where physical 
mixing devices such as ultrasonication, shear mixing, and ball 
milling are also used. 
 
4. Optical behaviours  
 
4.1. Absorbance and band gap energy  
 

Interestingly, in all NC materials, the optical properties are 
closely related to the structural properties, compositional 
parameters, vacancy density, and dopant level. The UV-vis 
spectrum is an important tool for understanding the band gap 
structure, electronic properties, and optical constants 
(refractive and absorption indices) of pure and doped 
polymers. The data of the absorption curve in the lower energy 
part provide information about atomic vibrations, while the 
higher energy part of the spectrum gives knowledge about the 
electronic states.  
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Figure 5. Schematic diagrams of; (a) Fabrication of PVA-NC film by solution casting; (b) and (c) NC films by solution casting and hot pressing and (d) PNI and 
PANI core-shell NPs through in-situ polymerization by chemical oxidation method [56,57].  

 

 
 

Figure 6. Schematic represents the modification of Al2O3 NPs with silane compound [60]. 
 
There are numerous polymers such as poly(vinyl alcohol) 

(PVA), PMMA, PVDF, PVP, PS, PC; etc. can be used as a matrix in 
NCs due to their unique properties such as flexibility, high 
transparency in the visible region, thermal capability, excellent 
mechanical properties, low cost, low refractive index, and easy 
film formability and process ability. Typically, these 
transparent polymers have low response towards the 
absorption of incident light and it has high band gap energy, Eg, 
normally it lies in the range 5.0-6.5 eV. 

Optical materials with lower Eg and higher refractive index 
(n) values are rapidly utilised because of the urgent demands 
imposed by the development of advanced photonic and 
electronic devices like solar cells, light-emitting diodes (LED 
and organic LED), optical lenses and filters, anti-reflexion films 
and optical adhesives.  

For achieving such objectives, nanometal oxide having 
suitable features such as Eg and/or n is incorporated into 
polymeric matrices. Significant enhancement in the optical 
properties of polymers can be achieved even with a small dose 
of NPs. The dispersion of NPs inside the host polymer leads to 
the formation of an intermediate state in its band-gap level. So, 
the electrons (existence in the functional groups of the 
polymeric matrix) are first based on the absorption of incident 
light and transition from the VB to the intermediate state in the 
band-gap level, and then promoted by photons of incident light 
from the interband to the CB. This process can be detected by 

the shift of the absorption edge (in the absorption curve) of the 
NC compared to the pristine matrix due to a temporary increase 
in the carrier density among the NCs, which in turn alters its 
properties [65]. 

Generally, the value and nature of Eg depend on the linear 
absorption coefficient, α, of the materials and Eg can be 
determined using the equation as follows; 
 
 (𝛼𝛼ℎ𝜐𝜐)𝑚𝑚 =  𝐴𝐴 �ℎ𝜐𝜐 − 𝐸𝐸𝑔𝑔�    (1) 
 
Where α is the linear absorption coefficient, m is the frequency 
or index that describes the optical absorption process, h is the 
Planck constant, and A is a constant that depends on the 
probability of transition. Theoretically, m is equal to 2 for direct 
allowed, 2/3 for direct forbidden, 1/2 for indirect allowed, and 
1/3 for indirect forbidden transition. The value of m decides the 
nature of the Eg or the transition involved. Through the 
literature [66-68], the index m can be practically obtained, 
which depends on the value of α by taking the slope of the graph 
between log (α) and log (hν). The value of index m, which gives 
the best linear graph, is chosen. Using the Tauc graph, the value 
of Eg estimated from the graph of (αhν)2 versus (hν) and 
extrapolating the linear portion of the curve to the hν-axis. 

Interestingly, in all NC materials, the optical properties are 
closely related to the structural and compositional parameters, 
the vacancy density, and the level of dopants.  
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(a) (b) 
 

(c) 
 

Figure 7. Absorbance of (a) PMMA/ZnO, (b) PVA/ZnO and (c) PS/ZnO NC films [70]. 
 
The UV-vis spectrum is an important tool for understanding 

the band gap structure, electronic properties, and optical 
constants (refractive and absorption indices) of pure and doped 
polymers. The data of the absorption curve in the lower energy 
part provide information about atomic vibrations, while the 
higher energy part of the spectrum gives knowledge about the 
electronic states. 

On the basis of the above, the flexible foil of NCs based on 
polymer/ZnO has been successfully developed by the casting 
method to investigate the optical and electrical properties. 
Quadri et al. (2017) [69], reported that ZnO NPs have a 
significant effect toward UV-Vis absorption after incorporated 
into selected polymers such as PEG, PVP, and PAN. Such pure 
polymers have π absorption appearing at 245-275 nm referring 
to the functional groups in their structures.  NCs based on 
ZnO/PEG, ZnO/PVP, and ZnO/PAN displayed new charac-
teristic absorption peaks at 368, 367, and 372 nm, respectively, 
attributing to the presence of ZnO NPs, which has a 
characteristic peak at about 360-380 nm. The existence of these 
peaks confirms the formation of the NCs.  

The optical performance of NC films containing different 
weight fractions of ZnO NP embedded in PMMA, PVDF, PVA, and 
PS were also studied [70]. Figure 7 illustrates the optical 
absorption of the selected polymer/ZnO NCs [70].  

The transparency of pristine polymers was in the order as; 
PMMA > PVA > PS, whereas PVDF showed the lowest 
transparency in the UV and visible regions. As the dosage of ZnO 
NPs increased, the percent of transmittance of all NC films was 
reduced. The absorption peak of all NCs was observed in the 
370-377 nm wavelength range, indicating the effect of ZnO NPs 
on polymeric matrices. However, NC films exhibit high 
transparency at > 400 nm due to the lower absorption of ZnO 
NPs in the visible region. Such trends may have been explained 
by the smoothness of the surface, which increases the 
reflectivity or light scattering by the individual ZnO NPs, leading 
to lower transmittance values in the visible range. Furthermore, 

the optical band gap energy (Eg) was reduced for pure PMMA, 
PVDF, PVA, and PS (5.08, 5.88, 5.25 and 4.5 eV) to their 
corresponding NCs (4.5, 5.1, 4.75 and 3.9 eV) doped with 15 
wt% ZnO. 

The reduced in Eg value denotes the shift of the VB and the 
CB which can be noticed in Tauc’s plot by the displacement 
position of absorption edges in NCs as compared to pure 
polymers. The increase of carriers in VB and CB and the 
presence of unsaturated defects leads to an increase in the 
density of localised states in the band gap of the matrix, leading 
to a reduction in its Eg. 

In this regard, the pioneering report demonstrated that the 
existence of ZrO2 NPs within the PVC matrix modified the 
optical properties due to the wide Eg (5.17 eV) of ZrO2 NPs. Pure 
ZrO2 NPs have a sharp and intense band at 212 nm with an 
absorption edge around 300 nm [71]. Mallakpour et al. [72,73] 
modified the surface of ZrO2 NP with vitamin B1 and bovine 
serum albumin (BSA) to achieve excellent dispersion and 
improve the interface between ZrO2 NP and the PVC matrix 
(Figure 8). Pure PVC has two adsorption peaks at 225 and 280 
nm assigned to π → π* and n → π* transitions, respectively. The 
intensity of both PVC/ZrO2-vitamin B1 and PVC/ZrO2-BSA NCs 
increases with a higher red shift of the absorption edge up to ~ 
450 nm. The Eg of PVC was reduced from 5.56 eV for pristine 
PVC to 4.4 eV for PVC doped 6 wt% ZrO2-BSA. Beyond this, Taha 
et al. [74] reported that introducing 0.5wt% of NiO NPs into PVC 
improves the absorption process of NCs and reduces the Eg to 
5.15 eV. Furthermore, Shashikala et al. [75] revealed that the 
embedded of 4wt% of poly aniline core-shell halloysite 
nanotubes (HNTs) into PC matrix, promotes the absorption of 
NCs in the UV-visible region as well as decreasing Eg to 2.87 eV. 
The reduction of Eg into 3.25 eV for a natural gelatin matrix 
containing 4wt% of poly o-anicidine encapsulated K2ZrO3 NPs 
has been mentioned by Anupama et al. (2022) [76].  
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Figure 8. Schematic representations of modified ZrO2 and ZrO2-vitamin B1/PVC NCs [72]. 
 

The pioneering reports demonstrated that the PVA matrix 
is more suitable compared to other polymers, where it can be 
modified the band-gap energy and response toward incident 
light for even further. Al-Hakimi et al. [77] concluded that the 
mixture of TiO2/Cu NPs induces the UV-visible radiation 
absorption process in the PVA film, where a new broadening 
and intense peak appears at 397-516 nm. The optical Eg of PVA 
was found to decrease from 5.2 to 3.5 eV with increasing the 
concentration of TiO2 up to 2.5 wt% in the PVA matrix. While 
the further decrease in the band gap of PVA film to 3.12 eV after 
doping by 1.6 wt% TiO2/Cu NPs was also noticed [78]. Similarly, 
Li et al. [79] demonstrated that the PVA/WO3 NC films showed 
a strong absorption band around 300 nm and a broad 
absorption with a maximum peak of approximately 590 nm that 
was accompanied by a reduced band gap of 1.81 and 1.82 eV of 
the sample with 0.6 and 1 wt% WO3, respectively. Meanwhile, 
Selvi et al. [80] evaluated the influence of p-type CuO NPs, which 
improves the inherent properties PVA films and observed a new 
peak at ~350 nm, whereas the Eg obtained is 4.64 eV for PVA 
containing 6 wt% of CuO NPs. However, Abdullah et al. [81] 
illustrated that the increased dosage of CuO NPs between 10-12 
wt% in the host PVA leads to the appearance of an additional 
broad absorption peak between 580-840 nm, which is due to 
surface plasmon resonance (SPR) of CuO NPs which also gives 
an intense colour to the PVA films. The minimum Eg value 
observed is 3.18 eV for PVA-12 wt% CuO NPs, which indicates 
to modify the electronic structure of the PVA matrix. This means 
that the CuO NPs may form localised electronic states in the Eg 
of PVA which act as trapping and recombination centres, 
leading to a reduced Eg of PVA in NC film. Recently, nanometal 
oxide NPs had been hybridised by multielements to further 
improve their features, which in turn can be more effective in 
modifying the properties of the polymeric matrix. Murad et al. 
[82] reported that the addition of a small amount (2 wt%) of 
hybrid La2CuO4 NP has a higher impact on the performance of 
PVA to absorb UV-visible light, where the intensity of 
absorption peaks becomes high in addition to the shoulder peak 
having been observed at 312 nm, while the Eg value was 
reduced to 3.2 eV for PVA/2 wt% La2CuO4 NC film. Similar 
trends in reducing Eg values were also observed for PVA/2.5 
wt% AgAlO2 and PVA/8 wt% CaNiAl2O5 NPs, where the 
minimum Eg values achieved are 2.78 and 2.80 eV, respectively 
[83,84]. 
 
4.2. Refractive index  
 

The refractive index, n, plays an important role in optical 
communication and in the design of optical devices. High-
refractive-index polymers (HRIPs) have drawn a great deal of 
scientific interest due to their potential applications in optical 
filters, waveguides, lenses, light-emitting diodes (LEDs) and 

reflectors [85]. However, the optical application of conventional 
polymers is limited due to their narrow range of refractive 
indices, n, which in general < 1.8. Nanometal oxides, on the 
other hand, have a broad n, but suffer from weathering effects. 
Thus, the fabrication of polymer NCs combines the lightweight 
and cost-effective features of the polymers with the high n and 
UV-radiation shielding abilities of the NPs. Generally, n can be 
estimated using the equation as follows; 
 

 𝑛𝑛 = 1+𝑅𝑅
1−𝑅𝑅

 + � 4R
1−𝑅𝑅2 –  𝐾𝐾2      (2) 

 
Where K is the extinction coefficient (K = αλ/4π). R is the 
reflectance (R = 1-A-T; where A is the absorbance and T is the 
transmittance). The n for NCs can be modified by changing the 
concentration of NPs, as its dispersion inside the polymeric 
chains has an important effect. Through a literature survey, the 
finer dispersion and higher penetration of NPs among 
polymeric chains caused a good interaction with the functional 
groups in the polymer via a dipole-filler interaction or charge 
transfer complex (CTC). It leads to an increase in the packing 
density in NC, therefore, n tends to increase [86,87]. In addition, 
n denotes to polarizing of molecules (dipoles and NPs) by the 
electromagnetic field of light. The polarisation molecules will 
interact with incident light, where these types of molecules 
have more ability to reduce the speed of light that passes 
through the polymer network. Therefore, the polarisation 
strength will be higher inside NC films as the NPs content 
increases, resulting in more interaction with the electro-
magnetic field of the incident light. It causes an increase in the 
absorption process, hence an increase in n according to the 
Lorentz-Lorenz formula [88,89]. 

A number of high n-value semiconducting NPs such as ZnO 
and TiO2 have been studied as additives to increase the n of 
polymer matrices. Since the n of PMMA is relatively low for 
optical applications (n = 1.49), incorporation of ZnO NPs in 
PMMA to prepare transparent NC films via evaporative ligand 
exchange of hybrid particle fillers has been investigated by 
Wang et al. [90]. The n of the hybrid film increased to 1.65 with 
higher ZnO NPs contents of up to 38 wt%. Yuwono et al. [91] 
demonstrated that introducing TiO2 NPs into PMMA to obtained 
NC films via the in situ sol-gel route leads to an increase in n to 
1.780 for PMMA/60mass % TiO2. The homogeneous dispersion 
of TiO2 NP in PMMA is one of the important issues in the 
fabrication of transparent TiO2 / PMMA NCs, the suppression of 
Rayleigh scattering at the interfaces between inorganic 
components and polymer matrices. It is required to maintain 
the transparency after the formation of NPs in the polymer 
matrix. TiO2 NPs easily aggregate in hydrophobic polymers 
such as PMMA and PC matrices due to its surface being covered 
with hydrophilic hydroxyl groups.  
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Table 1. Refractive index of some NC films. 
Matrices NPs % NPs Methods RI (n) Reference 
P-4-VBA * TiO2 60 In-situ polymerization 1.77  [93] 
Epoxy TiO2 20 Simple and efficient way 1.73  [94] 
PVP CsAlO2 8 Solution casting 2.64  [95] 
PVP-PVA ZnO 5 Solution casting 2.01  [96] 
PVT/DVB * ZrO2 61.5 In-situ polymerization 1.71  [97] 
PC PANI+NaBiO2 4 Intercalation method 2.53  [98] 
Gelatin K2ZrO3 4 Solution casting 2.38  [99] 
PVA ZrO2 80 A spin-coating process 1.75  [100] 
PVA AgAlO2 2.5 Solution casting  2.44  [83] 
PVA  ZnBi2MoO7 8 Intercalation method 2.14  [101] 
* P-4-VBA is poly(4-vinylbenzyl alcohol), PVT/DVB is a copolymer of (trans-β-methylstyrene and divinylbenzene). 

 
Modification of the surface of TiO2 NP with oleyl phosphate 

(OP) to enhance the optical properties of TiO2 / PMMA NC 
reported elsewhere [92]. The n of the OP-modified TiO2/PMMA 
NCs containing 20 wt% of TiO2 changed to 1.86. The data of n 
values for various nanometal oxide doped different polymers 
are tabulated in Table 1. 
 
5. Electrical behaviors 
 

Improvement of advanced materials based on poly(vinyl 
chloride) (PNC) that exhibit multifunction features is one of the 
most important challenges in a widening of its applications. 
Therefore, in addition to reducing the optical bandwidth and 
enhanced refractive indices with retaining high optical clarity, 
it is required to achieving good electrical properties of 
polymers at room temperature as well as a lower dosage of NPs. 
Conventional host polymer incorporated nano-metal oxide 
demonstrates an advanced enhancement in electrical 
conductivity. In NC films, the conduction is due to the motion of 
electrons in the conduction band and holes in the valence band 
or hopping of the carrier between localised sites in the 
polymeric matrix. The energy required for electronic 
conduction can be supplied by the applied electric field to excite 
a carrier, and this hopping process is favoured in the case of 
highly disordered NC films. In addition, dielectric films differ in 
their electrical properties according to the preparation 
parameters. The electrical properties of NC films depend upon 
their microstructure and are strongly linked to the nano-
structure of the particles, particularly the distance between the 
particles in the polymeric matrix.  

Ma et al. [102], reported that PS resin/ZnO NCs were 
prepared by melt-blending. Surface resistivity decreases as the 
amount of ZnO increases. PS doped with 30% wt% ZnO 
spherical and whisker particles reduced the surface resistivities 
from 1.0×1016 to 8.98×1012 Ω/cm2 and 9.57×1010 Ω/cm2, 
respectively. The amount of ZnO in the PS resin can gradually 
increase to form a conductive network. Maji et al. [103], 
inspected that PMMA reinforced with silane-modified ZnO NCs 
was synthesised via in situ polymerisation technique. Incorpo-
ration of m-ZnO into the PMMA matrix significantly improved 
ac-conductivity (σac) to ~ 3×10-4 S/m at 323K, while the 
dielectric constant increased to (ε′ = 81) compared to 
unmodified ZnO (ε′ = 10). The conduction transport occurred 
due to the large polaron-assisted tunnelling mechanism. Morsi 
et al. [104], investigated the effect BaTiO3 embedded in 
PEO/CMC was prepared by a solution casting technique. The 
data showed enhances σac and reached 1.8 ×10-7 S/m at room 
temperature for 0.32wt% BaTiO3 doped in PEO/CMC. The ε′ is 
increased to ~58 compared with <10 for pure blend. The 
increase σac is may be due to increases in the contents of BaTiO3, 
whose interactions with PEO / CMC promote the charge 
conduction mechanism. 

The electrical conductivity of PVA/PVP blend (50:50) and 
its NCs with different contents of MoO3 NPs have been studied 
by Rajesh et al. [105]. The conductivity is increased from 
7.19×10−8 S/cm for the pure blend to 5.49×10−7 S/cm for 
PVA/PVP blend with 12 wt% MoO3 NPs. This composite 

exhibited higher ε′ ~48 which may be referred to Maxwell-
Wagner polarisation. This type of polarisation arises due to 
conductor-insulator interfaces. The build-up of space charges 
or dipoles at the interface electrode polarisation effect leads to 
increase ε′.  

The dependence of σac with frequency and content of NPs 
for NCs based on PVA/ZnO-Ce2O3 was discussed by 
Chandrakala et al. [106]. The σac increases with increasing 
frequency and mobility of charge carriers in the NCs, where the 
highest σac obtained for PVA/2wt%ZnO-Ce2O3 is ~1.1×10−5 
S/cm. The dependence of σac with frequency can be divided into 
three distinct regions, implying the existence of different 
dissipated patterns. In the high-frequency region (I), the 
conductivity increases with increasing frequency. In the low-
frequency region (III), a levelling off of the electrical conduc-
tivity is observed. In the intermediate region (II), a dipolar 
relaxation process is present, the intensity of which is 
independent of the filler content. Similarly, the introducing 
8wt% CaNiAl2O5 NPs into PVA matrix raised the optimum σac 

value to 3.2×10−5 S/cm accompanied with enhance ɛmax to 134 
[84]. 
 
5.1. Current-voltage (I–V) characteristics 
 

As is known, to understand the direct current conductivity 
(σdc) behaviour of PNCs, the current-voltage (I-V) behaviour 
was measured and plotted. From the literature [107-109], the 
flow current, I, in PNC films is strongly dependent on the 
applied voltage, V. When the V was increased, I increased 
gradually at first and then increased drastically; this result 
indicated non-Ohmic behaviour. Figure 9a shows the normal 
current-voltage (I-V) characteristics of pure PVA and doped 
with different ratios of CaAl2ZnO5 NP. 

In Figure 9a, two distinct regions can be discerned that 
appear at lower and higher voltages. Gayatri et al. [110], 
illustrated in the lower voltage region, the flow current in 
PVA/CaAl2ZnO5 NCs is very low, suggesting that Ohmic is the 
dominant mode of conduction. At a lower dosage of the NP 

content in the PVA matrix, the resistivity may arise, restricting 
the increase of electrical current through the NC film. That 
initial resistivity at lower voltages may refer to the Coulomb 
blockade effect. Such phenomenon will occur after the addition 
of a small amount of NPs into the polymer, referring to the fact 
that many tunnelling knots may be formed, preventing the 
electron/charge carrier from moving directionally in a certain 
electric field. Rozra et al. [111], reported that the resistance of 
PVA/Cu NCs decreases with increasing NP contents due to the 
distance between the NPs being reduced at higher doses. At 
higher voltage, the electrical field is large enough to induce the 
electrons to tunnel from one particle to another, which leads to 
an increase in conductivity. In addition, increasing the NP 
content in the PVA matrix enhanced the formation of a network 
bridge because of the higher probability of physical contact 
between charge carriers. This contact could form a conduction 
path, which may have resulted in an increased I.  
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(a) (b) 
 

Figure 9. Plots of; a) Current-voltage (I-V) and b) Log (I-V) for PVA/CaAl2ZnO5 NCs at room temperature [110]. 
 

(a) (b) 
 

Figure 10. Plots of; a) Log (I) versus V1/2 and b) Log (I/V) versus V1/2 for PVA/La2CuO4 NCs at room temperature [82].  
 
Physical interactions between the positive sites of the 

charge carriers and the polymeric matrix may have reduced the 
band-gap energy (Eg) of the composite films, and this led to an 
increase in I. Such phenomena of PNCs can be used to prepare 
electronic devices or sensors with a well-defined conductivity.  

In addition, a significantly pronounced nonlinearity can be 
observed in the higher voltage region in Figure 9a, especially for 
NCs that contain 4-8 wt% of CaAl2ZnO5 NPs. The deviation or 
nonlinear characteristics in I–V curves can arise from a number 
of non-ohmic charge transport processes, such as space-charge 
limited conduction (SCLC), Schottky, and the Poole-Frenkel 
effect. 

In the SCLC mechanism, the injected carriers are larger than 
the intrinsic carriers present in the film, creating a space-charge 
region near the interface and responsible for the bulk limited 
(SCLC) [112]. In the Schottky mechanism, the current is due to 
the transition of electrons between the cathode (metal 
electrode) and the NC film. In Poole-Frenkel mechanism, the 
emission of charge carriers trapped in the defect centers 
contributes to the conduction process [113], hence, it is a bulk 
limited process. To determine the exact mechanism responsible 
for the nonlinear variation of current with voltage, a detailed 
analysis of the I-V characteristics has been carried out. 

In order to determine the exact mechanism of the charge 
transport in PVA-NC films, Saini et al. [114], Uma et al. [115], 
and Murad et al. [82], etc., reported a detailed analysis of the I-
V characteristics has been carried out. For the SCLC mechanism, 
the I-V characteristic was plotted on a log-log scale (Figure 9b). 
To obtain the SCLC mechanism, the slope should be > 2 [116]. 

Figure 9b shows that the slopes of the graphs are < 2 and have 
values between 1.18 for pure PVA and 1.59 for NCs. Hence, SCLC 
is ruled out. Furthermore, to determine the conduction 
mechanism for PVA/La2CuO4 NCs, the linear fittings of the log 
current versus V1/2 for Schottky emission and the log (I/V) 
versus V1/2 for the Poole-Frenkel effect were plotted in Figures 
10a and 10b, respectively. 

Figure 10a for the Schottky mechanism shows that the 
graphs are nonlinear at lower voltage (< 5V) and only linear 
fitting in the higher voltage region, which exhibits the 
correlation coefficient (R) for the straight line is 0.93 as 
compared to the graphs obtained from the Poole-Frenkel 
mechanism where R is around 0.99 (Figure 10b). Thus, the 
Poole-Frenkel mechanism is the most appropriate responsible 
for the substantial increase in the conductivity of PVA/La2CuO4 

NCs, with a lesser probability of Schottky emission, may be at 
higher voltages. There is a transition of the conduction 
mechanism from Poole-Frenkel to Schottky in the higher 
voltage regions at room temperature. However, El-Sayed et al. 
[117], demonstrated that the current–voltage (I–V) charac-
teristics of the PVA/CMC-CuO NCs have nonohmic behaviour at 
higher voltages. The conduction mechanism in the PVA/CMC 
blend is Schottky emission at low temperature, whereas the 
Poole–Frenkel effect plays an important role in CuO-doped 
films at high temperatures. 

Meanwhile, the experimental constant parameter, βexp 
which is a characteristic of the conduction mechanism, can be 
estimated from the slope of the plots between log I and V1/2 as 
shown in Figure 10a and Equation (1) as;  
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𝑒𝑒
�   (3) 

 
Where, m is the slope of the plot, d is the thickness of the films, 
e is the electronic charge, T is the absolute temperature, and K 
is the Boltzmann constant. While the constant parameters of the 
Schottky emission, βS and Poole-Frenkel emission, βPF can be 
calculated as follows; 
 
 𝛽𝛽𝑆𝑆  = � 𝑒𝑒

4𝜋𝜋 ɛs ɛ0 
�
1/2

 ;  𝛽𝛽𝑃𝑃𝑃𝑃  =   2 𝛽𝛽𝑆𝑆    (4) 
 
Where εs is the dielectric constant of the films at higher 
frequency and ε˳ is the permittivity of the free space (8.85×10-

12 F/m). For NCs based on PVA/2wt% La2CuO4 [82], the 
estimated values of constant parameters βexp, βS and βPF was 
7.74×10−5, 0.57×10−5 and 1.01×10−5 eV V−1/2 m1/2, respectively. 
The calculated βexp values are closer to the values obtained from 
Poole–Frenkel (βPF) method than the Schottky (βs) method; 
hence, the Poole-Frenkel effect dominates the conduction 
mechanism in the PVA/La2CuO4 NC films. It may refer to a 
significant number of traps or defects created in the PVA 
structure after incorporation of La2CuO4 NPs. Similar results for 
PMMA-NCs were reported elsewhere by Goyal et al. [118].  

According to the previous discussion, all optical and 
electrical parameters depend on the NP content and the range 
of interactions between NP-polymers at interfaces, so the 
ability of polymeric materials to modify its properties, such as 
the optical and electrical conductivity of NC films, provides 
utility in widening its use. Nanotechnology is an integral part of 
advanced hardware design for optoelectronic applications. The 
dimensional scale of electronic devices has now entered the 
nanorange. Therefore, the benefit of polymer-based NCs in 
these fields is quite diverse, includes many potential 
applications, and has been suggested for use in various 
applications such as Polymeric NCs that are promising 
materials for potential applications in electroluminescent, 
chemical sensors, electro catalysis, batteries, smart windows, 
and memory devices. 

i. Polymeric NCs offer the promise of a new generation of 
hybrid materials with numerous applications, such as 
optical displays, catalysis, gas sensors, electrical, and 
photoconductor devices [119,120]. In addition to 
electroluminescent chemical sensors, electro catalysis, 
batteries, smart windows, and memory devices [121]. 

ii. Another potential application involves photovoltaic cells 
(PV), printable conductors, light-emitting diodes (LEDs), 
super capacitors, and field-effect transistors [122]. 

iii. Polymer-based solar cells have the ability to be used to 
make cheap, large flexible panels. The only downside is 
substantially low efficiency compared to commercial 
solar cells [123].  

iv. PNCs based on conducting polymers with various 
nanometal oxides employed as nanowires have been 
evaluated for sensor applications including gas sensors, 
chemical sensors, and biosensors [124]. 

 
6. Conclusion 
 

The progress in polymer nanocomposite materials 
properties has allowed numerous industrial utilizations in 
different multilevel applications in physical, chemical, 
biological, etc. Herein, a selection of representative and recent 
literature on different polymer nanocomposites was reviewed 
to highlight some of the issues related to the preparation, 
modification of the optical band gap, refractive indices, and AC-
DC conductivity behaviour of the composites. As an illustration, 
the polymer nanocomposites are superior to the pure polymer 
matrix, and the effects of the nanometal oxides on the 
properties of the polymeric matrix are dependent upon many 

variables but especially upon the interaction between the 
nanometal oxides and the matrix. This review summarises that 
polymer nanocomposite materials have excellent potential for 
optoelectronic applications, because they offer unique features 
and properties. 
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