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The study of the isotopic composition of rainwater discussed in this article allows isotopic 
characterization of rainfall recorded in the Bangui region over 11 years at two stations. It 
will highlight the relationships between isotopes, climatic parameters, and temporal 
variation before defining the local meteoric line, which constitutes the reference point for 
the region. The results obtained after a follow-up of eleven years without interruption 
showed two major physical effects, the effect of the rainfall influences more strongly the 
composition in isotopes, the contents in isotopes vary inversely with the precipitation. For 
example, heavy rainfall in August and September saw a strong depletion of δ¹⁸O and δ²H 
contents. These values reach up to -4.96‰ for δ¹⁸O and -28.3‰ for δ²H. Similar, although 
weaker, effects are observed for July and October precipitation. We also note that the isotope 
contents at the Bangui University station are lower than those measured at the Bangui 
Sodeca station located at 386 m altitude on the Lower Ubangi Hill, which is similar to a 
pseudo-altitude effect. The evolution of stable isotope content in water as a function of 
meteorological parameters (temperature, rainfall, altitude) has allowed us to determine a 
local meteorological line for the city of Bangui from two measuring stations defined as 
follows: δ2H = 7.6 × δ18O + 10.4 (R2 = 0.9909) Université de Bangui, δ2H = 8.4 × δ18O + 12.5 
(R2 = 0.9909) Bangui-Sodeca and δ2H = 7.9 × δ18O + 11.3 (R2 = 0.9939) Bangui local meteoric 
water lines. 
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1. Introduction 
 

If we consider that precipitation water corresponds to the 
input signal in a hydrogeological system, the isotopic monito-
ring of rainfall on a national scale would allow us to establish a 
reference for the input function of aquifers in a region. In the 
natural environment, water molecules are mainly formed of 
four stable isotopes (H216O, 99.7%; H218O, 0.2%; H217O, 0.05% 
and HD16O, 0.03%) [1]. The physical properties of the different 
isotopes (saturation vapor pressure and diffusivity in air) lead 
to isotopic fractionation during phase changes in the 
atmospheric water cycle. The result of these fractionations is a 
certain spatial and temporal distribution of the precipitation 
isotopic ratios (expressed in relation to international standard 
mean ocean water (SMOW) with δ2H/δ2H = 155.76×10-6 and 
18O/16O = 2005.2×10-6). Since the 1960s, observations of 
precipitation in monthly time steps have been conducted by the 
International Atomic Energy Agency (IAEA). These observa-
tions have allowed us to characterize the spatial and temporal 
distribution of the isotopic composition of precipitation and to 
link climate variability and isotopic variability. Thus, two 
phenomena are of particular interest in paleoclimatology: (i) 
the apparent relationship between the isotopic ratio of 
precipitation and local temperature (isotopic thermometer) 
and (ii) the relationship between δ18O and δ2H contents of the 

same sample (deuterium excess) [1]. Long-term precipitation 
monitoring is, in fact, a heavy task and costly in analytical terms. 
One of the difficulties is collecting sufficient quantities and 
homogeneous data on the scale of the study area. Taking into 
account the importance of the temporal variability of the 
isotopic signal in the same place, it is necessary to have 
precipitation chronicles (e.g., δ18O, δ2H, and rainfall) over 
several hydrological cycles in order to obtain a weighted 
average signal. The multiplication of such chronicles is hardly 
feasible [1,2]. 
 
2. Experimental 
 
2.1. Geographic location 
 

Located in the heart of the African continent, the Central 
African Republic extends over 623,000 km2 from the 2nd to the 
11th parallel north and the 13th to the 27th meridional east. A 
vast plateau located between 600 and 700 m above sea level, 
the Central African Republic is bounded to the east by its 
Sudanese neighbor, by the watershed between the Nile and 
Ubangi-Congo rivers, to the north by the Akouale and Bar Aouk 
(Chari) rivers of Chad, to the west by the Sangha basin of 
Cameroon, to the southwest by the Lobaye basin of the Congo 
and to the south by the Ubangi river of the Democratic Republic  
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Figure 1. Bangui average annual temperature (2010-2020). 
 
of Congo. The country is surrounded by Sudan, South Sudan, 
Chad, Cameroon, Congo, and the Democratic Republic of Congo. 
 
2.2. Climate  
 

The climate in Bangui is tropical, with a dry season from 
December to March. During the rest of the year, rainfall is fairly 
frequent, especially from July to October. The city is the capital 
of the Central African Republic and is located in the south of the 
country, approximately 4 degrees north of the Equator, at an 
altitude of 350 meters, on the banks of the Oubangui River, 
beyond which lies the city of Zongo, in the Democratic Republic 
of Congo (DRC). Daytime temperatures are highest in the dry 
season, but also in March and April, in the early months, when 
the rains begin to gradually increase. However, December to 
February is also the period during which the coolest tempera-
tures are recorded during the night. Figure 1 shows the annual 
temperatures recorded during the period 2010 to 2020. Based 
on data collected between 2010 and 2020, the average 
temperature is 26.7 °C. The average minimum temperature is 
21.2 °C in January and the average maximum is 32.4 °C in March.  
 
2.3. Study of rainfall 
 

Previous studies on rainfall on an annual or interannual, 
monthly and daily scale have made it possible to identify their 
quantity and regularity in time and space, as well as their 
susceptibility to influence surface and groundwater flows. For 
our part, we have monitored rainfall in the city of Bangui for a 
period of 11 years (2010-2020) from two sampling sites: (i) 
One on the campus of the University of Bangui at the Lavoisier 
Laboratory of Hydrosciences (Global Network of Isotopes in 
Precipitation (GNIP), Bangui University (N04°22'37.5''; E1 
8°33'44.9''; 363 m) and (ii) The other on the Sodeca estate, 
located in a wooded area on the eastern hillside of Bangui 
(GNIP, Bangui-Sodeca (N04°21'56.5''; E18°35'14 .1''; 386 m). 
 
2.3.1. Monthly precipitation 
 

Based on meteorological data recorded from 2010 to 2020 
(11 years), August is the month in which monthly rainfall is 
generally the highest (with an average of 414.05 mm at Sodeca 
and 325.05 mm at the University station). About 40% of the 
rainfall falls during the months of July, August, September, and 
October. August is also very rainy, with a peak of 414.05 mm 
and 18 rainy days. Rainfall is very low in the dry season, with 
monthly averages as follows: December: 1.89 mm, January: 8.5 
mm, February: 43.79 mm (Figure 2). 
 
 

2.3.2. Annual precipitation 
 

The total rainfall collected over 11 years ranges from 
1036.05 to 5321.5 mm at the University station and from 
1406.7 to 8849 mm at the Sodeca site in Bangui. The recorded 
interannual average is 1258.9 mm per year. Furthermore, 
comparing the Bangui University and Bangui Sodeca collection 
stations from 2010 to 2020 (Figure 2b), we observe that the 
amounts of water follow almost the same evolution, with a 
difference of approximately 80 mm of rainfall between the 
Bangui University station, which totals an average of 1299 and 
1220 mm/year for Bangui Sodeca. The low variability of rainfall 
between the two stations may be the result of their location, as 
the latter is surrounded by small groves. We also note that 2020 
appears to be a year of high rainfall (7085.25 mm on average 
for the two sites) compared to the other years studied. 
 
2.4. Sampling and analytical methods 
 

The two stations were selected according to the criteria 
mentioned above and were sampled monthly. A series of 
samples was taken for different isotopic analyzes. The monthly 
sampling was carried out in a totalizer canister throughout the 
year and then stored in 2 30 ml pillboxes for the analysis of 
deuterium and oxygen-18, without any air bubbles to limit as 
much as possible the isotopic fractionation related to 
evaporation and the effects of temperature. The samples were 
then stored in a refrigerator and sent to the laboratory for 
analysis.  
 
2.5. Analyses 
 

The contents of stable isotopes of the water molecule (δ¹⁸O 
and δ²H) were measured by gas source mass spectrometry in 
the International Atomic Energy Agency (IAEA) isotope 
analysis laboratory in Vienna, Austria. The principle of mass 
spectrometry is to separate molecules according to their mass. 
The samples were distilled beforehand. For the analysis of 
oxygen-18, the water was then equilibrated with CO2 of known 
isotopic composition at 25 °C. For deuterium analysis, water 
was equilibrated with hydrogen of known composition. 
Samples were analyzed in nonconsecutive duplicates on two 
different ABB EP-35 TWIA OA-ICOS laser spectrometers with 
dry synthetic air carrier gas. Each of these analyzes consisted of 
9 injections. The enriched and depleted MNCs came from Lake 
Kyoga and the STD09 standard (Greenland ice). Controls were 
provided in standard STD11 (Monaco Lagoon) and STD6 
(Heidelberg tap water) for quality assurance/quality control 
purposes. Data reduction was performed in LIMS for lasers 
using residual memory correction after ignoring the first four 
injections. Normalization to the VSMOW-SLAP scale used two 
reference points.  
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 (a) 
 

 (b) 
 

Figure 2. Total monthly (a) and annual (b) rainfall in Bangui at the two stations. 
 

 
 

Figure 3. Evolution of rainfall and δ¹⁸O levels over the year, defined from an 11-year chronicle. 
 
The measurement uncertainty, expressed as the long-term 

standard deviation of the control samples, is 0.2 ‰ or better for 
δ¹⁸O and 1.0 ‰ or better for δ²H. 
 
3. Results and discussion 
 

In this study, we discuss data on the isotopic composition of 
precipitation. Variations in δ¹⁸O and δ²H contents are 
associated with isotopic (and therefore also physical) 
equilibrium conditions along the global meteoric line of slope 8 
(GMD). For less detailed hydrological studies, it is generally 
accepted that the values of δ¹⁸O and δ²H are coupled at 
equilibrium. However, it should be emphasized that measuring 
both oxygen and hydrogen isotopes provides additional 
information in the subsequent study. 
 
3.1. Isotopic effects observed in precipitation 

 
The isotope contents were measured in the IAEA 

laboratory. Figures 3 and 4 show the evolution of the average 

isotope content over the year from an eleven-year chronicle at 
the two stations that collect rainfall data. These figures also 
show the relationship between the altitude of the rain gauges 
and the isotope content. It can be seen that the isotope content 
varies inversely with precipitation. For example, heavy 
precipitation in August and September saw a strong depletion 
of δ¹⁸O and δ²H contents. These values reach -4.96469 ‰ for 
δ¹⁸O and -28.27481‰ for δ²H. Similar effects are observed for 
precipitation in July and October, although weaker. A relation-
ship between the amount of precipitation and the isotope 
contents was observed:  Isotope content varies inversely with 
rainfall. From this observation emerges the effect of the mass of 
precipitated water that would be at the origin of the depletion 
of the stable isotopes of water. The seasonal variations of δ¹⁸O 
and δ²H values at the Bangui University station located at 363 
m appear to be lower than the average annual variations at 
Bangui Sodeca located at 386 m altitude on the Lower Ubangi 
Hill. If we consider that this decrease is essentially related to the 
decrease  in  air  temperature with altitude, in a systematic way  
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Figure 4. Evolution of rainfall and δ²H levels over the year, defined from an 11-year chronicle. 
 

 
 

Figure 5. Correlation between temperature and the average annual δ¹⁸O content of rainfall. 
 

 
 

Figure 6. Correlation between temperature and the average annual δ²H content of rainfall. 
 
the isotopic composition of precipitation evolves with the 
altitude of the ground and becomes increasingly depleted in 18O 
and 2H as it rises, we can observe a pseudoaltitude effect [3,4]. 
This effect of altitude is thermally dependent, because 
condensation is caused by the decrease in temperature 
associated with increasing altitude [2-5]. 
 
3.2. Correlation effect between isotopic contents and annual 
mean temperature 
 

The values of the R coefficient shown in Figures 5 and 6 are 
not significant in correlating the isotopic contents with the 
annual average temperature at the two rainfall collection 
stations. The lack of correlation between these two variables 
shows us that the isotopic contents in the Mediterranean region 

are not simply related to temperature, but are probably related 
to the origin and path of the air masses [6,7]. 
 
3.3. Definition of the isotopic input signal 
 

The isotopic data recorded at the two monitoring stations 
are relatively contrasted and differentiated (Figure 7), which 
may be related to the particular geographical location of the two 
measuring stations, the GNIP University station is located in the 
central plain of Bangui, while Sodeca’s GNIP station is located 
on the Panthères hill on the western slopes of Bangui. hill at a 
slightly higher altitude. The rainfall amounts recorded at these 
two stations can differ relatively from each other, which is 
related to the very stormy and therefore spatially variable 
characteristics of summer rainfall in Bangui.  
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Figure 7. δ18O or δ2H relationship in stations Bangui Sodeca and Bangui University. 
 
The data collected from the two sampling stations were 

used to calculate a local meteoric water line. 
 
δ2H = 7.56×δ18O + 10.42 (R2 = 0.9909) Bangui University (1) 
 
δ2H = 8.41×δ18O + 12.49 (R2 = 0.9909) Bangui Sodeca and  (2) 
 
δ2H = 7.94×δ 18O + 11.35 (R2 = 0.9939) Local meteoric water 
line in Bangui     (3) 
 

This relationship is close to that observed in similar climatic 
contexts in West Africa under a Sudano-Sahelian climate. It is 
also close to the meteoric line of Douala, which in a context 
much closer to the coast is subject to the same influences [8-10]. 
The excess of deuterium above 10 reflects the remobilization of 
atmospheric water vapor of continental origin during the path 
of air masses from the Gulf of Guinea over the surrounding 
tropical forest [11,12]. The calibration of stable isotope-
temperature relationships was refined by quantifying the 
relative impact of site temperatures at seasonal, interannual, 
and interdecadal levels [8,13]. At the interannual level, the 
variability is such that the correlations obtained are weak. At 
the seasonal level, linear analysis of seasonal cycles (slightly out 
of phase) and simple isotope modeling are consistent, showing 
the strong impact of site temperature on δ18O or δ2H [9,13-16]. 
 
4. Conclusion 
 

The objective of this study is to translate precipitation 
isotope data into a spatialized mapping of δ¹⁸O and δ²H 
signatures at two locally installed rainfall stations. The use of 
precipitation isotopes is of great interest due to the highly 
contrasting climatic situations in recent years. The isotopic 
contents have allowed us to highlight two important physical 
phenomena: (i) the effects of precipitation and (ii) the effects of 
altitude. However, there is no significant correlation between 
mean monthly temperature and oxygen content 18O and 2H. 
This makes it impossible to determine the origin of the rainfall. 
It can be said that the isotopic composition of precipitation at a 
given station will depend on the conditions of rain formation, 
temperature in particular, but also rainfall [17,18]. The 
available data allowed us to calculate a local meteorological line 
for these two stations: (i) δ2H = 7.56 × δ18O + 10.42, (R2 = 
0.9909) for Bangui University, and (ii) δ2H = 8.41 × δ18O + 12.49 
(R2 = 0.9909) for Bangui Sodeca. The local meteorological line 
for the Bangui region based on data from 2010 to 2020 is as 
follows: δ2H = 7.94 × δ18O + 11.35 (R2 = 0.9939). The initial 
excess deuterium in rainfall deviates from 10 in relation to the 
evaporation conditions at the origin of the vapor and the 
influence of continental vapor [17-19]. This probably reflects 

the recycling of air masses by water vapor from water body 
evaporation and soil evapotranspiration [2,20,21]. 
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