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Table	2.	XRD	results	of	calcinated	Ce‐	Zn	phosphates	at	650	oC	for	2	hr.	
X	value	 Product	phases Chem.	composition Crys.	structure	

0.0‐0.2	 Monazite	 CePO4 Monoclinic	
0.4‐0.8	 Monazite	

Zinc	pyrophosphate	
Zinc	phosphate	

CePO4

Zn2P2O7	
Zn3(PO4)2	

Monoclinic	
Orthorhombic	
Monoclinic	

1.0	 Zinc	pyrophosphate	
Zinc	phosphate	

Zn2P2O7	
Zn3(PO4)2	

Orthorhombic	
Monoclinic	

	
	

 
	

 
	

Figure	1.	X‐ray	diffraction	patterns	of	as	prepared	and	calcined	cerium	(a)	and	zinc	(b)	phosphate.	
	
	
were	 obtained	 by	 using	 Brukur	 D8	 advanced	 X‐ray	
diffractometer	 with	 copper	 (Kα)	 radiation.	 Infrared	
measurements	 (IR)	 were	 recorded	 by	 JASCO‐FT/CR‐3000E	
infrared	 spectrophotometer	 in	 range	 from	 4000	 to	 400	 cm‐1	
and	the	thermal	analysis	was	performed	by	USA	Perkin‐Elmer	
thermogravimetric	up	to	1000	оC	with	heating	rate	10	оC/min.	
The	morphology	and	the	crystallinity	of	the	produced	samples	
before	 and	 after	 calcinations	were	 examined	 by	 transmission	
electron	microscope	(TEM)	Joel	JEM	1230	working	at	100	keV.	
Also	Gatan	program	was	used	 to	 calculate	 the	d‐spacing	 from	
the	selected	area	electron	diffraction	SAED	patterns.	
	
3.	Results	and	discussion	
	

X‐ray	powder	diffraction	patterns	 show	that	 the	prepared	
samples	with	x	=	0.0‐0.4	are	completely	amorphous,	while	at	x	
=	0.6	a	weak	crystalline	phase	becomes	to	appeared.	For	x	=	0.8	
and	 1.0,	 the	 formed	 phases	 converted	 to	 well	 crystalline	 as	
shown	in	Figure	1.	The	analysis	of	the	X‐ray	patterns	indicates	
that	 the	 formed	phases	are	CePO4,	ZnHPO4	(35‐574	card)	and	
Zn3(PO4)2.4H2O(9‐49	card)	at	x	=	0.8.	Only	two	new	phases	of	
ZnHPO4	 and	 Zn3(PO4)2.4H2O	 were	 formed	 at	 x	 =	 1.0.	 By	
calcinating	 the	 samples	 at	 650	 оC	 for	 2	 hrs,	 only	 CePO4	 with	
monoclinic	 structure	 (Monazite)	was	 formed	at	 x	=	0.0	or	0.2	
(83‐652).	By	the	increase	of	zinc	content	to	0.4‐1.0	a	mixture	of	
different	 phases	was	 formed	depending	on	 the	 ratio	 between	

Ce3+	and	Zn2+.	Table	2	represents	the	resulting	phases.	From	X‐
ray	results,	it	may	be	concluded	that	the	substitution	of	Ce3+	by	
Zn2+	leads	to	improve	the	crystallinity	of	the	produced	samples.	
It	seems	that,	the	resulting	CePO4	with	trivalent	cations	while	it	
added	in	 the	tetravalent	state,	may	be	due	to	 the	reduction	of	
Ce4+	to	Ce3+	in	the	acidic	medium	(Cerium,	Wikipedia,	the	free	
encyclopedia).	This	behavior	may	be	resulting	from	the	energy	
of	the	inner	level	4f	of	the	cerium	is	nearly	the	same	as	that	of	
the	outer	valance	electrons	[17].	

Figure	 2	 and	 3	 represents	 the	 IR	 spectrum	 of	 the	 as																	
‐prepared	samples	and	that	calcinated	at	650	оC	for	2	hrs.	For	
the	as	‐prepared	samples	an	absorption	band	in	the	range	from	
3000	to	3900	cm‐1	was	observed.	This	band	may	be	due	to	the	
stretching	vibration	of	the	OH	groups	which	are	attached	with	
the	moisture	content	or	the	phosphates	groups,	while	the	other	
band	 due	 to	 the	 H‐O‐H	 bending	motion	 was	 observed	 in	 the	
region	1630‐1650	cm‐1	[18].	

As	 observed	 frequently,	 the	 appearance	 of	 the	 absorption	
band	 for	 the	 phosphate	 compounds	 at	 1400‐1450	 cm‐1	 was	
attributed	to	the	carbonate	group	derived	from	the	atmosphere	
during	the	preparation	[19,20].	At	x	=	0.0,	a	series	of	bands	are	
observed	 at	 1067,	 619	 and	 529	 cm‐1	 corresponding	 to	 P‐O	
stretching,	O=P‐O	bending	and	O‐P‐O	bending	mode	vibration	
respectively.	The	appearance	of	these	bands	is	characteristic	to	
the	 formation	 of	 hydrous	 CePO4	 as	 suggested	 previously	 by	
Hazal	et	al.	[21].	
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In	 this	 case	 a	 rod	 like	 shaped	 particles	 and	 monoclinic	
crystalline	 structure	with	 particle	 size	 ranging	 from	30	 to	 38	
nm	occurred.	The	formation	of	the	nano‐rods	structure	may	be	
due	to	homogent‐nucleation.	The	same	behavior	was	observed	
for	 the	 calcinated	 samples	with	 x	 =	 0.6	 and	 0.8	with	 particle	
size	15	nm	where	increasing	the	Zn	value	will	lead	to	preferred	
orientation	 to	 the	 crystalline	 phase	 which	 clearly	 observed	
from	the	very	fine	arrangement	of	the	crystallite	phase.	 It	can	
be	seen	that	the	increasing	of	Zn	to	Ce	improve	the	crystallinity	
and	 the	 growth	 tend	 to	 be	 in	 columnar	 structure,	 where	 the	
particle	size	tend	to	decrease	with	 increasing	the	zinc	ratio	 to	
Ce.	 At	 x	 =	 1.0,	 the	 morphology	 shows	 a	 very	 fine	 zinc	 phos‐
phates	with	particle	size	ranging	from	1	to	8	nm.	The	effect	of	
the	calcination	on	the	morphology	of	 the	prepared	samples	at	
650	оC	is	shown	in	Figure	5.																
				
4.	Conclusion	
	

The	present	work	deals	with	studying	the	preparation	and	
characterization	of	the	produced	phases	by	replacing	Ce	cations	
with	Zn	 cations	 to	be	used	 as	 shielding	agent	 in	 the	 future.	 A	
mixtures	of	Ce‐Zn	phosphate	(with	x	=	0.0,	0.2,	0.4,	0.6,	0.8,	and	
1.0)	 were	 prepared	 by	 reacting	 CeSO4.4H2O	 and	
Zn(CH3COO)2.2H2O	 with	 H3PO4.	 X‐ray	 results	 showed	 an	
amorphous	 phase	 for	 dried	 samples	 occurring	 at	 x	 =	 0.0,	 0.2	
and	 0.4.	 A	 very	 weak	 crystallinity	 occurred	 at	 x	 =	 0.6.	 A	
complete	 crystalline	 form	 occurred	 at	 x	 =	 0.8	 and	 1.0.	 For	
calcined	 samples,	 a	 polycrystalline	 phases	 were	 produced	
depending	on	x‐value.	The	thermal	analysis	TG/DSC	 indicated	
that	the	substitution	of	Ce3+	by	Zn2+	shifted	the	crystallization	of	
the	produced	phases	 to	 lower	 temperatures.	The	TEM	results	
showed	that	at	x	=	0.4‐0.8	for	calcined	samples;	the	nano	rode	
structure	appeared	which	has	high	optical	properties.	Also	TEM	
indicated	 that	 there	 are	 high	 improvements	 for	 crystallinity	
when	substituting	Ce3+	with	Zn2+.	
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