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ABSTRACT

A quantitative structure-property relationship (QSPR) study was performed to develop
models that relate the structures of 133 polychlorinated biphenyls to their n-octanol-water
partition coefficients (log Kow). Molecular descriptors were derived solely from 3D structures
of the molecules. The genetic algorithm-partial least squares (GA-PLS) method was applied as
a variable selection tool. The partial least square (PLS) method was used to select the best
descriptors and the selected descriptors were used as input neurons in neural network
model. These descriptors are: Balabane index (]), XY Shadow (SXY), Kier shape index (order
3) (3k), Wiener index (W) and Maximum valency of C atom (VmaxC). The use of descriptors
calculated only from molecular structure eliminates the need for experimental determination
of properties for use in the correlation and allows for the estimation of log Kow for molecules
not yet synthesized. The root mean square errors for ANN predicted partition coefficients of
training, test and external validation sets were 0.063, 0.112 and 0.126, respectively, while
these values are 0.230, 0.164 and 0.297 for the PLS model, respectively. Comparison between
these values and other statistical parameters for these two models revealed the superiority of
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the ANN over the PLS model.

1. Introduction

Polychlorinated biphenyls (PCBs) are persistent organic
contaminants and widespread environmental pollutants that
are found at an appreciable concentration in the polar regions
presumably, as a result of long-range atmospheric transport
[1]. PCBS are a family of 209 congeners each of which consists
of two benzene rings and 1-10 chlorine atoms, are ubiquitous
in the global environment because of their biological and
chemical stability and their historical widespread use in the
power-generation industry [2,3]. Toxicological effects of
exposure to PCBs include hepatotoxicity, immunotoxicity, and
reproductive problems, as well as respiratory, mutagenic and
carcinogenic effects [3,4]. Although the manufacture and use of
PCBs have been banned in many countries, the compounds
remain serious environmental contaminants due to unceasing
release from hazardous waste sites. Risk assessment of PCBs
involves their behavior in environment, so it is important to
understand their physico-chemical properties.

The octanol-water partition coefficient expressed as log Kow
is an important property for various applications in
pharmacology, toxicology and medicinal chemistry [5]. Log Kow
is used to model partitioning of chemicals between the
lipophilic membrane and the relative hydrophobic cellular
cytoplasmic material. Log Kow quantities hydrophobicity of
chemicals and is important both for predicting
pharmacokinetics and pharmacodynamics of drugs and
toxicants [6]. Lipophilicity is traditionally measured in the
octanol-water system. Log Kow values have been shown to be
generally satisfactory for modeling protein binding and

lipophilic interactions with biological membranes consisting
largely of protein [7]. The Kow or log Kow is defined as the ratio
of a compound’s concentration in octanol to its concentration
in water after the partition between two phases reaches
equilibrium at a specified temperature. According to this
definition, log Kow value for a chemical can be calculated as
follows:

LogK, = Logh (1)
C.,

Corg and Caq are the concentrations of test chemical in organic
and aqueous phases, respectively. Log Kow can be used to
explain certain bioconcentration factors (BCFs) and
bioaccumulation factors (BAFs) [8]. Although other partition
coefficients such as octanol-air partition coefficient were
discovered to influence the BCFs of organic chemicals recently,
log Kow still plays an important role in governing PCBs. Several
methods have been described in the literature for the
estimation of the octanol/water partition coefficient [9,10].

In view of fact that experimental determination of the
partition coefficients of a large set of compounds is time-
consuming and required high-purity samples and skilled
operators, the development of an alternative method such as
quantitative structure-property relationship (QSPR) would be
useful for the theoretical calculation of log Kow values. The
QSPR method, which establishes the correlation by expressing
a specific physicochemical property of target compounds using
appropriate molecular descriptors, is applicable for modeling
of log Kow of PCBs. QSPR models can provide insight into the
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major molecular structural factors that affect the specific
physical-chemical property of chemicals [11,12]. There have
been numerous reports on QSPR studies of octanol-water
partition coefficient. Lu et al. [13] predicted octanol-water
partition coefficients of 133 polychlorinated biphenyls using
heuristic method (HM) implemented in CODESSA. In order to
indicate the influence of different molecular descriptors on log
Kow values and well understand the important structural
factors affecting the experimental values, they built three
multivariable linear models derived from three groups of
different molecular descriptors. Padmanabhan et al. [14]
developed a QSPR model for predicting the lipophilic behaviour
(log Kow) of the data set containing various polychlorinated
biphenyl (PCB) congeners using the conceptual density
functional theory based global reactivity parameter such as
electrophilicity index (w) along with energy of lowest
unoccupied molecular orbital (ELumo) and number of chlorine
substituents (Nc) as descriptors. Puzyn and Falandysz [15]
estimated octanol-water and octanol-air partition coefficients
of 75 chloronaphtalene congeners by means of six
chemometrics approaches. Li et al. [16] estimated octanol-
water partition coefficients of polybrominated diphenyl ethers
(PBDESs) using the partial least-squares regression method.

Recently artificial neural networks (ANNs) have been used
for investigation of wide variety of chemical problems such as
spectral analysis [17], prediction of dielectric constants [18]
and mass spectral search [19]. ANNs have been applied to QSPR
analysis since the late 1980s due to their flexibility in modeling
of nonlinear problem, mainly in response to increase accuracy
demands. They have been widely used to predict many
physicochemical properties [20-23]. In this investigation, the
calculated descriptors from structures were used lonely to
predict the octanol-water partition coefficients of 133
Polychlorinated biphenyls (PCBs) using the ANN and QSPR
methods.

2. Methodology
2.1. Data set

The data set in this investigation was extracted from the
values reported by Padmanabhan et al. [14]. The names of
molecules in data set including 133 PCBs are shown in Table 1.
The octanol-water partition coefficients fall in the range of 4.63
to 7.94 for 4-chlorobiphenyl and 2,2’,3,3’,4,4’,5,5’,6-nonachloro
biphenyl, respectively. The data set was randomly divided into
three groups including training, test and external validation set,
which consists of 83, 25 and 25 molecules, respectively. The
training set was used to adjust the parameters of models; the
test set was used for monitoring the extent of overtraining and
external validation set was used for evaluation of the prediction
power of obtained model.

2.2. Descriptor calculation

One important step in QSPR investigation is the numerical
representation of the chemical structure (often called
molecular descriptors). The built model’s performance and
accuracy of the results obtained are strongly dependent on the
way that descriptors were performed. Due to diversity of the
molecules studied, different descriptors were calculated. The
calculation process of the molecular descriptors was described
as follows: molecules were drawn with Hyperchem package
(Version 7) [24] and then pre-optimized using MM* molecular
mechanics force field. The final geometries of the minimum
energy conformation were obtained by more precise
optimization with the semi-empirical AM1 method, applying a
gradient limit of 0.01 kcal/A as a stopping criterion for
optimized structures. A more precise optimization is then done
with the semiempirical AM1 method in Mopac (Version 6) [25].

All calculations are carried out at a restricted Hartree-Fock
level with no configuration interaction. As a next step, the
Mopac output files were used by the CODESSA program [26,27]
to calculate five classes of descriptors including constitutional;
geometrical; topological; electrostatic and quantum-chemical
descriptors. The software CODESSA, developed by Kartitzky
group, enables the calculation of a large number of quantitative
descriptors based lonely on the molecular structure
information and codes chemical information into mathematical
form [26,27]. CODESSA combines diverse methods for
quantifying the structural information about the molecule with
advanced statistical analysis to establish quantitative structure-
property relationship.

Some of the descriptors generated for each compound,
encode similar information about the molecule of interest,
therefore it was desirable to test each descriptor and eliminate
those that show high correlation (R>0.95) with each other. A
total of 123 out of 476 descriptors showed high correlation and
were removed from the next generation. Subsequently genetic
algorithm-partial least squares (GA-PLS) variable subset
selection method was used for selection of important
descriptors. Since the number of descriptors considered is
large, a suitable feature selection method should be combined
with a proper feature mapping technique. In the present work
we have considered GA-PLS as a feature selection tool and PLS
and ANN were employed for feature mapping.

2.3. GA-PLS based variable selection

GA-PLS is a sophisticated hybrid approach that combines
GA [28] as a powerful optimization method with PLS [29] as a
robust statistical method for variable selection. GA is inspired
by the biological concept of natural selection and evolution. Just
as the most fit organisms are most likely to survive and be
reproduced by crossover together with random mutations of
chromosomes in the surviving ones. In GA-PLS, the
chromosome and its fitness in the species correspond to a set of
variables and internal prediction of the derived PLS model,
respectively [30].

GA-PLS consists of three basic steps. (1) A chromosome is
presented by a binary bit string and initial population of
chromosomes is created in random way. (2) A value for the
fitness function of each chromosome is evaluated by the
internal predictivity of PLS. (3) According to the values of the
fitness function, the chromosomes of the next generation are
reproduced by selection, cross over and mutation operations.

In QSPR studies, it is important to obtain a model
containing as few variables as possible because this will lead to
a simple and interpretable model. Therefore, the quality of a
chromosome is determined by both the internal predictivity it
gives and the number of variables it uses. In order to increase
quality of chromosomes in the population, an extra rule is
added to GA-PLS following the idea of Leardi et al. [31]: the best
chromosome using the same number of variables is protected
unless a chromosome with a lower number of variables gives
better internal predictivity. The protected chromosomes in the
final population of GA can be regarded as the important
combinations of variables.

In this paper, GA-PLS followed Leardi’s method [32]. The
size of population is 30, the probability of cross over is 0.5, the
probability of mutation is 0.01 and the number of evaluation is
200. For each set of data 100 runs were performed. Because
each GA gives a slightly different model, at least each run repeat
five times to verify the robustness of the predictive ability and
importance of the selected model. If some variables
(descriptors) are present only in one model, it can be
concluded that they have selected by chance and therefore,
they can be disregarded in the final model.
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Table 1. Data set and corresponding observed and predicted values of n-octanol-water partition coefficient a.

Safdari and Golmohammadi / European Journal of Chemistry 1 (4) (2010) 266-275

Number Name log Kow (EXP) log Kow (PLS) log Kow (ANN)
Training set

1 3-Chlorobiphenyl 4.66 4.80 4.63
2 4-Chlorobiphenyl 4.63 4.90 4.68
3 2,2’-Dichlorobiphenyl 4.72 4.73 4.78
4 2,4-Dichlorobiphenyl 5.15 5.05 5.09
5 3,3’-Dichlorobiphenyl 5.27 5.35 5.19
6 4,4’-Dichlorobiphenyl 5.23 5.57 5.28
7 2,2’,3-Trichlorobiphenyl 5.12 5.05 5.20
8 2,2’,5-Trichlorobiphenyl 5.33 5.23 5.38
9 2,2’,6-Trichlorobiphenyl 5.04 4.95 4.98
10 2,3,4-Trichlorobiphenyl 5.68 5.29 5.59
11 2,3’ ,4-Trichlorobiphenyl 5.54 5.75 5.63
12 2,4,4’-Trichlorobiphenyl 5.71 5.86 5.76
13 2,4’,6-Trichlorobiphenyl 5.24 5.38 5.32
14 2,3",4’-Trichlorobiphenyl 5.71 5.62 5.63
15 2,3,5’-Trichlorobiphenyl 5.71 5.61 5.65
16 2,2’,3,3’-Tetrachlorobiphenyl 5.67 5.57 5.62
17 2,2’,3,5"-Tetrachlorobiphenyl 5.73 5.69 5.80
18 2,2',3,6-Tetrachlorobiphenyl 4.84 5.39 4.85
19 2,2',3,6’-Tetrachlorobiphenyl 4.84 5.40 491
20 2,2’ 4,4’-Tetrachlorobiphenyl 5.94 6.02 5.99
21 2,2’ 4,6-Tetrachlorobiphenyl 5.75 5.58 5.68
22 2,2',5,5"-Tetrachlorobiphenyl 5.79 5.81 5.88
23 2,2',6,6-Tetrachlorobiphenyl 5.24 5.33 5.29
24 2,3,3’,4-Tetrachlorobiphenyl 6.10 5.92 6.01
25 2,3,4,4"-Tetrachlorobiphenyl 6.24 6.01 6.19
26 2,3,4’,6-Tetrachlorobiphenyl 5.76 5.81 5.81
27 2,3’,4,4’-Tetrachlorobiphenyl 5.98 6.22 6.02
28 2,3’,4,5-Tetrachlorobiphenyl 6.32 6.06 6.28
29 2,3’,4’,6-Tetrachlorobiphenyl 5.76 5.95 5.83
30 2,4,4’,6-Tetrachlorobiphenyl 6.03 6.18 6.11
31 2,2',3,4,4’-Pentachlorobiphenyl 6.18 6.37 6.24
32 2,2',3,4,6-Pentachlorobiphenyl 6.50 5.89 6.42
33 2,2',3,4,6’-Pentachlorobiphenyl 5.60 5.95 5.69
34 2,2’,3,5,5’-Pentachlorobiphenyl 6.32 6.16 6.28
35 2,2',3,5,6-Pentachlorobiphenyl 6.06 5.82 6.07
36 2,2',3,5",6-Pentachlorobiphenyl 592 5.95 591
37 2,2',3,4’,5’-Pentachlorobiphenyl 6.30 6.15 6.22
38 2,2'/4,4’,5-Pentachlorobiphenyl 6.41 6.49 6.41
39 2,2',4,5’,6-Pentachlorobiphenyl 6.11 6.19 6.20
40 2,3,3’,4,4’-Pentachlorobiphenyl 6.79 6.64 6.77
41 2,3,3’,4,5-Pentachlorobiphenyl 6.92 6.29 6.88
42 2,3,3’,5’,6-Pentachlorobiphenyl 6.45 6.24 6.41
43 2,3,4,4’,5-Pentachlorobiphenyl 6.71 6.47 6.68
44 2,3,4,4’,6-Pentachlorobiphenyl 6.44 6.34 6.51
45 2,3'4,4’,5-Pentachlorobiphenyl 6.57 6.61 6.49
46 2,3',4,5,5’-Pentachlorobiphenyl 6.30 6.69 6.37
47 2,3',4,5’,6-Pentachlorobiphenyl 6.42 6.47 6.35
48 2,2',3,3’,4,5’-Hexachlorobiphenyl 7.30 6.71 7.29
49 2,2',3,3’,4,6-Hexachlorobiphenyl 6.78 6.41 6.69
50 2,2’,3,3’,5,6-Hexachlorobiphenyl 6.20 6.33 6.25
51 2,2',3,3’,5,6'-Hexachlorobiphenyl 6.32 6.46 6.42
52 2,2',3,4,4’,5-Hexachlorobiphenyl 6.82 6.76 6.91
53 2,2',3,4,4’,6'-Hexachlorobiphenyl 6.58 6.67 6.67
54 2,2',3,4,5,5'-Hexachlorobiphenyl 6.75 6.69 6.81
55 2,2’,3,4',5,5’-Hexachlorobiphenyl 6.85 6.81 6.91
56 2,2’,3,4',5",6-Hexachlorobiphenyl 6.41 6.52 6.50
57 2,2'4,4’5,5’-Hexachlorobiphenyl 6.80 6.95 6.88
58 2,2'4,4',6,6'-Hexachlorobiphenyl 6.54 6.72 6.60
59 2,3,3',4,4’,5-Hexachlorobiphenyl 7.44 6.92 7.38
60 2,3,3',4’,5,6-Hexachlorobiphenyl 6.78 6.71 6.85
61 2,3,3’,5,5",6-Hexachlorobiphenyl 7.00 6.62 6.95
62 2,3'4,4',5,5-Hexachlorobiphenyl 7.29 7.10 7.27
63 3,3',4,4’,5,5-Hexachlorobiphenyl 7.55 7.35 7.52
64 2,2',3,3',4,5,6’-Heptachlorobiphenyl 6.85 6.91 6.90
65 2,2',3,3’,4,5',6-Heptachlorobiphenyl 6.92 7.05 6.88
66 2,2',3,3',4,5',6'-Heptachlorobiphenyl 6.73 6.98 6.77
67 2,2,3,3’,5,5',6-Heptachlorobiphenyl 6.85 6.98 6.92
68 2,2',3,4,4',5,5'-Heptachlorobiphenyl 7.21 7.37 7.24
69 2,2',3,4,4',5,6-Heptachlorobiphenyl 7.13 7.04 7.09
70 2,2',3,4,4',5,6’-Heptachlorobiphenyl 6.92 7.15 6.99
71 2,2",3,4,4',5',6-Heptachlorobiphenyl 7.04 7.18 6.99
72 2,2',3,4,5,5’,6-Heptachlorobiphenyl 6.99 6.90 6.91
73 2,2',3,4',5,6,6’-Heptachlorobiphenyl 6.78 6.94 6.72
74 2,3,3',4,4’,5,5'-Heptachlorobiphenyl 7.72 7.47 7.68
75 2,3,3',4,4,5',6-Heptachlorobiphenyl 7.21 7.36 7.30
76 2,3,3',4’,5,5",6-Heptachlorobiphenyl 7.21 7.23 7.20
77 2,2,3,3',4,4',5,5"-Octachlorobiphenyl 7.62 7.78 7.66
78 2,2',3,3',4,4’,5,6-0Octachlorobiphenyl 7.35 7.47 7.42
79 2,2,3,4,4',5,5’,6-Octachlorobiphenyl 7.49 7.59 7.52
80 2,2',3,4,4',5,6,6’-Octachlorobiphenyl 7.48 7.45 7.42
81 2,3,3',4,4',5,5',6-0Octachlorobiphenyl 7.62 7.75 7.70
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Table 1. (Continued).

Number Name log Kow (EXP) log Kow (PLS) log Kow (ANN)
82 2,2’,3,3',4,4',5,5",6-Nonachlorobiphenyl 7.94 8.05 7.88
83 2,2,3,3',4,4',5,6,6'-Nonachlorobiphenyl 7.88 7.90 7.79
Test set
84 2,3’-Dichlorobiphenyl 4.84 4.96 4.90
85 3,4’-Dichlorobiphenyl 5.15 5.47 5.27
86 2,2’ 4-Trichlorobiphenyl 5.39 5372 5.45
87 2,3,4’-Trichlorobiphenyl 5.29 5.53 5.42
88 2,3’,5-Trichlorobiphenyl 5.65 5.48 5.50
89 2,2',3,4-Tetrachlorobiphenyl 5.79 5.58 5.67
90 2,2’ ,4,5-Tetrachlorobiphenyl 5.69 5.71 5.82
91 2,2’,4,6’-Tetrachlorobiphenyl 5.51 5.63 5.64
92 2,3,4’,5-Tetrachlorobiphenyl 6.10 6.06 6.02
93 2,3’,4,6-Tetrachlorobiphenyl 6.03 5.83 5.99
94 2,3',4’,5'-Tetrachlorobiphenyl 5.98 5.99 5.96
95 2,2',3,4,5-Pentachlorobiphenyl 6.38 6.04 6.24
96 2,2',3,4’,5-Pentachlorobiphenyl 6.32 6.32 6.29
97 2,2',3,4',6’-Pentachlorobiphenyl 6.04 6.08 6.12
98 2,3,3’,4’,6-Pentachlorobiphenyl 6.20 6.27 6.38
99 2,3,4',5,6-Pentachlorobiphenyl 6.39 6.27 6.47
100 2,3'4,4’,5"-Pentachlorobiphenyl 6.64 6.62 6.51
101 2,2’,3,3’,4,6’-Hexachlorobiphenyl 6.20 6.45 6.34
102 2,2’,3,4,5,6’-Hexachlorobiphenyl 6.56 6.37 6.44
103 2,2',3,5,5',6-Hexachlorobiphenyl 6.42 6.43 6.37
104 2,3,3’,4,4’,6-Hexachlorobiphenyl 6.78 6.80 6.95
105 2,2,3,3',4,4’,5-Heptachlorobiphenyl 7.08 7.22 7.21
106 2,2’,3,3',4,6,6'-Heptachlorobiphenyl 6.55 6.78 6.71
107 2,3,3',4,4',5,6-Heptachlorobiphenyl 7.08 7.19 7.19
108 2,2,3,3',4,4',5,6’-Octachlorobiphenyl 7.43 7.57 7.53
Validation set
109 2,3-Dichlorobiphenyl 4.99 4.96 4.85
110 3,4-Dichlorobiphenyl 5.23 5.47 5.13
111 2,4’-Dichlorobiphenyl 5.09 5.32 5.18
112 2,3,3’-Trichlorobiphenyl 5.60 5.53 5.43
113 2,3,6-Trichlorobiphenyl 5.44 5.48 5.28
114 2,4,5-Trichlorobiphenyl 5.68 5.58 5.57
115 2,2',3,4’-Tetrachlorobiphenyl 5.72 5.71 5.87
116 2,2’,4,5'-Tetrachlorobiphenyl 5.87 5.63 5.98
117 2,2',5,6’-Tetrachlorobiphenyl 555 6.06 5.36
118 2,3,5,6-Tetrachlorobiphenyl 5.96 5.83 5.80
119 2,4,4’,5-Tetrachlorobiphenyl 6.10 5.99 6.23
120 2,2',3,3’,6-Pentachlorobiphenyl 5.60 6.04 5.75
121 2,2’,3,4,5-Pentachlorobiphenyl 6.23 6.32 6.34
122 2,2',3,4’,6-Pentachlorobiphenyl 5.87 6.08 6.02
123 2,2'4,4’,6-Pentachlorobiphenyl 6.23 6.27 6.37
124 2,3,3’,5,6-Pentachlorobiphenyl 6.41 6.27 6.23
125 3’,4,4’,6-Pentachlorobiphenyl 6.40 6.62 6.55
126 2,2’,3,3’,4,5-Hexachlorobiphenyl 6.76 6.45 6.89
127 2,2’,3,4,4',5-Hexachlorobiphenyl 6.73 6.37 6.84
128 2,2',3,4,5',6-Hexachlorobiphenyl 6.45 6.43 6.38
129 2,2'/4,4',5,6'-Hexachlorobiphenyl 6.65 6.80 6.77
130 2,3,3',4’,5",6-Hexachlorobiphenyl 6.63 7.22 6.75
131 2,2’,3,3’,4,5,5"-Heptachlorobiphenyl 7.21 6.78 7.13
132 2,2',3,3’,5,6,6’-Heptachlorobiphenyl 6.41 7.19 6.53
133 2,3,3',4,5,5',6-Heptachlorobiphenyl 7.21 7.57 7.10

a EXP refers to experimental; PLS refers to partial least squares; ANN refers to artificial neural network.

2.4. Partial least squares (PLS) Y=TBQT+F 4)

The PLS method takes into account information of
dependent variables during the decomposition of the
independent variables data matrix. Assume that X represents
independent variables (X is a matrix) and Y represents
dependent variables (Y is a vector). Then a brief description of
computations is given as follows.

X= TPT+ E (2)
Y=QST+F 3)

The matrices E and F contain residual for X and Y,
respectively. T and P are score and loading matrices associated
with the X, Q and S are the score and loading of Y and
superscript T indicates the transposed matrix.

The relationship between scores and dependent variable is
obtained from:

Where B is the matrix of the regression coefficient obtained by
a least squares procedure.

The PLS algorithm used in this study was the singular value
decomposition (SVD)-based PLS. This algorithm was proposed
by Lobert et al. in 1987 [33]. A brief discussion of the SVD-
based PLS algorithm can be found in the literature [34-36]. The
program of PLS modeling based on SVD was written with
MATLAB 7 in our laboratory [37]. The PLS regression was run
on the data matrices containing the descriptors selected by GA.

2.5. Neural network construction

Artificial neural networks (ANNs) are basically a data-
driven black-box model capable of solving highly non-linear
complex problems. They have the ability to capture the
relationship between input and output variables from given
patterns (historical data or measured data on input and output
variables of the system of the concern) and this enables them to
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solve large-scale complex problems. The network learns
basically by finding the optimal network-connection-weights
that would generate an output vector as close as possible to the
target values of the output vector, with the selected accuracy. A
detailed description of the theory behind a neural network has
been adequately described elsewhere [38-40]. Therefore, only
the points relevant to this work are described here. A
fundamental procession element of an ANN is a node. Each
node has a series of weighted inputs, Wi, and acts as a summing
point of weighted input signals. The summed signals pass
through a transfer function that may be in sigmoidal form. The
output of node j, 0j ,is given by Eq. (5):

0. =1/ [1+exp(-X)] 5

J

where X is defined by the following equation:
X=Y W,0, +B, (6)

In Eq. 6, Bj is a bias term, O; is the output of the node of the
previous layer and W;j represents the weight between the
nodes of i and j.

A feed-forward neural network consists of three layers. The
first layer (input layer) consists of nodes and acts as an input
buffer for the data. Signals introduced to the network, with one
node per element in the sample data vector, pass through the
input layer to the layer called the hidden layer. Each node in
this layer sums the inputs and forwards them through a
transfer function to the output layer. These signals are
weighted and then pass to the output layer. In the output layer
the processes of summing and transferring are repeated. The
output of this layer now represents the calculated value for the
node k of the network.

Training of back-propagation neural network requires the
comparison of the network output with an expected value. This
comparison may be presented in an iterative fashion to the
network with a weighted adjustment after each run. The
differences between the output and the expected value back-
propagated to the network and followed by adjustment of the
weights and biases. The adjusted weights and biases can be
calculated according to Egs. (7) and (8).

AW, (n) =13 ,,0,, + @ AW, (n -1) Y]
AB, (n)=v8,0, (8)

In these equations, AWy and ABy; are the changes in the
weights and biases between the node j in the hidden layer and
the node k in the output layer, respectively; Sy« is the error term
obtained from the differences between the output and the
expected value. The parameters n and y are learning rate of the
weight and bias, respectively; a represents the momentum and
n and n-1 refer to the present and the previous iterations,
respectively.

Equations similar to the Egs. (7) and (8) were used to
adjust weights and biases connecting the hidden layers to the
input one. The criterion for the stopping of the iteration during
the training process could be a predefined number of iterations
(p) or a desired difference between the output and its expected
value. In order to obtain a parsimonious model, the network
architecture was modified and tested. The number of hidden
layer nodes, learning rates and momentum parameters were
optimized.

In the present work, an ANN program was written with
MATLAB 7. This network was feed-forward fully connected that
has three layers with sigmoidal transfer function. Descriptors
selected by PLS methods were used as inputs of network and

its output signal represent the n-octanol-water partition
coefficients of interested compounds. Thus this network has
five nodes in input layer and one node in output layer. The
value of each input was divided into its mean value to bring
them into dynamic range of the sigmoidal transfer function of
the network. The initial values of weights were randomly
selected from a uniform distribution that ranged between -0.3
to +0.3 and the initial values of biases were set to be one. These
values were optimized during the network training. The back-
propagation algorithm was used for the training of the
network. Before training, the network parameters would be
optimized. These parameters are: number of nodes in the
hidden layer, weights and biases learning rates and the
momentum. Procedures for the optimization of these
descriptors were reported elsewhere [41,42]. Then the
optimized network was trained using training set for
adjustment of weights and biases values. To maintain the
predictive power of the network at a desirable level, training
was stopped when the value of error for the test set started to
increase. Since the test error is not a good estimation of the
generalization error, the prediction potential of the model was
evaluated on a third set of data, named validation set.
Compounds in the validation set were not used during the
training process and were reserved to evaluate the predictive
power of the generated ANN.

2.6. Estimation of the predictive ability of a QSPR model

For the optimized QSPR model several parameters were
selected to test prediction ability of the model. A real QSPR
model may have a high predictive ability, if it is close to ideal
one. This may imply that the correlation coefficient R between
the experimental (actual) y and predicted j properties must be
close to 1 and regression of y against ) or ) againsty through
the origin, i.e. y* =ky and §°
characterized by at least either k or k' close to 1 [43]. Slopes k
and k' are calculated as follows:

Z yiYi (9)
¥

ZY Yi (10)

Doy

The criteria formulated above may not be sufficient for a
QSPR model to be truly predictive. Regression lines through the

origin defined by y™® =ky and §° =k'y (with the intercept
set to one) should be close to optimum regression lines
y’ :a§+band ?' :a'y+b' (b and b' are intercepts).

and R‘é are

=k'y, respectively, should be

Correlation coefficients for these lines Rg

calculated as follows:

R2 = 20y (11)
>G - y)
R2- Z(yl -3 (12)

Dy -y)’

where ? and ? are the average values of the observed and

predicted properties, respectively and the summations are over
all n compounds in the validation set.



Safdari and Golmohammadi / European Journal of Chemistry 1 (4) (2010) 266-275 271

0.8
¢ Training
0.7 - B Tezt
AValidation
0.6 4
0.5 4
-
=
2 04
- ]
= |
e
= 0.3+
3 ! - .
at . - @
0.2 o ©
n A o o ACO
||
o q&% %Og&og Q
& A [ dn?%, & o o
0.1 - o J °TRs T &
@ < &
e % ‘“00 od Mo AN
°m m A MY Ca O ©
o % o WO om
4 4.5 5 5.5 4] 6.5 7 7.5 8
LogK ( EXP)

Figure 1. Scatter plot of samples for training, test and validation sets.

A difference between R, and Révalues (R;) needs to

be studied to explore the prediction potential of a model [44].
This term was defined in the following manner:

R =R2(1—‘./R2—R§ ‘) (13)

Finally, the following criteria for evaluation of the
predictive ability of QSPR models should be considered:

1. High value of cross-validated R? (q2>0.5).
2. Correlation coefficient R between the predicted and
actual properties from an external test set close to 1.

R;or R'; should be close to R2.

3. At least one slope of regression lines (k or k') through
the origin should be close to 1.

4. R? should be greater than 0.5.

3. Results and discussion
3.1. Molecular diversity validation

The fundamental research themes in chemical database
analysis are diversity of sampling [45]. The diversity problem
involves defining a different subset of representative
compounds. In this study, diversity analysis was performed on
the data set to make sure that the structures of the training,
test or validation sets can represent those of the whole ones.
We consider a database of n compounds generated from m
highly correlated chemical descriptors {XJ}:;. Each compound,
Xi, is represented as following vector (eq. 14):

X, = (xﬂ,xiz,xﬂ,...xim) fori=1,2,...n (14)

where x;; denotes the value of descriptor j of compound Xi. The
collective database X = {xi }l] is represented a nxm matrix of

X as follows (Eq. 15):

X, Xpp . X

X = (X.X,..X )T Xy Xpp o Xop (15)
= 1’ 2’... N =

Xy Xp oo X

where the superscript T denotes the vector/matrix transpose.
A distance score, dj, for two different compounds Xi and X; can
be measured by the Euclidean distance norm based on the
compound descriptors (Eq. 16):

d, =[x -x| = \/Z(Xi—x )2 (16)

The mean distances of one sample to the remaining ones
were computed as follows (Eq. 17):

d=2— i=12,..n (17)

Then the mean distances were normalized within the
interval of zero to one. In order to calculate the values of mean
distances according to the Eqgs. (16) and (17) a MATLAB
program was written in our laboratory. This program
combines maximum dissimilarity search algorithms and
general multi-dimensional measurements of chemical
similarity based on different molecular descriptors. The closer
to one the distance is the more diverse to each other the
compound is. The mean distances of samples were plotted
against log Kow (EXP) and was shown in Figure 1. Inspections
to this figure illuminate the diversity of the molecules in the
training, test and validation sets. As can be seen from this
figure, the structures of the compounds are diverse in all sets
and the training set with a broad representation of the
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chemistry space was adequate to ensure the model's stability
and the diversity of test and validation sets can prove the
predictive capability of the model.

3.2. PLS modeling

The data set and corresponding observed PLS and ANN
predicted values of n-octanol-water partition coefficients of all
molecules studied in this work are shown in Table 1. Using
GA-PLS variable selection, 12 descriptors were selected. These
descriptors with short description are given in Table 2. After
variable selection with GA-PLS, obtained descriptors were
used to build PLS model. Among these 12 descriptors, 5
descriptors were chosen by this model. Specifications of
finally selected descriptors by PLS are given in Table 3. These
descriptors are: Balabane index (J), XY Shadow (Sxy), Kier
shape index (order3) (3k), Wiener index (W) and Maximum
valency of C atom (Vmax C). The numerical values of these
descriptors are shown in Table 4. Table 5 represents the
correlation matrix for these descriptors.

Table 2. Selected descriptors by GA-PLS.

Notation Description

] Balaban index

RNDB Relative number of double bonds

Sxy XY Shadow

3k Kier shape index (order 3)

RNBR Relative number of benzene rings

w Wiener index

TMSA Total molecular surface area

Q max Cl Maximum net atomic charge for a Cl atom
Vimax C Maximum valency of a C atom

FPSA-2 Fractional total charge weighted partial positive surface area
HBSA H-bonding surface area

Q max C Maximum partial charge for a C atom

By interpreting the descriptors in the models, it is possible
to gain some insight into factors that are likely related to
n-octanol-water partition coefficients of the PCBs. For
inspection of the relative importance and contribution of each
descriptor in the model, the value of mean effect (ME) was
calculated for each descriptor by the following equation:

ST 4.
MEJ. = % (18)
Zj BjZi dij

where, ME; is the mean effect for considered descriptor j, f; is
the coefficient of descriptor j and dj; is the value of interested
descriptors for each molecule, and m is the number of
descriptors in the model. The calculated values of MEs are
represented in the last column of Table 3 and are also plotted
in Figure 2. The value and sign of mean effect shows the
relative contribution and direction of influence of each
descriptor on the partition coefficient.

Table 3. The partial least squares regression coefficients.

Descriptor Notation Coefficient Mean effect
Balabane index ] -1.6504 -4.4486

XY Shadow Sxy 0.1559 1.1185

Kier shape index (order3) 3k 0.5982 1.5999
Wiener index w 0.0052 2.5621
Max. valency of C atom Vimax C -5.7974 -22.7372
Constant - 28.3132 -

As shown in Table 3 the most relevant descriptor based on
its mean effect is Vmax C, a quantum-chemical descriptor. This
descriptor relates to the strength of intramolecular bonding
interactions and characterizes the stability of the molecules,
their conformational flexibility and other valency-related
properties [46]. Molecule with higher value of Vimax C is more
hydrophile, therefore, its tendency to water phase increase,
hence the coefficient of this descriptor has negative sign. The

second relevant descriptor according to the mean effect value
is a topological descriptor, Balabane index (J). This descriptor
is defined by the following formula:

1
_[_4 9 2 (19)
J= S.S.
(H‘HJ Zi,_j( 1 J)

where q is the number of edges in the molecular graph, p is
the cyclometric number and Si and S; are the distance sums (or
distance degrees), obtained by summation the row i and
column i (or row j and column j, respectively) of the distance
matrix between atoms in the molecule. The negative
coefficient of this descriptor means as the value of this
descriptor increase, the values of log Kow increase. The third
relevant descriptor according to the mean effect value is
Wiener index. The Wiener index [47] can be expressed in the
terms of the distance matrix. The distance matrix is a square
matrix (NSA x NSA), and the entries dj correspond to the
number of bonds in the shortest path connecting the pair of
atoms i and j. The Wiener index W equals to the half-sum of all
distance matrix entries:

1 s
W = Ez(i,j)dif (20)

The next descriptor is Kier shape index (order3) (3k). The
shape of molecule depends on the number of skeletal atoms,
the molecular branching and the special parameter ai which is
calculated as the ratio of the atomic radius (r;) and the radius
of the carbon atom in the sp3 hybridization state (ro) [48]:

'K=(Ng +a-D(Ny, +a-3)CP+a)’ (21)
(if Nsa is odd)
where 3P is the number of paths of the length n in the

molecular skeleton, and ¢ is the sum of the ai parameters for
all skeletal atoms minus 1.

10

5 SXY 3x w

o —_— . ||

J
-10
-15
=20 A
25 Vmax C
-30
Descriptors

Figure 2. Plot of descriptor's mean effects.

These two Topological descriptors (also called topological
indices) describe the atomic connectivity in the molecule [49-
51]. These molecular descriptors have positive signs for their
mean effect, which reveal that a larger molecule with flexible
conformation is more likely to be found in organic phase. The
last descriptor that is presented here is XY Shadow (Sxy), a
geometrical descriptor. The shadow areas are calculated by
applying 2D square grid on the molecular projection and by
summation of the areas of squares overlapped with a
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Table 4. The values of the descriptors that were used in this work a.

Table 4. (Continued).

Numberb ] S xy 3k w Vmax C Number® ] Sxvy 3k w Vmax C

1 2.475 6.726 1.923 246 3.953 82 2.928 8.138 3.183 820 3.950

2 2.424 6.642 1.923 252 3.954 83 2.964 7.816 3.183 810 3.948

3 2.609 6.168 1.944 287 3.951 84 2.549 6.226 2.092 294 3.952

4 2.528 6.428 2.092 298 3.952 85 2.444 7.156 2.296 308 3.953

5 2.492 7.172 2.296 301 3.953 86 2.596 6.264 2.298 352 3.951

6 2.397 7.098 2.296 315 3.954 87 2.542 6.832 2.298 360 3.953

7 2.647 5.940 2.124 344 3.950 88 2.579 6.424 2.460 354 3.952

8 2.635 6.318 2.298 346 3.951 89 2.664 6.484 2.334 412 3.951

9 2.693 5.998 2.124 338 3.950 90 2.653 6.618 2.475 414 3.951

10 2.603 6.782 2.124 352 3.951 91 2.676 6.432 2475 410 3.950

11 2.541 7.578 2.460 360 3.952 92 2.593 7.180 2.660 425 3.952

12 2.494 7.546 2.460 368 3.953 B8 2.644 6.518 2.660 416 3.951

13 2.584 6.478 2.298 354 3.952 94 2.620 7.962 2475 419 3.954

14 2.551 7.550 2.298 358 3.953 95 2.734 7.240 2.518 478 3.951

15 2.590 7.536 2.460 352 3.953 96 2.679 6.890 2.834 488 3.951

16 2.681 6.728 2.334 408 3.950 97 2.730 6.752 2.681 478 3.949

17 2.671 6.810 2475 410 3.951 98 2.677 7.224 2.681 488 3.952

18 2.739 6.384 2.334 400 3.949 99 2.700 7.424 2.681 486 3.950

19 2.726 6.342 2.334 401 3.950 100 2.608 7.714 2.834 502 3.953

20 2.586 6.780 2.660 426 3.951 101 2.779 6.982 2.726 553 3.950

21 2.699 6.444 2475 407 3.949 102 2.803 6.940 2.726 548 3.951

22 2.662 6.680 2.660 412 3.951 103 2.820 6.988 2.864 545 3.949

23 2.798 6.908 2.334 391 3.948 104 2.708 7.382 2.864 570 3.949

24 2.611 7.336 2.475 421 3.952 105 2.769 7.900 2.913 650 3.951

25 2.565 7.110 2475 430 3.952 106 2.877 7.006 2913 624 3.948

26 2.635 6.946 2475 418 3.951 107 2.785 7.930 2913 648 3.951

27 2.543 7.442 2.660 433 3.953 108 2.861 7.656 3.120 729 3.950

28 2.601 7.344 2.660 423 3.952 109 2.580 5.944 1.944 291 3.952

29 2.631 7.908 2475 417 3.953 110 2.484 7.170 2.092 303 3.953

30 2.597 7.932 2.660 425 3.951 111 2.498 7.116 2.092 301 3.953

31 2.650 7.302 2.681 494 3.951 112 2.590 6.670 2.298 352 3.952

32 2.769 6.808 2.518 472 3.949 113 2.676 6.432 2.124 342 3.950

33 2.738 6.778 2.518 476 3.950 114 2.531 6.590 2.460 362 3.952

34 2.717 6.520 2.834 480 3.950 115 2.633 6.528 2.475 417 3.951

35 2.800 6.814 2.518 466 3.948 116 2.623 6.538 2.660 419 3.951

36 2.761 6.502 2.681 472 3.950 117 2.716 6.210 2475 403 3.950

37 2.686 6.528 2.681 486 3.951 118 2.741 6.962 2.334 402 3.949

38 2.641 7.362 2.834 496 3.951 119 2.555 8.028 2.660 432 3.952

39 2.722 6.786 2.834 480 3.950 120 2.769 6.624 2.518 470 3.949

40 2.607 8.428 2.681 502 3.953 121 2.687 6.874 2.681 486 3.950

41 2.683 7.342 2.681 488 3.951 122 2.722 6.790 2.681 480 3.950

42 2.716 7.102 2.834 480 3.952 123 2.683 6.978 2.834 488 3.950

43 2.638 7.702 2.681 498 3.951 124 2.747 6.802 2.681 476 3.950

44 2.671 7.404 2.681 492 3.951 125 2.640 8.404 2.834 496 3.952

45 2.599 7.454 2.834 504 3.953 126 2.761 7.612 2.726 557 3.951

46 2.636 7.888 3.028 496 3.953 127 2.699 7.716 2.864 571 3.951

47 2.678 7.142 3.028 488 3.952 128 2.789 7.098 2.864 552 3.949

48 2.737 7.424 2.864 562 3.950 129 2.733 7.184 3.036 564 3.951

49 2.796 7.010 2.726 550 3.949 130 2.735 7.458 2.864 562 3.953

50 2.828 7.040 2.726 543 3.948 131 2.799 7.916 3.069 642 3.951

51 2.810 7.072 2.864 546 3.950 132 2.909 6.944 2913 616 3.948

52 2.717 7.312 2.864 568 3.951 133 2.823 7.184 3.069 638 3.951

53 2.741 7.170 2.864 562 3.950 a The definitions of the descriptors are given in Table 2.

54 2.754 7.558 2.864 559 3.951 b The numbers refer to the numbers of the molecules given in Table 1.

55 2.729 7.264 3.036 564 3.951

B2 2771 s Roo po S2B projection. Those indices therefore reflect the size (natural
57 2.692 7.438 3.036 573 3.951 .. . .

58 2776 7388 3.036 555 3.948 shadow indices) and geometrical shape (normalized shadow
59 2.675 7.644 2.864 577 3.952 indices) of the molecule. As we know, for a solute to enter into
60 2.738 7.396 2.864 563 3.951 aqueous solution, a cavity must be formed in the solvent for
61 2.776 6.884 3.036 554 3.951 the solute molecule to occupy. Increasing shadow area, leads
62 2.658 7.888 3.036 580 3.953 . . . . .

63 2625 8934 3.036 g7 3953 to increasing cavity information energy in solvent (water), the
64 2.840 7.294 2.913 632 3.951 larger the solute, the grater the energy demand to make cavity
65 2.834 7.390 3.069 634 3.950 and lower the solubility in water. Consequently, increasing of
66 2.834 7.488 2913 634 3.949 XY Shadow, increasing the Kow.

2; 5'32‘2‘ ;";gi g'gég 22; g'g‘;? From the above discussion, it can be seen that all
69 2828 7692 2913 638 3.949 descriptors involved in the QSPR model has physically
70 2.803 7.452 3.069 642 3.951 meaning, and these descriptors can account for structural
71 2.796 7.514 3.069 644 3.950 features that affect the partition coefficients of the interested
72 2.866 7.558 2913 628 3.949 molecules.

73 2.870 7.290 3.069 626 3.948

74 2.728 8.178 3.069 660 3.953 Table 5. Correlation matrix of the five descriptors used in this worka

75 2.761 8.056 3.069 652 3952 ] St 3K W Vo C

76 2.791 7.838 3.069 644 3.952 i 1.000 0.230 0.697 0.836 0.774

77 2.826 8.322 3.120 738 3.950 Sxy 1.000 0.644 0.630 0.197

79 2e6s 7836 s 728 304 e wp e

80 2911 7.696 3.120 717 3.948 ymax C 1.000 100%3;)2

81 2.834 8.310 3.120 737 3.952

a The definitions of the descriptors are given in Table 2.
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3.3. Neural network modeling

The next step was the construction of an artificial neural
network. Before training the ANNs, the parameters of network
including the number of nodes in the hidden layer, weights
and biases learning rates and momentum values were
optimized. Table 6 shows the architecture and specification of
the optimized network. After optimization of the network
parameters, the network was trained by using training set for
adjustment of the weights and biases values by back-
propagation algorithm. It is known that neural network can
become over-trained. An over-trained network has usually
learned perfectly the stimulus pattern it has seen but cannot
give accurate prediction for unseen stimuli, and it no longer
able to generalize. There are several methods for overcoming
this problem. One method is to use a test set to evaluate the
prediction power of the network during its training. In this
method after each 1000 training iteration the network was
used to calculate log Kow of molecules included in the test set.
To maintain the predictive power of the network at a
desirable level, training was stopped when the value of errors
for the test set started to increase. Results obtained showed
overtraining began after 65000 iterations.

Table 6. Architecture and specification of the generated ANN.

Parameter Value
No. of nodes in the input layer 5

No. of nodes in the hidden layer 5

No. of nodes in the output layer 1
Weights learning rate 0.2

Bias learning rate 0.6
Momentum 0.3
Transfer function Sigmoid

The predictive power of the ANN models developed on the
selected training sets are estimated on the predictions of
validation set chemicals, by calculating the g2 that is defined
as follow:

qzzl_Z(yi—Sﬁ)z (22)
Z(Yi _y)z

Where y, and y,, respectively are the measured and predicted

values of the dependent variable(n-octanol-water partition
coefficient), y is the averaged value of dependent variable of

the training set and the summations cover all the compounds.
The calculated value of q2 was 0.969.

Table 1 represents the experimental, PLS and ANN
calculated values of n-octanol-water partition coefficients for
the training, test and validation sets. The statistical
parameters obtained by ANN and PLS models for these sets
are shown in Table 7. The standard errors of training, test and
validation sets for the PLS model are 0.230, 0.164 and 0.297,
respectively which would be compared with the values of
0.063, 0.112 and 0.126, respectively, for the ANN model.
Comparison between these values and other statistical
parameters in Table 7 reveals the superiority of the ANN
model over PLS one. The key strength of neural networks,
unlike PLS analysis, is their ability to flexible mapping of the
selected features by manipulating their functional dependence
implicitly.

The statistical values of validation set for the ANN model
was characterized by q2 =0.969, Rz = 0.958 (R=0.979),

R; =0.966, R =0.872and k= 0.999. These values and

other statistical parameters which are shown in Table 7 reveal
the high predictive ability of the model. Figure 3 shows the
plot of the ANN predicted versus experimental values for
n-octanol-water partition coefficients of all of the molecules in
data set. The residuals of the ANN calculated values of the

n-octanol-water partition coefficients are plotted against the
experimental values in Figure 4. The propagation of the
residuals in both sides of zero line indicates that no systematic
error exists in the constructed QSPR model.
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Figure 3. Plot of ANN calculated n-octanol-water partition coefficients
against experimental values
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Figure 4. Plot of residual versus experimental values of n-octanol-water
partition coefficient

Lu et al. [13] reported a QSPR model for the prediction of
n-octanol-water partition coefficients of 133 polychlorinated
biphenyls by the Heuristic method of CODESSA
(comprehensive descriptors for structural and statistical
analysis) technique. They developed three QSPR models. The
best model they obtained has the squared correlation
coefficients (R2) of 0.9263 for the training set and 0.9336 for
the test set. They also used radial basis function neural
network (RBFNN) to build nonlinear prediction model for
further discussing of the correlation between the molecular
structure and the n-octanol-water partition coefficients values
of PCBs based on the same subset of three descriptors. The
model gave correlation coefficients (R?) of 0.9393 for the
training set and 0.9023 for the test set, respectively.
Comparison between results obtained by Lu et al. and present
study indicated that the model demonstrated in this work
performs substantially better than the former models in
predicting of partition coefficients.

Padmanabhan et al. [14] developed a QSPR model for
estimation of the lipophilic behaviour (log Kow) of the data set
containing 133 polychlorinated biphenyl (PCB) congeners
using the conceptual density functional theory based global
reactivity parameter such as electrophilicity index (x) along
with energy of lowest unoccupied molecular orbital (ELumo)
and number of chlorine substituents (Nc1) as descriptors. They
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Table 7. Statistical parameters obtained using the ANN and PLS models a.

Model SE. SE: SEv Rc Rv Fc Fe Fv
ANN 0.063 0.112 0.126 0.997 0.985 0.979 13959 749 543
PLS 0.230 0.164 0.297 0.960 0.967 0.887 961 335 85

a. ¢ refers to the calibration (training) set; t refers to test set; v refers to validation set; R is the correlation coefficient;

SE is standard error and F is the statistical F value.

have performed linear/multilinear regression method using
experimental log Kow as dependent variable and various
combinations of the selected descriptors as independent
variables. The correlation coefficients (R2) of training and test
set of their model were 0.914 and 0.909, respectively.
Comparison between results attained by Padmanabhan et al.
and this study revealed the superiority of our model.

4. Conclusion

Results of this study reveal that ANN can be used
successfully in development of a QSRR model to predict the n-
octanol-water partition coefficients of polychlorinated
biphenyls. Descriptors appear in these QSPR model provide
some information related to different molecular properties,
which can participate in the intermolecular interactions that
affected on the n-octanol-water partition coefficient. The good
agreement between experimental results and predicted values
confirm the validity of obtained models. The calculated
statistical parameters of these models reveal the superiority
of ANN over PLS model. The result shows that ANN model can
describe accurately the relationship between the structural
parameters and n-octanol-water partition coefficient of
compounds.
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