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	 In	this	work,	principal	component	regression	and	partial	least	squares	regression	were	used
for	 the	 estimation	 of	 acid	 dissociation	 constants	 through	 UV‐Vis	 spectrophotometric
measurements,	considering	five	well‐known	acid‐base	indicators	as	well	as	two	herbicides	as
analytes.	 In	 each	 case,	 an	 acid‐base	 titration	 was	 carried	 out.	 Then,	 the	 multivariate
calibration	model	was	constructed	with	a	few	absorption	spectra	of	the	series	at	extreme	pH
values,	to	which	values	of	the	dissociation	fraction	(α)	of	1	or	0	were	assigned,	in	the	case	of
HA	or	A	species.	After	that,	the	prediction	step	consisted	in	the	estimation	of	α	for	the	rest	of
the	series.	Then,	distribution	diagrams	were	built	up	with	α	vs	pH,	to	find	α	=	0.5	where	pH	=
pKa.	The	 results	were	compared	with	 those	obtained	 through	multivariate	 curve	resolution‐
alternating	 least	 squares	 and	 program	 stability	 quotients	 from	 absorbance	 data	 (SQUAD),
which	showed	an	excellent	correspondence.	
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1.	Introduction	
	

The	study	of	acid‐base	equilibriums	is	of	great	importance,	
because	the	ionic	and	the	neutral	forms	of	a	compound	exhibit	
different	 physicochemical	 properties	 (solubility,	 partition	
coefficient,	etc.)	[1,2].	In	other	words,	the	predominance	of	one	
of	 the	 two	 forms	 will	 condition	 their	 distribution	 in	 the	
environment,	 their	 biological	 activity	 or	 chemical	 reactivity,	
among	others.	

Thus,	 the	determination	of	acid	dissociation	constants	 is	a	
topic	 of	 current	 interest.	 Several	 research	 groups	 are	
continuing	 to	 look	 for	 new	 methodologies	 to	 estimate	 them,	
based	on	 techniques	such	as	Nuclear	Magnetic	Resonance	 [3],	
Electric	Impedance	Spectroscopy	[4],	Capillary	Electrophoresis	
[5],	 or	 Gas	 Chromatography	 [6],	 to	 name	 a	 few.	 Furthermore,	
the	 use	 of	 UV‐Visible	 spectrophotometry	 is	 still	 common,	
through	new	approaches	to	data	processing	[7‐10].	

Particularly,	 the	 technique	 of	 Multivariate	 Curve	
Resolution‐Alternating	 Least	 Squares	 (MCR‐ALS)	 is	
increasingly	used	for	the	analysis	of	component	mixtures,	both	
for	 quantitative	 measures	 and	 for	 the	 study	 of	 chemical	
equilibriums	 [7,11,12].	 However,	 Partial	 Least	 Squares	
Regression	 (PLS)	 or	 Principal	 Component	 Regression	 (PCR)	

have	not	been	reported	for	pKa	estimation	as	far	as	is	known	to	
the	authors.	

In	 this	work,	 the	techniques	of	MCR‐ALS,	PLS	and	PCR	are	
used	 for	 the	estimation	of	acid	dissociation	constants	 through	
UV‐Vis	spectrophotometry.	The	substances	of	interest	were	five	
acid‐base	 indicators,	whose	pKa	values	are	widely	 reported	 in	
the	 literature,	 in	 order	 to	 show	 the	 applicability	 of	 the	
techniques.	 Later,	 the	 pKa	 values	 for	 isomethiozin	 and	
methoprotryne,	 two	 triazine	 herbicides,	 are	 reported.	 In	 all	
cases,	 the	 pKa	 values	 were	 compared	 with	 those	 estimated	
through	 SQUAD	 [13,14],	 an	 algorithm	 that	 is	 widely	 used	 for	
this	purpose	[15,16].	

	
1.2.	Fundamental	considerations	
	

Consider	the	general	reaction	for	an	acid	dissociation:	
	

HA ൅ HଶO ⇄ HଷOା ൅ Aି	 	 	 	 (1)	
	

where	 HA	 and	 A‐	 represent	 the	 acid	 and	 its	 conjugated	 base,	
respectively.	From	the	expression	of	the	acid‐base	equilibrium,	
it	follows	the	Henderson‐Hasselbalch	equation:	
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ܪ݌ ൌ ௔ܭ݌ ൅ ݃݋݈
ሾ஺షሿ

ሾு஺ሿ
			 	 	 	 (2)	

	
According	 to	 this,	 at	 the	 equilibrium	 the	 concentration	 of	

the	 acid	 and	 its	 conjugated	 base	 is	 the	 same	 when	 the	 pH	
equals	to	pKa.	Similarly,	through	expression	2	it	can	be	deduced	
that:	

	
If	ܪ݌			ܭ݌௔ െ 2		then		ሾܣܪሿ		0.99்ܥ,	ሾିܣሿ		0.01்ܥ	 (3)	

	
If	ܪ݌			ܭ݌௔ ൅ 2		then		ሾܣܪሿ		0.01்ܥ,	ሾିܣሿ		0.99்ܥ	 (4)	

	
where	CT	is	the	total	concentration	of	the	analyte,	i.e.	CT	=	[A‐]	+	
[HA].	Finally,	the	fractions	(α)	of	the	chemical	species	involved	
are:			

	
∝ு஺ൌ

ሾு஺ሿ

஼೅
	 	 	 	 	 (5)	

	
∝஺షൌ

ሾ஺షሿ

஼೅
		 	 	 	 	 (6)	

	
1.2.1.	MCR‐ALS	
	

Resolution	 techniques	 decompose	 the	 instrumental	
responses	 of	 mixtures	 (original	 data	 matrix,	 X)	 into	 the	
contributions	 linked	 to	 each	 of	 the	 pure	 components	 in	 the	
system	 (concentration	 profiles	 matrix,	 C)	 and	 the	 pure	
response	profiles	matrix	(ST),	according	to:		

	
ࢄ ൌ ்ࡿ࡯ ൅ 	ࡱ 	 	 	 	 (7)	

	
where	E	corresponds	to	the	residuals	of	the	modeling.		

The	mandatory	prerequisite	 is	an	 inner	 linear	structure	of	
the	 data	 set.	 Also,	 three	 constraints	 are	 commonly	 used	 to	
reduce	the	ambiguity	 in	data	decomposition:	a)	nonnegativity,	
which	 means	 that	 the	 instrumental	 values	 will	 always	 be	
positive;	 b)	 unimodality,	 which	 considers	 only	 one	maximum	
per	 profile;	 and	 c)	 closure,	 i.e.	 that	 the	 sum	 of	 the	
concentrations	 for	 the	 whole	 species	 involved	 is	 constant	
through	 the	 experiment.	 Particularly,	 MCR‐ALS	 uses	 an	
approach	 to	 iteratively	 find	 the	 matrices	 of	 concentration	
profiles	and	 instrumental	 responses,	 so	 that	neither	 the	C	nor	
the	ST	matrices	have	priority	over	the	other	[17].	

For	 an	 acid‐base	 reaction	 monitored	 through	 UV‐Vis	
spectrophotometry,	 the	 prerequisite	 for	 a	 linear	 structure	 of	
the	data	set	is	fulfilled	according	to	the	Beer	Law,	as	well	as	the	
three	 constraints	mentioned	 above.	 In	 this	 case,	 the	MCR‐ALS	
decomposition	 of	 X	 is	 represented	 in	 Figure	 1.	 Once	 the	
concentration	 profiles	 of	 pure	 components	 are	 obtained,	 they	
are	 considered	 an	 expression	 of	 the	 fractions	 of	 dissociation	
(α),	so	pKa	=	pH	if	α	=	0.5	for	both	the	acid	and	the	base	species,	
according	to	equations	2,	5	and	6.							

	

	
	
Figure	1.	Estimation	 of	pKa	 through	MCR‐ALS.	The	dimensions	 of	matrices	
are:	(L)	number	of	samples	at	given	pH	values,	(M)	number	of	wavelengths	
under	 study,	 (N)	 number	 of	 pure	 components	 in	 the	 mixture	 (two	 in	 this	
case).	

	
1.2.2.	PCR	and	PLS		

	
Both	 techniques	 correspond	 to	 multivariate	 calibration,	

whose	main	 purpose	 is	 to	 involve	 multiple	 measurements	 to	
predict	the	value	of	an	underlying	parameter	or	property.	They	

are	 especially	 valuable	 in	 the	 analysis	 of	 multicomponent	
systems	 characterized	 by	 non‐selective	 measurements,	 noisy	
data,	etc.			

PCR	 and	 PLS	 are	 based	 on	 Principal	 Component	 Analysis	
(PCA),	whereby	the	dimensionality	of	the	data	set	consisting	of	
a	large	number	of	interrelated	variables	(X)	is	reduced	to	a	new	
set	 of	 variables,	 named	 Principal	 Components	 (PCs),	 which	
retain	 as	 much	 as	 possible	 of	 the	 main	 information	 [18].	 In	
general,	the	modeling	of	the	underlying	parameter	or	property	
(Y)	can	be	represented	according	to:		

	
ࢀ ൌ 	ࢂࢄ 	 	 	 	 	 (8)	
	
ࢄ ൌ ´ࡼࢀ ൅ 	ࡱ 	 	 	 	 (9)	
	
ࢅ ൌ ´ࡽࢀ ൅ 	ࡲ 	 		 	 	 (10)	
	
where	T	is	the	scores’	matrix;	the	loading	matrix	P´	represents	
the	 regression	 coefficients	 of	 X	 on	 T	 in	 the	 same	 way	 as	 Q´	
represents	 the	 regression	 coefficients	 of	Y	 on	T;	 E	 and	 F	 are	
residual	 matrices.	 V	 contains	 coefficients	 estimated	 through	
many	 different	 methods.	 For	 PLS,	 X	 and	 Y	 are	 used	
simultaneously	to	estimate	V.	In	PCR,	V	is	estimated	from	X,	so	
Y	is	only	used	to	select	how	many	factors	will	be	integrated	in	
the	model	[19].		

Experimentally,	two	stages	are	carried	out:	calibration	and	
prediction.	 In	 the	 first	 one,	 a	 series	 of	 objects	 described	 by	X	
and	Y	are	used	to	build	the	calibration	model,	after	the	proper	
selection	of	PCs.	Secondly,	equation	10	is	used	to	estimate	Y	for	
objects	only	described	by	X.								

In	 this	 case,	 at	 least	 four	 absorption	 spectra	 (two	 at	 each	
extreme	 of	 the	 samples	 series	 at	 different	 pH	 values)	 were	
considered	to	construct	 the	calibration	model,	while	assigning	
the	corresponding	α	values	of	0	or	1	as	Y,	due	to	the	fulfillments	
of	 equations	 3	 and	 4.	 Calibration	models	were	 built	 after	 the	
selection	of	 the	optimal	number	of	PCs.	Finally,	α	values	were	
predicted	 for	 the	 rest	 of	 the	 samples	 and	 made	 up	 the	
distribution	diagrams,	 in	which	the	pH	=	pKa	if	α	=	0.5	(Figure	
2).	
	

	
Figure	 2.	 Estimation	 of	 pKa through	 PCR	 and	 PLS.	 The	 dimensions	 of	
matrices	 are:	 (L)	 number	 of	 samples	 at	 given	 pH	 values,	 (M)	 number	 of	
wavelengths	under	study,	(N)	number	of	components	in	the	mixture	(two	in	
this	case),	(A)	number	of	optimal	PCs.	
	
1.2.3.	SQUAD	

	
SQUAD	 is	 a	 program,	 created	 by	 David	 J.	 Leggett	 [13‐16]	

that	 fits	 a	 set	of	 absorption	spectra	 corresponding	 to	 systems	
with	variable	chemical	composition	using	a	model	(considering	
the	 formation	 constants	 of	 several	 chemical	 equilibria,	 the	
absorptivity	 coefficients	 for	 species	 and	 Beer’s	 and	 additivity	
spectroscopic	 laws),	 by	means	 of	 a	Non	 Linear	 Least	 Squares	
algorithm.	 This	 program	 has	 been	 extensively	 used	 to	
determine	equilibrium	constants	by	UV‐Visible	measurements.	
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Figure	3.	Developed	formulae	of	the	substances	studied	in	this	contribution. 
	
	
Table	1.		pKa	values	determined	through	UV‐Vis	spectrophotometry,	using	four	algorithms	for	data	processing.	
Compound	 Spectral	range		

(nm)	
pH	range	
studied	

CT	
(M)	

pKa	expected	
[21,22]	

pKa	
SQUAD	

pKa	
MCR‐ALS	

pKa	
PLS	

pKa	
PCR	

Mean	value	±	standard	deviation	

PhR	 370‐600	 4.7‐10.8	 1.02		10‐5	 7.9 7.39 7.40 7.41 7.40 7.40±0.01	
ThB	 360‐600	 1.0‐7.0	 9.35	10‐6	 1.6	 1.49	 1.55	 1.54	 1.53	 1.53±0.03	
MeO	 350‐580	 2.0‐7.2	 1.50		10‐5	 3.8,	3.4 3.33 3.33 3.35 3.36 3.34±0.02	
MeR	 350‐600	 2.3‐8.0	 4.46		10‐5	 5.1,	4.9	 4.70	 4.69	 4.68	 4.68	 4.69±0.01	
BrG	 400‐700	 1.0‐8.0	 1.07		10‐5	 4.5,	4.7 4.37 4.33 4.33 4.34 4.34±0.02	
ISO	 205‐400	 0.2‐5.5	 4.80		10‐5	 ‐	 0.97	 1.02	 0.96	 0.95	 0.98±0.03	
MET	 205‐280	 2.0‐7.0	 1.55		10‐5	 ‐ 4.23 4.29 4.31 4.31 4.28±0.04	
	
	
2.	Experimental	
	
2.1.	Instrumentation	

	
A	 UV‐Visible	 spectrophotometer	 (Perkin‐Elmer,	 model	

lambda	 EZ	 210)	was	 used,	 controlled	 by	 a	 PC	while	 applying	
the	program	PESSW	v1.2,	as	well	as	a	pH	meter	attached	 to	a	
pH	combination	electrode	(Conductronic).	Data	treatment	was	
carried	 out	with	 the	 software	packages	by	 Pirouette	 v3.11	 by	
Infometrix	 Inc.,	 OriginPro	 8	 SR0	 v8.0724	 by	 OriginLab	
Corporate	 and	SQUAD	 (compiled	by	one	of	 the	authors	of	 the	
present	work	(AR‐H)	and	co‐workers).	

	
2.2.	Reagents	

	
All	 reagents	were	 at	 least	 analytical	 grade.	The	herbicides	

isomethiozin	 (ISO)	and	methoprotryne	 (MET)	were	pesticides	
for	 analysis,	 from	Riedel	 de	Haen.	The	 acid	base	 indicators	 of	
thymol	 blue	 (ThB),	 bromocresol	 green	 (BrG),	 methyl	 orange	
(MeO),	 methyl	 red	 (MeR),	 and	 phenol	 red	 (PhR)	 came	 from	
Sigma	Aldrich.	The	developed	formulae	of	these	substances	are	
presented	 in	 Figure	 3.	 In	 all	 tests,	 ultrapure	 water	 was	 used	
(Barnstead).	

Standard	 solutions	were	 prepared	 from	 the	 substances	 of	
interest	 in	methanol	 (ISO	and	MET	at	1×10‐4	M,	 the	acid‐base	

indicators	 at	 1×10‐3	 M),	 which	 were	 stored	 at	 4	 °C	 and	
protected	from	light.	Working	solutions	were	prepared	daily	by	
appropriate	 dilution;	 their	 concentrations	 are	 mentioned	 in	
Table	1.		

	
2.3.	Procedure	

	
For	each	of	 the	substances	of	 interest,	100	mL	of	aqueous	

solution	 in	 sodium	 chloride	 0.5	 M	 were	 prepared,	 with	 the	
proper	concentration	to	obtain	absorbance	values	lower	than	1.	
NaCl	was	used	for	setting	the	ionic	strength	of	the	medium	An	
acid‐base	 titration	 was	 conducted	 in	 a	 thermostated	 cell	 at							
25	°C	with	constant	stirring,	provided	with	a	thermometer	and	
a	pH	combination	electrode.	Aqueous	solutions	of	hydrochloric	
acid	 or	 sodium	 hydroxide	 at	 different	 concentrations	 were	
added,	 in	 order	 to	 obtain	 increases	 in	 pH	 of	 0.2	 units,	
approximately.	 Absorption	 spectra	were	 recorded	 at	 each	 pH	
condition	 against	 a	 reagent	 blank	 (NaCl	 0.5	 M),	 with	 a	
resolution	of	0.5	nm.	

	
2.4.	Data	processing	
	

In	 all	 cases,	 the	absorption	 spectra	were	 restricted	 to	one	
band	 per	 chemical	 form	 (i.e.,	 a	 spectral	 profile	 with	 one	
absorption	maximum	for	 the	A‐	 and	HA	species,	 respectively).	
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For	 PLS	 and	 PCR	 analyses,	 mean	 centering	 was	 used	 as	
pretreatment	of	data.	Calibration	models	were	built	with	three	
PCs,	selecting	the	optimal	number	by	the	F	test	(two‐tailed,	p	=	
0.05).	Then,	α	values	were	predicted	for	the	rest	of	 the	series.	
The	estimated	pKa	values	through	MCR‐ALS,	PLS	and	PCR	were	
compared	with	those	obtained	through	SQUAD.	

	
3.	Results	and	discussion		

	
Next,	 the	 case	 of	 PhR	 is	 discussed,	 although	 it	 should	 be	

noted	that	the	same	procedure	was	followed	for	the	rest	of	the	
compounds.	 The	 absorption	 spectra	 of	 PhR	 at	 different	 pH	
conditions	are	presented	in	Figure	4,	where	an	isosbestic	point	
is	 observed	 at	 481	 nm	 as	 a	 consequence	 of	 an	 acid‐base	
equilibrium.	 Absorption	maxima	 can	 be	 observed	 at	 431	 and	
560	nm,	which	correspond	to	the	predominant	presence	of	the	
acidic	and	basic	forms,	respectively.	Also,	it	was	noticed	that	at	
pH	 <	 6,	 practically	 the	 whole	 indicator	 is	 in	 the	 form	 of	HA,	
while	 at	 pH	 >	 10	 it	 can	 be	 considered	 that	 the	 predominant	
form	 is	 A.	 Therefore,	 the	 spectra	 profiles	 remained	 virtually	
constant.				
	

	
	

Figure	4.	Absorption	spectra	of	PhR	as	function	of	pH,	between	4.7	and	10.8.
	
3.1.	Data	processing	with	SQUAD	

	
Twenty	four	spectra	with	wavelength	increments	of	8	nm	–

taken	from	those	shown	in	Figure	4	corresponding	to	aqueous	
solutions	of	phenol	 red	with	CT	=	1.02	×	10‐5	M	 in	 the	5.72	 to	
9.28	 pH	 range,	 were	 introduced	 to	 program	 SQUAD	 with	 a	
chemical	model	constituted	by	one	acid‐base	equilibrium.	The	
pKa	 =	 7.3923	 	 0.0015	 was	 refined	 by	 the	 program	 with	 a	
standard	 deviation	 for	 the	 absorbance	 data	 (sA)	 such	 as	 sA	 =	
0.0035.	The	program	SQUAD	also	allows	determining	the	molar	
absorptivity	coefficients	for	each	species	(Figure	5,	up),	with	an	
uncertainty	lower	than	5%	in	this	case.	

	
3.2.	Data	processing	with	MCR‐ALS	

	
As	 was	 expected,	 two	 pure	 components	 were	 identified	

through	MCR,	modeling	with	 one	 PC.	 In	 Figure	 5	 (down),	 the	
spectral	profiles	of	the	two	pure	components	can	be	observed,	
very	similar	to	the	profiles	of	absorptivity	coefficients	obtained	
through	SQUAD	(Figure	5,	up).	

It	 should	 be	 noted	 the	 great	 similitude	 in	 shape	 for	 the	
corresponding	 absorptivity	 coefficients	 and	 source	 profiles	 of	
MCR	algorithm.	

Later,	 MCR‐ALS	 was	 developed	 considering	 two	 pure	
components	as	maximum	sources;	constraints	were	defined	as	
follows:	 a)	 non‐negativity	 in	 amounts	 and	 profiles,	 b)	
unimodality	in	amounts	and	profiles,	and	c)	closure	in	amounts.	
Initial	 estimates	 were	 chosen	 from	 rows.	 In	 Figure	 6,	 the	
concentration	 profiles	 of	 the	 two	 pure	 components	 can	 be	
observed,	which	in	this	case	coincide	with	the	α	fraction	of	the	
chemical	 species	 involved	 in	 the	 acid‐base	 equilibrium.	

According	 to	 the	 distribution	 diagram,	 α	 =	 0.5	 at	 pH	 =	 7.4,	
which	corresponds	to	the	pKa.	

	

	
Figure	 5. Fundamental	 spectroscopic	 data	 obtained	 for	 PhR	 in	 this	 work:	
(up)	 absorptivity	 coefficients	 for	 the	 species	 obtained	 by	 SQUAD,	 (down)	
source	profiles	obtained	for	the	acidic	and	basic	forms	of	PhR	through	MCR.	
	
	

	
Figure	 6.	 Distribution	 diagram	 for	 the	 fractions	 of	 HA	 (squares)	 and	 A‐	
(circles),	from	which	the	pKa	can	be	deduced.	
	
3.3.	Data	processing	with	PCR	and	PLS	

	
After	that,	PCR	and	PLS	were	developed	from	the	same	data	

matrix	 as	 MCR‐ALS	 (X).	 For	 the	 calibration	 step,	 three	
absorption	spectra	were	considered	 in	each	case	 (for	HA	=	1,	
A‐	 =	 0;	 and	 for	HA	 =	 0,	A‐	 =	 1)	 and	 the	 optimal	 number	 of	
factors	 was	 obtained	 by	 a	 cross	 validation	 leaving	 out	 one	
sample	at	a	time.	Through	the	F‐test	[18],	it	was	observed	that	
only	one	 factor	was	needed	 for	modeling	(Figure	7),	 since	 the	
variance	 described	 by	 PCs	 2	 and	 3	 was	 negligible	 for	 both	
chemical	 forms.	 Then,	 for	 the	 rest	 of	 the	 series	 of	 samples	 α	
values	 were	 predicted.	 Outliers	 were	 not	 identified.	
Distribution	 diagrams	 obtained	 by	 PLS	 and	 PCR	 were	 very	
similar	to	those	for	MCR‐ALS	(see	Figure	7).							
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Finally,	the	results	obtained	for	all	chemical	compounds	are	
shown	in	Table	1.	As	can	be	observed,	there	is	clear	agreement	
between	 the	 pKa	 reported	 in	 the	 literature	 and	 estimated	
values	in	all	cases.	Finally,	the	pKa	values	for	ISO	and	MET	are	
reported,	 since	 no	 information	 was	 found	 in	 the	 sources	
consulted.						
	

	
Figure	 7.	 Selection	 of	 the	 optimum	 number	 of	 PC	 according	 to	 modeled	
variance.	Factors	2	and	3	are	negligible.	
	
4.	Conclusion	

	
As	 shown	 by	 the	 results	 obtained	 through	 MCR‐ALS	 and	

SQUAD,	 the	PCR	 and	PLS	 techniques	were	 very	useful	 for	 the	
estimation	 of	 the	 acid	 dissociation	 constants	 from	
spectrophotometric	 data	 for	well‐known	 acid‐base	 indicators.	
Through	these	tools,	these	parameters	were	calculated	for	ISO	
(pKa	=	0.98	±	0.03)	and	MET	(pKa	=	4.28	±	0.04).	
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