European Journal of Chemistry

Synthesis and properties of 3-ethynylthiophene containing BODIPY derivatives



Main Article Content

Reuben Warshawsky
Jason Vaal
Priya Hewavitharanage

Abstract

Green, red and far-red emitting Borondipyrromethene (BODIPY) derivatives with 3-ethynylthiophene units at various positions around the BODIPY core were synthesized and their photophysical properties were studied. 3-Ethynylthiophene substitution at the 2,6 positions caused significant increase in Stokes shift while substitution at the 8 and 4,4’ positions had no effect. Photooxidation of 1,3-diphenylisobenzofuran (DPBF) in the presence of 3-ethynylthiophene substituted BODIPY derivatives confirmed singlet oxygen generation. 3-Ethynylthiophene substitution at the 2,6 positions is more effective in singlet oxygen generation compared to 4’4 substitutions. Substitution through phenyl group at the meso (8) position gave the lowest rate for singlet oxygen production. All 3-ethynylthiophene containing BODIPY derivatives were highly photo-stable under our experimental conditions.


icon graph This Abstract was viewed 2002 times | icon graph Article PDF downloaded 738 times

How to Cite
(1)
Warshawsky, R.; Vaal, J.; Hewavitharanage, P. Synthesis and Properties of 3-Ethynylthiophene Containing BODIPY Derivatives. Eur. J. Chem. 2017, 8, 321-327.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Ulrich, G.; Ziessel, R.; Harriman, A. Angew. Chem. Int. Ed. 2008, 47, 1184-1201.
https://doi.org/10.1002/anie.200702070

[2]. Loudet, A.; Burgess, K. Chem. Rev. 2007, 107, 4891-4932.
https://doi.org/10.1021/cr078381n

[3]. Chang, T. C.; Kuo, C. T.; Chiang, C. C.; Cheng, J. Y.; Yan, C. S.; Peck, K. Phys. Chem. 1999, 1, 3783-3787.

[4]. Giebler, K.; Griesser, H.; Göhringer, D.; Sabirov, T.; Richert, C. Eur. J. Org. Chem. 2010, 19, 3611-3620.

[5]. Goncalves, M. S. T. Chem. Rev. 2009, 109, 190-212.
https://doi.org/10.1021/cr0783840

[6]. Rostron, J. P.; Ulrich, G.; Retailleau, P.; Hamman, A.; Ziessel, R. New J. Chem. 2005, 29, 1241-1244.
https://doi.org/10.1039/b507585h

[7]. Khatchadourian, A.; Krumova, K.; Boridy, S.; Ngo, A. T. Biochemistry. 2009, 48, 5658-5668.
https://doi.org/10.1021/bi900402c

[8]. Jiao, L.; Yu, C.; Uppal, T.; Liu, M.; Li, Y.; Zhou, Y.; Hao, E.; Hu, X.; Vicente, G. H. Org. Biomol. Chem. 2010, 8, 2517-2519.
https://doi.org/10.1039/c001068e

[9]. Kang, H. C.; Haugland, R. P. U. S. Patent 5, 433, 896, July 18, 1995.

[10]. Rihn, S.; Retailleau, P.; Bugsaliewicz, N.; De Nicola, A.; Ziessel, R. Tetrahedron Lett. 2009, 50, 7008-7013.
https://doi.org/10.1016/j.tetlet.2009.09.163

[11]. Sobenina, L. N.; Vasil'tsov, A. M.; Petrova, O. V.; Petrushenko, K. B.; Ushakov, I. A.; Clavier, G.; Meallet-Renault, R.; Mikhaleva, A. I.; Trofimov, B. A. Org. Lett. 2011, 13, 2524-2527.
https://doi.org/10.1021/ol200360f

[12]. Poirel, A.; Nicola, A. D.; Ziesse, R. Org. Lett. 2012, 14, 5696-5699.
https://doi.org/10.1021/ol302710z

[13]. Hewavitharanage, P.; Nzeata, P.; Wiggins, J. Eur. J. Chem. 2012, 3, 13‐16.
https://doi.org/10.5155/eurjchem.3.1.13-16.543

[14]. Goze, C.; Ulrich, G.; Ziessel, R. J. Org. Chem. 2007, 72, 313-322.
https://doi.org/10.1021/jo060984w

[15]. Goze, C.; Ulrich, G.; Ziessel, R. Org. Lett. 2006, 8, 4445-4448.
https://doi.org/10.1021/ol061601j

[16]. Harriman, A.; Mallon, L. J.; Elliot, K. J.; Haefele, A.; Ulrich, G.; Ziessel, R. J. Am. Chem. Soc. 2009, 131, 13375-13386.
https://doi.org/10.1021/ja9038856

[17]. Chen, Y.; Zhao, J.; Guo, H.; Xie, L. J. Org. Chem. 2012, 77, 2192-2206.
https://doi.org/10.1021/jo202215x

[18]. Kaneza, N.; Zhang, J.; Haiying, L.; Archana, P. S.; Shan, Z.; Vasiliu, M.; Polansky, S. H.; Dixon, D. A.; Adams, R. E.; Schmehl, R. H. J. Phys. Chem. C. 2016, 120, 9068-9080.
https://doi.org/10.1021/acs.jpcc.6b01611

[19]. Mirloup, A.; Leclerc, N.; Rihn, S.; Bura, T.; Bechara, R.; Hebraud, A.; Leveque, P.; Heiser, T.; Ziessel, R. New J. Chem. 2014, 38, 3644-3653.
https://doi.org/10.1039/C4NJ00294F

[20]. Shimizu, S.; Iino, T.; Saeki, A.; Seki, S.; Kobayashi, N. Chem. Eur. J. 2015, 21, 2893-2904.
https://doi.org/10.1002/chem.201405761

[21]. Cortizo-Lacalle, D.; Howells, C. T.; Pandey, U. K.; Cameron, J.; Findlay, N. J.; Inigo, A. R.; Tuttle, T.; Skabara, P. J.; Samuel, I. D. W. Beilstein J. Org. Chem. 2014, 10, 2683-2695.
https://doi.org/10.3762/bjoc.10.283

[22]. Poirel, A.; De Nicola, A.; Ziessel, R. Org. Lett. 2012, 14, 5696-5699.
https://doi.org/10.1021/ol302710z

[23]. Wu, Y.; Klaubert, D. H.; Kang, H. C.; Zhang, Y. Z. U. S. Patent 6 005 113, 1999.

[24]. Yogo, T.; Urano, Y.; Ishitsuka, Y.; Maniwa, F.; Nagano, T. J. Am. Chem. Soc. 2005, 127, 12162-12163.
https://doi.org/10.1021/ja0528533

[25]. Caishun, Z.; Jianzhang, Z.; Shuo, W., Zilong, W.; Wanhua, W.; Jie, M.; Song, G.; Ling, H. J. Am. Chem. Soc. 2013, 135, 10566-10578.
https://doi.org/10.1021/ja405170j

[26]. He, H.; Lo, P. C.; Yeung, S. L.; Fong, W. P.; Ng, D. K. P. J. Med. Chem. 2011, 54, 3097-3102.
https://doi.org/10.1021/jm101637g

[27]. He, H.; Lo, P. C.; Yeung, S. L.; Fong, W. P.; Ng, D. K. P. Chem. Commun. 2011, 47, 4748-4750.
https://doi.org/10.1039/c1cc10727e

[28]. Wu, W; Guo, H; Wu, W.; Ji, S.; Zhao, J. J. Org. Chem. 2011, 76, 7056-7064.
https://doi.org/10.1021/jo200990y

[29]. Awuah, S. G.; Polreis, J.; Biradar, v.; You, Y. Org. Lett. 2011, 15, 3884-3887.
https://doi.org/10.1021/ol2014076

[30]. Topel, S. D.; Cin, G. T.; Akkaya, E. U. Chem. Commun. 2014, 50, 8896-8899.
https://doi.org/10.1039/C4CC03387F

[31]. Umezawa, K.; Matsui, A.; Nakamura, Y.; Citterio, D.; Suzuki, K. Chem. Eur. J. 2009, 15, 1096-1106.
https://doi.org/10.1002/chem.200801906

[32]. Jiang, N.; Fan, J.; Liu, T.; Cao, J.; Qiao, B.; Wang, J.; Gao, P.; Peng, X. Chem. Commun. 2013, 49, 10620-10622.
https://doi.org/10.1039/c3cc46143b

[33]. Ji, S.; Ge, J.; Escudero, D.; Wang, Z.; Zhao, J.; Jacquemin, D. J. Org. Chem. 2015, 80, 5958-5963.
https://doi.org/10.1021/acs.joc.5b00691

[34]. Vincent, M.; Beabout, E.; Bennett, R. Hewavitharanage, P. Tetrahedron Lett. 2013, 54: 2050-2054.
https://doi.org/10.1016/j.tetlet.2013.01.128

[35]. Niu, S.; Ulrich, G.; Retailleau, P.; Ziessel, R. Org. Lett. 2011, 13, 4996-4999.
https://doi.org/10.1021/ol201600s

[36]. Singh-Rachford, T. N.; Haefele, A.; Ziessel, R.; Castellano, F. N. J. Am. Chem. Soc. 2008, 130, 16164-16165.
https://doi.org/10.1021/ja807056a

[37]. Coskun, A.; Yilmaz, M. D.; Akkaya, E. U. Org. Lett. 2007, 9, 607-609.
https://doi.org/10.1021/ol062867t

[38]. Lissi, E. A.; Encinas, M. V.; Lemp, E.; Rubio, M. A. Chem. Rev. 1993, 93, 699-723.
https://doi.org/10.1021/cr00018a004

[39]. Adarsh, N.; Avirah, R. R.; Ramaiah, D. Org. Lett. 2010, 12, 5720-5723.
https://doi.org/10.1021/ol102562k

[40]. Kim, S.; Ohulchanskyy, T. Y.; Baev, A.; Prasad, P. N. J. Mater. Chem. 2009, 19, 3181-3188.
https://doi.org/10.1039/b813396d

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).