European Journal of Chemistry 2010, 1(2), 142-161 | doi: https://doi.org/10.5155/eurjchem.1.2.142-161.119 | Get rights and content






  OPEN ACCESS | PEER-REVIEWED | REVIEW ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Theory and computations of two-photon absorbing photochromic chromophores


Artem E. Masunov (1,*) , Ivan A. Mikhailov (2)

(1) NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
(2) NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
(*) Corresponding Author

Received: 20 May 2010 | Accepted: 23 May 2010 | Published: 15 Jun 2010 | Issue Date: June 2010

Abstract


Exponential growth in information technology generates ever increasing amounts of data, making recording density of the storage media crucially important. Two-photon absorption was proposed as a basis for high-density multi-layer technology for optical memory and logic devices. This technology suggests to use polymers, doped with photochromic compounds that undergo a reversible photoinduced isomerization, or photoswitching. In this review we consider recent theoretical works and benchmarking studies of the DFT-based methods, capable to predict two-photon absorption (2PA) and photochemical activity, Next we review the applications of these methods to design a prototype molecule that combines the photon-mode recording property of photochromic compounds with large 2PA cross-section. We conclude that a posteriori Tamm-Dancoff approximation to the second order CEO approach in Density Functional Theory is the powerful tool for both quantitative predictions and qualitative understanding of the excited state processes in photophysics and photochemistry. We also emphasize general principles for the rational design of a two-photon operated photoswitch.

1_2_142_161_800


Keywords


TDDFT; Organic photochemistry; Photocyclization; Photoinduced reactions; Two-photon absorption; State-to-state transition dipoles

Full Text:

PDF /    /


DOI: 10.5155/eurjchem.1.2.142-161.119

Links for Article


| | | | | | |

| | | | | | |

Related Articles




Article Metrics

This Abstract was viewed 4539 times | PDF Article downloaded 1040 times

Funding information


NSF and NERSC

Citations

/


[1]. Lilia Croitor, Eduard B. Coropceanu, Artëm E. Masunov, Hector J. Rivera-Jacquez, Anatolii V. Siminel, Marina S. Fonari
Mechanism of Nonlinear Optical Enhancement and Supramolecular Isomerism in 1D Polymeric Zn(II) and Cd(II) Sulfates with Pyridine-4-aldoxime Ligands
The Journal of Physical Chemistry C  118(17), 9217, 2014
DOI: 10.1021/jp5007395
/


[2]. Artëm E. Masunov, Dane Anderson, Alexandra Ya. Freidzon, Alexander A. Bagaturyants
Symmetry-Breaking in Cationic Polymethine Dyes: Part 2. Shape of Electronic Absorption Bands Explained by the Thermal Fluctuations of the Solvent Reaction Field
The Journal of Physical Chemistry A  119(26), 6807, 2015
DOI: 10.1021/acs.jpca.5b03877
/


[3]. Elena Melnic, Eduard B. Coropceanu, Olga V. Kulikova, Anatolii V. Siminel, Dane Anderson, Hector J. Rivera-Jacquez, Artëm E. Masunov, Marina S. Fonari, Victor Ch. Kravtsov
Robust Packing Patterns and Luminescence Quenching in Mononuclear [Cu(II)(phen)2] Sulfates
The Journal of Physical Chemistry C  118(51), 30087, 2014
DOI: 10.1021/jp5085845
/


[4]. Hector J. Rivera-Jacquez, Artëm E. Masunov
Theoretical study of chromophores for biological sensing: Understanding the mechanism of rhodol based multi-chromophoric systems
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy  198, 123, 2018
DOI: 10.1016/j.saa.2018.02.047
/


[5]. Kazuya Ogawa
Two-Photon Absorbing Molecules as Potential Materials for 3D Optical Memory
Applied Sciences  4(1), 1, 2014
DOI: 10.3390/app4010001
/


[6]. Diana Chisca, Lilia Croitor, Oleg Petuhov, Olga V. Kulikova, Galina F. Volodina, Eduard B. Coropceanu, Artëm E. Masunov, Marina S. Fonari
Tuning structures and emissive properties in a series of Zn(ii) and Cd(ii) coordination polymers containing dicarboxylic acids and nicotinamide pillars
CrystEngComm  20(4), 432, 2018
DOI: 10.1039/C7CE01988B
/


[7]. Stanislav K. Ignatov, Oleg B. Gadzhiev, Alexey G. Razuvaev, Artëm E. Masunov, Otto Schrems
Adsorption of Glyoxal (CHOCHO) and Its UV Photolysis Products on the Surface of Atmospheric Ice Nanoparticles. DFT and Density Functional Tight-Binding Study
The Journal of Physical Chemistry C  118(14), 7398, 2014
DOI: 10.1021/jp411523g
/


[8]. Iffat H. Nayyar, Artëm E. Masunov, Sergei Tretiak
Comparison of TD-DFT Methods for the Calculation of Two-Photon Absorption Spectra of Oligophenylvinylenes
The Journal of Physical Chemistry C  117(35), 18170, 2013
DOI: 10.1021/jp403981d
/


[9]. Tatiana V. Esipova, Héctor J. Rivera-Jacquez, Bruno Weber, Artëm E. Masunov, Sergei A. Vinogradov
Two-Photon Absorbing Phosphorescent Metalloporphyrins: Effects of π-Extension and Peripheral Substitution
Journal of the American Chemical Society  138(48), 15648, 2016
DOI: 10.1021/jacs.6b09157
/


[10]. Ivan A. Mikhailov, Monika Musiał, Artëm E. Masunov
Permanent dipole moments and energies of excited states from density functional theory compared with coupled cluster predictions: Case of para-nitroaniline
Computational and Theoretical Chemistry  1019, 23, 2013
DOI: 10.1016/j.comptc.2013.06.032
/


[11]. N. V. Bashmakova, Ye. O. Shaydyuk, S. M. Levchenko, A. E. Masunov, O. V. Przhonska, J. L. Bricks, O. D. Kachkovsky, Yu. L. Slominsky, Yu. P. Piryatinski, K. D. Belfield, M. V. Bondar
Design and Electronic Structure of New Styryl Dye Bases: Steady-State and Time-Resolved Spectroscopic Studies
The Journal of Physical Chemistry A  118(25), 4502, 2014
DOI: 10.1021/jp503263f
/


[12]. Binglin Sui, Mykhailo V. Bondar, Dane Anderson, Hector J. Rivera-Jacquez, Artëm E. Masunov, Kevin D. Belfield
New Two-Photon Absorbing BODIPY-Based Fluorescent Probe: Linear Photophysics, Stimulated Emission, and Ultrafast Spectroscopy
The Journal of Physical Chemistry C  120(26), 14317, 2016
DOI: 10.1021/acs.jpcc.6b04426
/


[13]. Robert West, Gürkan Keşan, Eliška Trsková, Roman Sobotka, Radek Kaňa, Marcel Fuciman, Tomáš Polívka
Spectroscopic properties of the triple bond carotenoid alloxanthin
Chemical Physics Letters  653, 167, 2016
DOI: 10.1016/j.cplett.2016.04.085
/


[14]. Tatiana V. Esipova, Héctor J. Rivera-Jacquez, Bruno Weber, Artëm E. Masunov, Sergei A. Vinogradov
Stabilizing g-States in Centrosymmetric Tetrapyrroles: Two-Photon-Absorbing Porphyrins with Bright Phosphorescence
The Journal of Physical Chemistry A  121(33), 6243, 2017
DOI: 10.1021/acs.jpca.7b04333
/


References

[1]. Kaneko, M. MRS Bull. 2006, 31, 314-317.

[2]. Wang, J. G.; Sun, C. J.; Hashimoto, Y.; Kono, J.; Khodaparast, G. A.; Cywinski, L.; Sham, L. J.; Sanders, G. D.; Stanton, C. J.; Munekata, H. J. Phys.: Condens. Matter 2006, 18, R501-R530.
doi:10.1088/0953-8984/18/31/R01

[3]. Zhou, G. F. Mater. Sci. Eng., A 2001, 304, 73-80.
doi:10.1016/S0921-5093(00)01448-9

[4]. Kawata, S.; Kawata, Y. Chem. Rev. 2000, 100, 1777-1788.
doi:10.1021/cr980073p
PMid:11777420

[5]. Irie, M. Chem. Rev. 2000, 100, 1685-1716.
doi:10.1021/cr980069d
PMid:11777416

[6]. Parthenopoulos, D. A.; Rentzepis, P. M. Science 1989, 245, 843-845.
doi:10.1126/science.245.4920.843
PMid:17773360

[7]. Saita, S.; Yamaguchi, T.; Kawai, T.; Irie, M. Chem. Phys. Chem. 2005, 6, 2300-2306.
doi:10.1002/cphc.200500254
PMid:16224761

[8]. Shipway, A. N.; Greenwald, M.; Jaber, N.; Litwak, A. M.; Reisman, B. J. Jpn. J. Appl. Phys., Part 1 2006, 45, 1229-1234.

[9]. Boggio-Pasqua, M.; Ravaglia, M.; Bearpark, M. J.; Garavelli, M.; Robb, M. A. J. Phys. Chem. A 2003, 107, 11139-11152.
doi:10.1021/jp036862e

[10]. Koppel, H.; Doscher, M.; Mahapatra, S. Int. J. Quantum Chem 2000, 80, 942-949.
doi:10.1002/1097-461X(2000)80:4/5<942::AID-QUA43>3.0.CO;2-K

[11]. Kendrick, B. K. J. Chem. Phys. 2001, 114, 8796-8819.

[12]. Hack, M. D.; Jasper, A. W.; Volobuev, Y. L.; Schwenke, D. W.; Truhlar, D. G. J. Phys. Chem. A 2000, 104, 217-232.
doi:10.1021/jp993353x

[13]. Jasper, A. W.; Truhlar, D. G. J. Chem. Phys. 2005, 122, 044101-16.

[14]. Vallet, V.; Lan, Z. G.; Mahapatra, S.; Sobolewski, A. L.; Domcke, W. Faraday Discuss. 2004, 127, 283-293.
doi:10.1039/b402979h
PMid:15471350

[15]. Garavelli, M. Theor. Chem. Acc. 2006, 116, 87-105.
doi:10.1007/s00214-005-0030-z

[16]. Truhlar, D. G.; Gordon, M. S. Science 1990, 249, 491-498.
doi:10.1126/science.249.4968.491
PMid:17735282

[17]. Fuss, W.; Hering, P.; Kompa, K. L.; Lochbrunner, S.; Schikarski, T.; Schmid, W. E.; Trushin, S. A. Ber. Bunsen-Ges. Phys. Chem 1997, 101, 500-509.

[18]. Bernardi, F.; Olivucci, M.; Robb, M. A. Chem. Soc. Rev. 1996, 25, 321-328.
doi:10.1039/cs9962500321

[19]. Fuss, W.; Lochbrunner, S.; Muller, A. M.; Schikarski, T.; Schmid, W. E.; Trushin, S. A. Chem. Phys. 1998, 232, 161-174.
doi:10.1016/S0301-0104(98)00114-1

[20]. Robb, M. A.; Garavelli, M.; Olivucci, M.; Bernardi, F. Rev. Comput. Chem. 2000; Vol. 15, p 87-146.
doi:10.1002/9780470125922.ch2

[21]. Toniolo, A.; Ben-Nun, M.; Martinez, T. J. J. Phys. Chem. A 2002, 106, 4679-4689.
doi:10.1021/jp014289y

[22]. Yarkony, D. R. Faraday Discuss. 2004, 127, 325-336.
doi:10.1039/b313937a
PMid:15471353

[23]. Gilbert, A. T. B.; Besley, N. A.; Gill, P. M. W. J. Phys. Chem. A 2008, 112, 13164-13171.
doi:10.1021/jp801738f
PMid:18729344

[24]. Frank, I.; Hutter, J.; Marx, D.; Parrinello, M. J. Chem. Phys. 1998, 108, 4060-4069.

[25]. Ziegler, T.; Rauk, A.; Baerends, E. J. Theor. Chim. Acta 1977, 43, 261-271.
doi:10.1007/BF00551551

[26]. Billeter, S. R.; Egli, D. J. Chem. Phys. 2006, 125, 224103(18).

[27]. Doltsinis, N. L.; Marx, D. Phys. Rev. Lett. 2002, 88, 166402-4.
doi:10.1103/PhysRevLett.88.166402
PMid:11955242

[28]. Runge, E.; Gross, E. K. U. Phys. Rev. Lett. 1984, 52, 997-1000.
doi:10.1103/PhysRevLett.52.997

[29]. Levine, B. G.; Ko, C.; Quenneville, J.; Martinez, T. J. Mol. Phys. 2006, 104, 1039-1051.
doi:10.1080/00268970500417762

[30]. Mikhailov, I. A.; Belfield, K. D.; Masunov, A. E. J. Phys. Chem. A 2009, 113, 7080-7089.
doi:10.1021/jp8113368
PMid:19480402

[31]. Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133-A1138.
doi:10.1103/PhysRev.140.A1133

[32]. Adamo, C.; di Matteo, A.; Barone, V. Adv. Quantum Chem. 2000, 36, 45-75.
doi:10.1016/S0065-3276(08)60478-5

[33]. Gritsenko, O. V.; Baerends, E. J. Theor. Chem. Acc. 1997, 96, 44-50.
doi:10.1007/s002140050202

[34]. Takeda, R.; Yamanaka, S.; Yamaguchi, K. Int. J. Quantum Chem 2005, 101, 658-665.
doi:10.1002/qua.20323

[35]. Becke, A. D. J. Chem. Phys. 1997, 107, 8554-8560.

[36]. Grimme, S.; Waletzke, M. J. Chem. Phys. 1999, 111, 5645-5655.

[37]. Gimme, S. J. Chem. Phys. 2006, 124, 034108(16).

[38]. Yamanaka, S.; Nakata, K.; Takada, T.; Kusakabe, K.; Ugaide, J. M.; Yamaguchi, K. Chem. Lett. 2006, 35, 242-247.
doi:10.1246/cl.2006.242

[39]. Gutle, C.; Savin, A. Phys. Rev. A: At. Mol. Opt. Phys. 2007, 75, 032519-17.

[40]. Langhoff, P. W.; Epstein, S. T.; Karplus, M. Rev. Mod. Phys. 1972, 44, 602-644.
doi:10.1103/RevModPhys.44.602

[41]. Hansen, A. E.; Bouman, T. D. Mol. Phys. 1979, 37, 1713-1724.
doi:10.1080/00268977900101271

[42]. Casida, M. E. Recent Advances in Density-Functional Methods; Chong, D. A., Ed. 1995; Vol. 3 of Part I.

[43]. Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J. J. Chem. Phys. 1998, 109, 8218-8224.

[44]. Dunning, T. H.; McKoy, V. J. Chem. Phys. 1967, 47, 1735-1747.

[45]. Hirata, S.; Head-Gordon, M. Chem. Phys. Lett. 1999, 314, 291-299.
doi:10.1016/S0009-2614(99)01149-5

[46]. Savin, A.; Umrigar, C. J.; Gonze, X. Chem. Phys. Lett. 1998, 288, 391-395.
doi:10.1016/S0009-2614(98)00316-9

[47]. Neugebauer, J.; Baerends, E. J.; Nooijen, M. J. Chem. Phys. 2004, 121, 6155-6166.

[48]. Hsu, C. P.; Hirata, S.; Head-Gordon, M. J. Phys. Chem. A 2001, 105, 451-458.
doi:10.1021/jp0024367

[49]. Hirata, S.; Head-Gordon, M. Chem. Phys. Lett. 1999, 302, 375-382.
doi:10.1016/S0009-2614(99)00137-2

[50]. Catalan, J.; de Paz, J. L. G. J. Chem. Phys. 2004, 120, 1864-1872.

[51]. Starcke, J. H.; Wormit, M.; Schirmer, J.; Dreuw, A. Chem. Phys. 2006, 329, 39-49.
doi:10.1016/j.chemphys.2006.07.020

[52]. Wanko, M.; Garavelli, M.; Bernardi, F.; Niehaus, T. A.; Frauenheim, T.; Elstner, M. J. Chem. Phys. 2004, 120, 1674-1692.

[53]. Fantacci, S.; Migani, A.; Olivucci, M. J. Phys. Chem. A 2004, 108, 1208-1213.
doi:10.1021/jp0362335

[54]. Shao, Y. H.; Head-Gordon, M.; Krylov, A. I. J. Chem. Phys. 2003, 118, 4807-4818.

[55]. Guan, J. G.; Wang, F.; Ziegler, T.; Cox, H. J. Chem. Phys. 2006, 125, 044314(9).

[56]. Maitra, N. T.; Zhang, F.; Cave, R. J.; Burke, K. J. Chem. Phys. 2004, 120, 5932-5937.

[57]. Shibuya, T.; Rose, J.; McKoy, V. J. Chem. Phys. 1973, 58, 500-507.

[58]. Jorgensen, P.; Swanstrom, P.; Yeager, D. L.; Olsen, J. Int. J. Quantum Chem 1983, 23, 959-971.
doi:10.1002/qua.560230319

[59]. Hirata, S.; Nooijen, M.; Grabowski, I.; Bartlett, R. J. J. Chem. Phys. 2001, 114, 3919-3928.

[60]. Stanton, J. F.; Bartlett, R. J. J. Chem. Phys. 1993, 98, 7029-7039.

[61]. DelBene, J. E.; Watts, J. D.; Bartlett, R. J. J. Chem. Phys. 1997, 106, 6051-6060.

[62]. Dalgaard, E. J. Chem. Phys. 1980, 72, 816-823.

[63]. Olsen, J.; Jorgensen, P. J. Chem. Phys. 1985, 82, 3235-3264.

[64]. Vahtras, O.; Agren, H.; Jorgensen, P.; Jorgen, H.; Jensen, A.; Helgaker, T.; Olsen, J. J. Chem. Phys. 1992, 97, 9178-9187.

[65]. Sasagane, K.; Aiga, F.; Itoh, R. J. Chem. Phys. 1993, 99, 3738-3778.

[66]. Luo, Y.; Agren, H.; Stafstrom, S. J. Phys. Chem. 1994, 98, 7782-7789.
doi:10.1021/j100083a007

[67]. Salek, P.; Vahtras, O.; Guo, J. D.; Luo, Y.; Helgaker, T.; Agren, H. Chem. Phys. Lett. 2003, 374, 446-452.
doi:10.1016/S0009-2614(03)00681-X

[68]. Dalgaard, E.; Monkhorst, H. J. Phys. Rev. A: At. Mol. Opt. Phys. 1983, 28, 1217-1222.

[69]. Larsen, H.; Jorgensen, P.; Olsen, J.; Helgaker, T. J. Chem. Phys. 2000, 113, 8908-8917.

[70]. Furche, F. J. Chem. Phys. 2001, 114, 5982-5992.

[71]. Salek, P.; Vahtras, O.; Helgaker, T.; Agren, H. J. Chem. Phys. 2002, 117, 9630-9645.

[72]. Cronstrand, P.; Luo, Y.; Agren, H. Adv. Quantum Chem. 2005, 50, 1-21.
doi:10.1016/S0065-3276(05)50001-7

[73]. Knoester, J.; Mukamel, S. Phys. Rev. A: At. Mol. Opt. Phys. 1989, 39, 1899-1914.

[74]. Tretiak, S.; Mukamel, S. Chem. Rev. 2002, 102, 3171-3212.
doi:10.1021/cr0101252
PMid:12222985

[75]. Tretiak, S.; Chernyak, V. J. Chem. Phys. 2003, 119, 8809-8823.

[76]. Ziegler, T.; Seth, M.; Krykunov, M.; Autschbach, J.; Wang, F. The Journal of Chemical Physics 2009, 130, 154102-8.
doi:10.1063/1.3114988
PMid:19388731

[77]. Ziegler, T.; Seth, M.; Krykunov, M.; Autschbach, J.; Wang, F. Journal of Molecular Structure: Theochem 2009, 914, 106-109.
doi:10.1016/j.theochem.2009.04.021

[78]. Katz, H. E. Chem. Mater. 2004, 16, 4748-4756.
doi:10.1021/cm049781j

[79]. Dalton, L. R. J. Phys.: Condens. Matter 2003, 15, R897-R934.
doi:10.1088/0953-8984/15/20/203

[80]. Perry, J. W.; Marder, S. R.; Meyers, F.; Lu, D.; Chen, G.; Goddard, W. A.; Bredas, J. L.; Pierce, B. M. Polymers for Second-Order Nonlinear Optics,; American Chemical Society: Washington, DC, 1995, 601, 45-56.

[81]. Suponitsky, K. Y.; Timofeeva, T. V.; Antipin, M. Y. Usp. Khim. 2006, 75, 515-556.

[82]. Schulten, K.; Karplus, M. Chem. Phys. Lett. 1972, 14, 305-309.
doi:10.1016/0009-2614(72)80120-9

[83]. Olchawa, R. Phys. B (Amsterdam, Neth.) 2000, 291, 29-33.

[84]. Barford, W.; Bursill, R. J.; Lavrentiev, M. Y. Phys. Rev. B: Condens. Matter 2001, 63, 195108-8.
doi:10.1103/PhysRevB.63.195108

[85]. Orr, B. J.; Ward, J. F. Mol. Phys. 1971, 20, 513-526.
doi:10.1080/00268977100100481

[86]. Wu, J. W.; Heflin, J. R.; Norwood, R. A.; Wong, K. Y.; Zamanikhamiri, O.; Garito, A. F.; Kalyanaraman, P.; Sounik, J. J. Opt. Soc. Am. B: Opt. Phys. 1989, 6, 707-720.
doi:10.1364/JOSAB.6.000707

[87]. McWilliams, P. C. M.; Hayden, G. W.; Soos, Z. G. Phys. Rev. B: Condens. Matter 1991, 43, 9777-9791.
doi:10.1103/PhysRevB.43.9777

[88]. Guo, D.; Mazumdar, S.; Dixit, S. N.; Kajzar, F.; Jarka, F.; Kawabe, Y.; Peyghambarian, N. Phys. Rev. B: Condens. Matter 1993, 48, 1433-1459.
doi:10.1103/PhysRevB.48.1433

[89]. Fitch, W. L.; McGregor, M.; Katritzky, A. R.; Lomaka, A.; Petrukhin, R.; Karelson, M. J. Chem. Inf. Comput. Sci. 2002, 42, 830-840.

[90]. Rumi, M.; Ehrlich, J. E.; Heikal, A. A.; Perry, J. W.; Barlow, S.; Hu, Z. Y.; McCord-Maughon, D.; Parker, T. C.; Rockel, H.; Thayumanavan, S.; Marder, S. R.; Beljonne, D.; Bredas, J. L. J. Am. Chem. Soc. 2000, 122, 9500-9510.
doi:10.1021/ja994497s

[91]. Beljonne, D.; Shuai, Z.; SerranoAndres, L.; Bredas, J. L. Chem. Phys. Lett. 1997, 279, 1-8.
doi:10.1016/S0009-2614(97)00958-5

[92]. Mikhailov, I. A.; Tafur, S.; Masunov, A. E. Phys. Rev. A: At. Mol. Opt. Phys. 2008, 77, 012510-11.

[93]. Hashimoto, T.; Nakano, H.; Hirao, K. J. Chem. Phys. 1996, 104, 6244-6258.

[94]. Pariser, R. J. Chem. Phys. 1956, 24, 250-268.

[95]. Hirao, K.; Nakano, H.; Nakayama, K.; Dupuis, M. J. Chem. Phys. 1996, 105, 9227-9239.

[96]. Malrieu, J. P.; Nebotgil, I.; Sanchezmarin, J. Pure Appl. Chem. 1984, 56, 1241-1254.
doi:10.1351/pac198456091241

[97]. Glushkov, V. N. Opt. Spectrosc. 2005, 99, 684-689.
doi:10.1134/1.2135842

[98]. Löwdin, P.-O.; Shull, H. Phys. Rev. 1956, 101, 1730.
doi:10.1103/PhysRev.101.1730

[99]. Headgordon, M.; Rico, R. J.; Oumi, M.; Lee, T. J. Chem. Phys. Lett. 1994, 219, 21-29.
doi:10.1016/0009-2614(94)00070-0

[100]. Kurashige, Y.; Nakano, H.; Nakao, Y.; Hirao, K. Chem. Phys. Lett. 2004, 400, 425-429.
doi:10.1016/j.cplett.2004.10.141

[101]. Sekino, H.; Bartlett, R. J. Adv. Quantum Chem. 1999, 35, 149-173.
doi:10.1016/S0065-3276(08)60459-1

[102]. Nakatsuji, H. Chem. Phys. Lett. 1991, 177, 331-337.
doi:10.1016/0009-2614(91)85040-4

[103]. Saha, B.; Ehara, M.; Nakatsuji, H. J. Chem. Phys. 2006, 125, 014316-14.

[104]. Kitao, O.; Nakatsuji, H. Chem. Phys. Lett. 1988, 143, 528-534.
doi:10.1016/0009-2614(88)87060-X

[105]. Ostojic, B.; Domcke, W. Chem. Phys. 2001, 269, 1-10.
doi:10.1016/S0301-0104(01)00373-1

[106]. Kawski, A.; Kuklinski, B.; Bojarski, P. Chem. Phys. 2006, 330, 307-312.
doi:10.1016/j.chemphys.2006.09.002

[107]. Bublitz, G. U.; Boxer, S. G. Annu. Rev. Phys. Chem. 1997, 48, 213-242.
doi:10.1146/annurev.physchem.48.1.213
PMid:9348658

[108]. Korter, T. M.; Borst, D. R.; Butler, C. J.; Pratt, D. W. J. Am. Chem. Soc. 2001, 123, 96-99.
doi:10.1021/ja0021262
PMid:11273605

[109]. Nakayama, K.; Nakano, H.; Hirao, K. Int. J. Quantum Chem 1998, 66, 157-175.
doi:10.1002/(SICI)1097-461X(1998)66:2<157::AID-QUA7>3.0.CO;2-U

[110]. Dunning, T. H. J. Chem. Phys. 1989, 90, 1007-1023.

[111]. Stanton, J. F.; Gauss, J.; Watts, J. D.; Lauderdale, W. J.; Bartlett, R. J.; Quantum Theory Project; Departments of Chemistry and Physics, University of Florida: Gainesville FL, 1993.

[112]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A.; Revision E.1 ed.; Gaussian, Inc.: Wallingford CT, 2004.

[113]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A.; Revision A.11 ed.; Gaussian, Inc.: Pittsburgh PA, 1998.

[114]. Cumpston, B. H.; Ananthavel, S. P.; Barlow, S.; Dyer, D. L.; Ehrlich, J. E.; Erskine, L. L.; Heikal, A. A.; Kuebler, S. M.; Lee, I. Y. S.; McCord-Maughon, D.; Qin, J. Q.; Rockel, H.; Rumi, M.; Wu, X. L.; Marder, S. R.; Perry, J. W. Nature 1999, 398, 51-54.
doi:10.1038/17989

[115]. Kagotani, Y.; Miyajima, K.; Oohata, G.; Saito, S.; Ashida, M.; Edamatsu, K.; Itoh, T. J. Lumin. 2005, 112, 113-116.
doi:10.1016/j.jlumin.2004.09.007

[116]. Zipfel, W. R.; Williams, R. M.; Christie, R.; Nikitin, A. Y.; Hyman, B. T.; Webb, W. W. In National Academy of Sciences of the United States of America 2003, 100, 7075-7080.

[117]. Wang, C. K.; Macak, P.; Luo, Y.; Agren, H. J. Chem. Phys. 2001, 114, 9813-9820.

[118]. Albota, M.; Beljonne, D.; Bredas, J. L.; Ehrlich, J. E.; Fu, J. Y.; Heikal, A. A.; Hess, S. E.; Kogej, T.; Levin, M. D.; Marder, S. R.; McCord-Maughon, D.; Perry, J. W.; Rockel, H.; Rumi, M.; Subramaniam, C.; Webb, W. W.; Wu, X. L.; Xu, C. Science 1998, 281, 1653-1656.
doi:10.1126/science.281.5383.1653
PMid:9733507

[119]. Belfield, K. D.; Schafer, K. J.; Liu, Y. U.; Liu, J.; Ren, X. B.; Van Stryland, E. W. J. Phys. Org. Chem. 2000, 13, 837-849.
doi:10.1002/1099-1395(200012)13:12<837::AID-POC315>3.0.CO;2-5

[120]. Belfield, K. D.; Morales, A. R.; Kang, B. S.; Hales, J. M.; Hagan, D. J.; Van Stryland, E. W.; Chapela, V. M.; Percino, J. Chem. Mater. 2004, 16, 4634-4641.
doi:10.1021/cm049872g

[121]. Kim, S.; Wang, Z.; Hagan, D. J.; Van Stryland, E. W.; Kobyakov, A.; Lederer, F.; Assanto, G. IEEE J. Quantum Electron. 1998, 34, 666-672.
doi:10.1109/3.663446

[122]. Ventelon, L.; Moreaux, L.; Mertz, J.; Blanchard-Desce, M. Chem. Commun. 1999, 2055-2056.
doi:10.1039/a906182g

[123]. Kim, O. K.; Lee, K. S.; Woo, H. Y.; Kim, K. S.; He, G. S.; Swiatkiewicz, J.; Prasad, P. N. Chem. Mater. 2000, 12, 284-+.
doi:10.1021/cm990662r

[124]. Mikhailov, I. A.; Bondar, M. V.; Belfield, K. D.; Masunov, A. E. J. Phys. Chem. C 2009, 113, 20719-20724.
doi:10.1021/jp906875b

[125]. Suponitsky, K. Y.; Masunov, A. E.; Antipin, M. Y. Mendeleev Commun. 2009, 19, 311-313.
doi:10.1016/j.mencom.2009.11.005

[126]. Iordanov, T. D.; Davis, J. L.; Masunov, A. E.; Levenson, A.; Przhonska, O. V.; Kachkovski, A. D. Int. J. Quantum Chem 2009, 109, 3592-3601.
doi:10.1002/qua.22403

[127]. Suponitsky, K. Y.; Liao, Y.; Masunov, A. E. J. Phys. Chem. A 2009, 113, 10994-11001.
doi:10.1021/jp902293q
PMid:19772332

[128]. Toro, C.; De Boni, L.; Yao, S.; Ritchie, J. P.; Masunov, A. E.; Belfield, K. D.; Hernandez, F. E. J. Chem. Phys. 2009, 130, 6.

[129]. Belfield, K. D.; Bondar, M. V.; Hernandez, F. E.; Masunov, A. E.; Mikhailov, I. A.; Morales, A. R.; Przhonska, O. V.; Yao, S. J. Phys. Chem. C 2009, 113, 4706-4711.
doi:10.1021/jp8102832

[130]. Suponitsky, K. Y.; Masunov, A. E.; Antipin, M. Y. Mendeleev Commun. 2008, 18, 265-267.
doi:10.1016/j.mencom.2008.09.013

[131]. Suponitsky, K. Y.; Tafur, S.; Masunov, A. E. J. Chem. Phys. 2008, 129, 11.

[132]. Toro, C.; Thibert, A.; De Boni, L.; Masunov, A. E.; Hernandez, F. E. J. Phys. Chem. B 2008, 112, 929-937.
doi:10.1021/jp076026v
PMid:18163605

[133]. Kauffman, J. F.; Turner, J. M.; Alabugin, I. V.; Breiner, B.; Kovalenko, S. V.; Badaeva, E. A.; Masunov, A.; Tretiak, S. J. Phys. Chem. A 2006, 110, 241-251.
doi:10.1021/jp056127y
PMid:16392861

[134]. Masunov, A.; Tretiak, S.; Hong, J. W.; Liu, B.; Bazan, G. C. J. Chem. Phys. 2005, 122, 10.

[135]. Kobko, N.; Masunov, A.; Tretiak, S. Chem. Phys. Lett. 2004, 392, 444-451.
doi:10.1016/j.cplett.2004.05.078

[136]. Fabian, J.; Diaz, L. A.; Seifert, G.; Niehaus, T. J. Mol. Struct. 2002, 594, 41-53.

[137]. Hales, J. M.; Hagan, D. J.; Van Stryland, E. W.; Schafer, K. J.; Morales, A. R.; Belfield, K. D.; Pacher, P.; Kwon, O.; Zojer, E.; Bredas, J. L. J. Chem. Phys. 2004, 121, 3152-3160.

[138]. Tafur, S.; Mikhailov, I.; Belfield, K.; Masunov, A. Computational Science – LNCS 2009, 5545, 179-188.

[139]. Belfield, K. D.; Bondar, M. V.; Hales, J. M.; Morales, A. R.; Przhonska, O. V.; Schafer, K. J. J. Fluoresc. 2005, 15, 3-11.
doi:10.1007/s10895-005-0207-9
PMid:15711871

[140]. Belfield, K. D.; Yao, S.; Morales, A. R.; Hales, J. M.; Hagan, D. J.; Van Stryland, E. W.; Chapela, V. M.; Percino, J. Polym. Adv. Technol. 2005, 16, 150-155.
doi:10.1002/pat.550

[141]. Belfield, K. D.; Bondar, M. V.; Cohanoschi, I.; Hernandez, F. E.; Kachkovsky, O. D.; Przhonska, O. V.; Yao, S. Appl. Opt. 2005, 44, 7232-7238.
doi:10.1364/AO.44.007232
PMid:16320443

[142]. Schafer-Hales, K. J.; Belfield, K. D.; Yao, S.; Frederiksen, P. K.; Hales, J. M.; Kolattukudy, P. E. J. Biomed. Opt. 2005, 10.

[143]. Belfield, K. D.; Schafer, K. J. Chem. Mater. 2002, 14, 3656-3662.
doi:10.1021/cm010799t

[144]. Day, P. N.; Nguyen, K. A.; Pachter, R. J. Phys. Chem. B 2005, 109, 1803-1814.
doi:10.1021/jp047511i
PMid:16851162

[145]. Day, P. N.; Nguyen, K. A.; Pachter, R. J. Chem. Phys. 2006, 125, 094103(13).

[146]. Ohta, K.; Kamada, K. J. Chem. Phys. 2006, 124, 124303-11.

[147]. Cronstrand, P.; Jansik, B.; Jonsson, D.; Luo, Y.; Agren, H. J. Chem. Phys. 2004, 121, 9239-9246.

[148]. Masunov, A. M.; Tretiak, S. J. Phys. Chem. B 2004, 108, 899-907.
doi:10.1021/jp036513k

[149]. Martin, R. L. J. Chem. Phys. 2003, 118, 4775-4777.

[150]. Kokalj, A. Comput. Mater. Sci. 2003, 28, 155-168. Code available from http://www.xcrysden.org/
doi:10.1016/S0927-0256(03)00104-6

[151]. Belfield, K. D.; Bondar, M. V.; Hernandezt, F. E.; Przhonska, O. V.; Yao, S. J. Phys. Chem. B 2007, 111, 12723-12729.
doi:10.1021/jp074456f
PMid:17939706

[152]. Corredor, C. C. Ph. D. dissertation, University of Central Florida, 2007.

[153]. Gunnarsson, O.; Lundqvist, B. I. Phys. Rev. B: Condens. Matter 1976, 13, 4274-4298.
doi:10.1103/PhysRevB.13.4274

[154]. Savin, A.; Colonna, F.; Pollet, R. Int. J. Quantum Chem 2003, 93, 166-190.
doi:10.1002/qua.10551

[155]. Della Sala, F.; Gorling, A. J. Chem. Phys. 2003, 118, 10439-10454.

[156]. Moreira, I. D. R.; Costa, R.; Filatov, M.; Illas, F. J. Chem. Theory Comput. 2007, 3, 764-774.
doi:10.1021/ct7000057

[157]. Cai, Z. L.; Reimers, J. R. J. Chem. Phys. 2000, 112, 527-530.

[158]. Casida, M. E.; Ipatov, A. Abstr Pap Am Chem S 2006, 231, 1.

[159]. Cave, R. J.; Zhang, F.; Maitra, N. T.; Burke, K. Chem. Phys. Lett. 2004, 389, 39-42.
doi:10.1016/j.cplett.2004.03.051

[160]. Mikhailov, I. A.; Masunov, A. E. Computational Science - LNCS 2009, 5545, 169-178.

[161]. Slater, J. C. Adv. Quantum Chem. 1972; Vol. 6, p 1-92.
doi:10.1016/S0065-3276(08)60541-9

[162]. Noodleman, L.; Baerends, E. J. J. Am. Chem. Soc. 1984, 106, 2316-2327.
doi:10.1021/ja00320a017

[163]. Liberman, D. A. Phys. Rev. B: Condens. Matter 2000, 62, 6851-6853.
doi:10.1103/PhysRevB.62.6851

[164]. Hu, C. P.; Sugino, O. J. Chem. Phys. 2007, 126, 074112(10).

[165]. Zhao, Y.; Schultz, N. E.; Truhlar, D. G. J. Chem. Theory Comput. 2006, 2, 364-382.
doi:10.1021/ct0502763

[166]. Takahashi, O.; Sumita, M. J. Mol. Struct. 2005, 731, 173-175.

[167]. Schaftenaar, G.; Noordik, J. H. J. Comput. Aided Mol. Des. 2000, 14, 123-134.
doi:10.1023/A:1008193805436
PMid:10721501

[168]. Kuthirummal, N.; Rudakov, F. M.; Evans, C. L.; Weber, P. M. J. Chem. Phys. 2006, 125, 133307-8.

[169]. Lochbrunner, S.; Fuss, W.; Schmid, W. E.; Kompa, K. L. J. Phys. Chem. A 1998, 102, 9334-9344.
doi:10.1021/jp9809179

[170]. Woodward, R. B.; Hoffmann, R. J. Am. Chem. Soc. 1965, 87, 395-397.
doi:10.1021/ja01080a054

[171]. Longuet-Higgins, H. C.; Abrahamson, E. W. J. Am. Chem. Soc. 1965, 87, 2045-2046.
doi:10.1021/ja01087a033

[172]. Michl, J. Molecular Photochemistry 1972, 4, 287-314.

[173]. Celani, P.; Ottani, S.; Olivucci, M.; Bernardi, F.; Robb, M. A. J. Am. Chem. Soc. 1994, 116, 10141-10151.
doi:10.1021/ja00101a037

[174]. Celani, P.; Bernardi, F.; Robb, M. A.; Olivucci, M. J. Phys. Chem. 1996, 100, 19364-19366.
doi:10.1021/jp962206l

[175]. Garavelli, M.; Celani, P.; Fato, M.; Bearpark, M. J.; Smith, B. R.; Olivucci, M.; Robb, M. A. J. Phys. Chem. A 1997, 101, 2023-2032.
doi:10.1021/jp961554k

[176]. Tamura, H.; Nanbu, S.; Nakamura, H.; Ishida, T. Chem. Phys. Lett. 2005, 401, 487-491.
doi:10.1016/j.cplett.2004.11.111

[177]. Tamura, H.; Nanbu, S.; Ishida, T.; Nakamura, H. The Journal of Chemical Physics 2006, 124, 084313-13.
doi:10.1063/1.2171688
PMid:16512722

[178]. Guillaumont, D.; Kobayashi, T.; Kanda, K.; Miyasaka, H.; Uchida, K.; Kobatake, S.; Shibata, K.; Nakamura, S.; Irie, M. J. Phys. Chem. A 2002, 106, 7222-7227.
doi:10.1021/jp021060p

[179]. Lafond, C.; Lessarda, R. A.; Bolteb, M.; Petkov, I. In Part of the SPIE Conference on Photopolymer Device Physics, Chemistry, and Applications IV.; SPIE-The International Society for Optical Engineering, Vol. 3417: Québec, Canada, 1998, p 216-227.

[180]. Andrasik, S. J.; Belfield, K. D.; Bondar, M. V.; Hernandez, F. E.; Morales, A. R.; Przhonska, O. V.; Yao, S. ChemPhysChem 2007, 8, 399-404.
doi:10.1002/cphc.200600568
PMid:17226876

[181]. Adronov, A.; Frechet, J. M. J.; He, G. S.; Kim, K. S.; Chung, S. J.; Swiatkiewicz, J.; Prasad, P. N. Chem. Mater. 2000, 12, 2838-2841.
doi:10.1021/cm000586o

How to cite


Masunov, A.; Mikhailov, I. Eur. J. Chem. 2010, 1(2), 142-161. doi:10.5155/eurjchem.1.2.142-161.119
Masunov, A.; Mikhailov, I. Theory and computations of two-photon absorbing photochromic chromophores. Eur. J. Chem. 2010, 1(2), 142-161. doi:10.5155/eurjchem.1.2.142-161.119
Masunov, A., & Mikhailov, I. (2010). Theory and computations of two-photon absorbing photochromic chromophores. European Journal of Chemistry, 1(2), 142-161. doi:10.5155/eurjchem.1.2.142-161.119
Masunov, Artem, & Ivan A. Mikhailov. "Theory and computations of two-photon absorbing photochromic chromophores." European Journal of Chemistry [Online], 1.2 (2010): 142-161. Web. 30 May. 2020
Masunov, Artem, AND Mikhailov, Ivan. "Theory and computations of two-photon absorbing photochromic chromophores" European Journal of Chemistry [Online], Volume 1 Number 2 (15 June 2010)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item


DOI Link: https://doi.org/10.5155/eurjchem.1.2.142-161.119

| | | | | | |

| | | | | |

Save to Zotero Save to Mendeley



European Journal of Chemistry 2010, 1(2), 142-161 | doi: https://doi.org/10.5155/eurjchem.1.2.142-161.119 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c)




© Copyright 2010 - 2020  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2020 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.

hatay escort hatay escort corlu escort corum escort burgaz escort giresun escort aydin escort ordu escort erzincan escort hatay escort sivas escort rize escort edirne escort aksaray escort kibris escort isparta escort erzurum escort tekirdag escort usak escort urfa escort kastamonu escort kibris escort manisa escort giresun escort urfa escort nevsehir escort sivas escort yalova escort ordu escort hatay escort yalova escort amasya escort kayseri escort ordu escort maras escort canakkale escort yalova escort balikesir escort manisa escort urfa escort mugla escort trabzon escort bolu escort corlu escort diyarbakir escort isparta escort kutahya escort elazig escort erzurum escort sakarya escort afyon escort kutahya escort konya escort agri escort cesme escort sinop escort sivas escort konya escort kibris escort adapazari escort luleburgaz escort adana escort kibris escort rize escort sakarya escort alanya escort isparta escort burdur escort konya escort bitlis escort canakkale escort sivas escort amasya escort mus escort aydin escort van escort yalova escort kastamonu escort mardin escort bolu escort afyon escort sakarya escort isparta escort tokat escort trakya escort bayburt escort urfa escort mardin escort