European Journal of Chemistry 2017, 8(3), 229-239. doi:10.5155/eurjchem.8.3.229-239.1589

Preparation of novel compounds, characterization and studying experimentally and theoretically as inhibitors through thermodynamic and quantum chemistry


Mushtaq Jerri Meften (1,*)

(1) Education Directorate of Basrah, Ministry of Education, Basrah, 61001, Iraq
(*) Corresponding Author

Received: 23 May 2017, Accepted: 26 Jun 2017, Published: 30 Sep 2017

Abstract


To inhibit corrosion of the mild steel Q235 type in cooling water systems, two heterocyclic compounds were used, namely (3-(2-hydroxy-3-methoxyphenyl)-5-(4-nitrophenyl)-2-(4-((4-nitrophenyl)diazennyl)phenyl)dihydro-2H-pyrrolo[3,4-d]isoxazole-4,6(5H,6aH)-dione) (A1), and (5-(4-(1,3,5-dithiazinan-5-yl)phenyl)-5-pentyl-1,3,5-dithiazinan-5-ium (A2). They were experimentally evaluated by weight loss method at deference concentrations from 1×10-1 M to 1×10-5 M at 5 hours, and theoretically through thermodynamic functions, such as activation energy, standard free energy of adsorption, enthalpy of adsorption and entropy of adsorption. On the other hand, they were theoretically studied through quantum chemistry, such as quantum parameters including Highest occupied molecular orbital )HOMO( energy, Lowest unoccupied molecular orbital (LUMO) energy, energy gap, dipole moment, chemical potential, ΔEBack-donation, global hardness, global softness, global electrophilicity index, ionization potential, electro negativity and number of transferred electrons. The temperature effect on the corrosion rate has been studied at 25, 35, 45, 55 and 65 °C, and the adsorption for studied inhibitors on mild steel surface obeyed Langmuir adsorption isotherm. The methods of compounds preparation A1 and A2 are different from each other, A1 was prepared through several steps, and A2 through the domino reaction (by two step). The results indicate that the studied inhibitors exhibit good performance as an inhibitors for mild steel corrosion in cooling water systems, and inhibition efficiency increasing with increase inhibitors concentration and decreased with temperature rise.


Keywords


Mild steel Q235; Thermodynamic; Quantum chemistry; Corrosion inhibitors; Adsorption isotherm; Heterocyclic compounds

Full Text:

PDF /    /


DOI: 10.5155/eurjchem.8.3.229-239.1589

Article Metrics


This Abstract was viewed 471 times | PDF Article downloaded 126 times

References

[1]. Loutfy, H. M.; Elroby, S. K. Int. J. Ind. Chem. 2015, 6(3), 165-184.
https://doi.org/10.1007/s40090-015-0039-7

[2]. Hikmat, A. R. A. Engineering 2017, 9, 254-262.
https://doi.org/10.4236/eng.2017.93013

[3]. Al-Sabagh, A. M.; Notaila, M. N.; Ahmed, A. F.; Mohamed, A. M.; Abdelmonem, M. F. E.; Tahany, M. Egypt. J. Petroleum 2013, 22, 101-116.

[4]. Khaled, K. F.; Babic-Samardzija, K.; Hackerman, N. Electrochim. Acta 2005, 50, 2515-2520.
https://doi.org/10.1016/j.electacta.2004.10.079

[5]. Altsybiera, A. I.; Levin, S. Z.; Dorokhov, A. P., Third European Symposium of Corrosion Inhibitors, University of Ferrara, Ferrara, Italy, 1971.

[6]. Al-Sawaad, H. Z. M. J. Mater. Environ. Sci. 2011, 2(2), 128-147.

[7]. Granese, S. L. Corros. Sci. 1988, 44, 322-328.
https://doi.org/10.5006/1.3583944

[8]. Tadros, A. B.; Abdenaby, B. A. J. Electro. Chem. 1988, 246, 433-439.
https://doi.org/10.1016/0022-0728(88)80178-5

[9]. Bincy, J.; Abraham, J. Port. Electrochim. Acta 2011, 29(4), 253-271.
https://doi.org/10.4152/pea.201104253

[10]. Bentiss, F.; Lagrenee, M. J. Mater. Environ. Sci. 2011, 2(1), 13-17.

[11]. Elmsellem, H.; Karrouchi, K.; Aouniti, A.; Hammouti, B.; Radi, S.; Taoufik, J.; Ansar, M.; Dahmani, M.; Steli, H.; El Mahi, B. Der Pharma Chemica 2015, 7(10), 237-245.

[12]. Zarrok, H.; Oudda, H.; Zarrouk, A.; Salghi, R.; Hammouti, B.; Bouachrine, M. Der Pharma Chemica 2011, 3(6), 576-590.

[13]. Ehteram, A. N.; Aisha, H. Mater. Chem. Phys. 2008, 110, 145-154.
https://doi.org/10.1016/j.matchemphys.2008.01.028

[14]. Riggs, O. L. J.; Hurd, R. M. Corrosion 1967, 23, 252-259.
https://doi.org/10.5006/0010-9312-23.8.252

[15]. Durnie, W.; Marco, R. D.; Jefferson, A.; Kinsella, B. J. Electrochem. Soc. 1999, 146, 1751-1757.
https://doi.org/10.1149/1.1391837

[16]. Guo-Hao, C.; Jing-Mao, Z. Chem. Res. Chin. Univ. 2012, 28(4), 691-695.

[17]. Pavia, D. L.; Lampman, G. M.; Kriz, G. S. Introduction to Spectroscopy, 3rd edition, Thomson Learning Inc, USA, 2001.

[18]. Macomber, R. S., A Complete Introduction to Modern NMR Spectroscopy, John Wiley & Sons, Inc., Canada, 1998.

[19]. Pretsch, E.; Buhlmann, P.; Badertscher, M. Structure Determination of Organic Compounds, 4th Edition, Germany, 2009.

[20]. Noor, K. M. K.; Adibatul, H. F.; Karimah, K.; Shadatul, H. R.; Mohd, S. M. Malays. J. Analy. Sci. 2014, 18(1), 21-27.

[21]. Saratha, R.; Vasudha, V. G. J. Chem. 2010, 7(3), 677-684.

[22]. Gupta, N. K.; Quraishi, M. A.; Singh, P.; Srivastava, V.; Srivastava, K.; Verma, C.; Mukherjee, A. K. Anal. Bioanal. Electrochem. 2017, 9(2), 245-265.

[23]. Nwabanne, J. T.; Okafor, V. N. J. Emerging Trends Eng. Appl. Sci. 2011, 2(4), 619-625.

[24]. Ghazoui, A.; Saddik, R.; Benchat, N.; Guenbour, M.; Hammouti, B.; Al-Deyab, S. S.; Zarrouk, A. Int. J. Electrochem. Sci. 2012, 7, 7080-7097.

[25]. Obi-Egbedi, N. O.; Obot, I. B. Arab. J. Chem. 2013, 6, 211-223.
https://doi.org/10.1016/j.arabjc.2010.10.004

[26]. Xiang-Hong, L.; Xiao-Guang, X. Acta Phys. Chim. Sin. 2013, 29(10), 2221-2231.

[27]. Awe, F. E.; Idris, S. O.; Abdulwahab, M.; Oguzie, E. E. Mater. Chem. 2015, 1, 111-118.

[28]. Ayssar, N.; Abu-Abdoun, I.; Abdel-Rahman, I.; Al-Khayat, M. Int. J. Corros. 2010, ID: 460154, 1-9.

[29]. Yadav, M.; Kumar, S.; Purkait, T.; Olasunkanmi, L. O.; Bahadur, I.; Ebenso, E. E. J. Mol. Liq. 2016, 213, 122-138.
https://doi.org/10.1016/j.molliq.2015.11.018

[30]. Amin, M. A.; Abd El-Rehim, S. S.; El-Sherbini, E. E. F.; Bayoumi, R. S. Int. J. Electrochem. Sci. 2008, 3, 199-215.

[31]. Al-Juaid, S. S. J. Port. Electrochim. Acta 2007, 25, 363-373.
https://doi.org/10.4152/pea.200703363

[32]. El-Khattabi, O.; Zerga, B.; Sfaira, M.; Taleb, M.; Ebn Touhami, M.; Hammouti, B.; Herrag, L.; Mcharfi, M. Der Pharma Chemica 2012, 4(4), 1759-1768.

[33]. Sudhish, K. S.; Ashish, K. S.; Quraishi, M. A. Int. J. Electrochem. Sci. 2011, 6, 5779-5791.

[34]. Ashish, K. S.; Quraishi, M. A. Int. J. Electrochem. Sci. 2012, 7, 3222-3241.

[35]. Pournazari, S.; Moayed, M. H.; Rahimizadeh, M. J. Corros. Sci. 2013, 71, 20-31.
https://doi.org/10.1016/j.corsci.2013.01.019

[36]. Eddy, N. O.; Odoemelam, S. A.; Odiongenyi, A. O. Adv. Natural Appl. Sci. 2008, 2(1), 35-42.

[37]. Szyprowski, A. J. J. Corros. 2003, 59(1), 68-81.
https://doi.org/10.5006/1.3277538

[38]. Mobin, M.; Masroor, S. Int. J. Electrochem. Sci. 2012, 7, 6920-6940.

[39]. Dahmani, M.; Et-Touhami, A.; Al-Deyab, S. S.; Hammouti, B.; Bouyanzer, A. Int. J. Electrochem. Sci. 2010, 5, 1060-1069.

[40]. Fouda, A. S.; Al-Sarawy, A. A.; El-Katori, E. E. Desalination 2006, 201, 1-13.
https://doi.org/10.1016/j.desal.2006.03.519

[41]. Boukalah, M.; Hammouti, B.; Lagrenee, M.; Bentiss, F. Corros. Sci. 2006, 48, 2831-2837.
https://doi.org/10.1016/j.corsci.2005.08.019

[42]. Khadom, A. A.; Yaro, A. S.; Aitaie, A. S.; Kadum, A. A. H. Port. Electrochim. Acta 2009, 27(6), 699-712.
https://doi.org/10.4152/pea.200906699

[43]. Ebenso, E. E.; Alemu, H.; Umoren, S. A.; Obot, I. B. Int. J. Electrochem. Sci. 2008, 3, 1325-1339.

[44]. Guan, N.; Xueming, L.; Fei, L. Mater. Chem. Phys. 2004, 86, 59-68.
https://doi.org/10.1016/j.matchemphys.2004.01.041

[45]. Muthukrishnan, P.; Jeyaprabha, B.; Prakash, P. Int. J. Indus. Chem. 2014, 5(4), 1-11.

[46]. Saratha, R.; Priya, S. V.; Thilagavathy, P. Eur. J. Chem. 2009, 6(3), 785-789.

[47]. Fouda, A. S.; Elewady, G. Y.; Shalabi, K.; Habbouba, S. J. Mater. Environ. Sci. 2014, 5(3), 767-778.

[48]. Lahmidi, S.; Elyoussfi, A.; Dafali, A.; Elmsellem, H.; Sebbar, N. K.; El Ouasif, L.; Jilalat, A. E.; El-Mahi, B.; Essassi, E. M.; Abdel-Rahman, I.; Hammouti, B. J. Mater. Environ. Sci. 2017, 8 (1), 225-237.

[49]. Lutendo, C. M.; Mwadham, M. K.; Eno, E. E. J. Mol. Liq. 2016, 215, 763-779.
https://doi.org/10.1016/j.molliq.2015.12.095

[50]. Adardour, L.; Lgaz, H.; Salghi, R.; Larouj, M.; Jodeh, S.; Zougagh, M.; Hamed, O.; Taleb, M. Der Pharm. Lett. 2016, 8 (4), 173-185.

[51]. Adejoro, I. A; Ibeji, C. U; Akintayo, D. C. Chem. Sci. 2017, 8(1), 1-6.
https://doi.org/10.1039/C7SC90001E

[52]. Junaedi, S.; Al-Amiery, A. A.; Kadihum, A.; Kadhum, A. H.; Mohamad, Abu Bakar Int. J. Mol. Sci. 2013, 14, 11915-11928.
https://doi.org/10.3390/ijms140611915

[53]. Elazhary, I.; Ben, H.; Laamari, M. R.; El- Haddad, M.; Rafqah, S.; Anane, H.; Moubtassim, M. L. E.; Stiriba, S. E. J. Mater. Environ. Sci. 2016, 7(4), 1252-1266.

[54]. Udhayakalaa, P.; Rajendiranb, T. V.; Gunasekaranc, S. J. Adv. Sci. Res. 2012, 3(2), 71-77.

[55]. Raja, K.; Senthilkumar, A. N.; Tharini, K. Adv in Appl. Sci. Res. 2016, 7(2), 150-154.

[56]. Nirmala, B.; Manjula, P. Int. J. Inno. Sci. Res. 2016, 5(3), 3977-3985.

[57]. Paulin, M. N.; Drissa, S.; Albert, T.; Assemian, Y.; Henri, K. A.; Donourou, D. J. Soc. Ouest-Afr. Chim. 2010, 30, 49-58.

[58]. John, S.; Joseph, A. Mater. Chem. Phys. 2012, 133, 1083-1089.
https://doi.org/10.1016/j.matchemphys.2012.02.020

[59]. Junaedi, S.; Kadhum, A. H.; Al-Amiery, A. A.; Mohamad, A.; Takriff, M. S. Int. J. Electrochem. Sci. 2012, 7, 3543-3554.

[60]. Nnenna, W. O.; Jonathan, O. B.; Ekemini, B. I.; Abiodun, O. E. American J. Phys. Chem. 2015, 4, 1-9.

[61]. Cherrak, K.; Dafali, A.; Elyoussfi, A.; El Ouadi, Y.; Sebba, N. K; El Azzouzi, M.; Elmsellem, H.; Essassi, E. M.; Zarrouk, A. J. ater. Environ. Sci. 2017, 8(2), 636-647.

[62]. Qian, Z.; Tiantian, T.; Peilin, D.; Zhiyi, Z.; Fang, W. Metals 2017, 7(44), 1-11.

[63]. Nithya, P.; Rameshkumar, S.; Sankar, A. Chem. Sci. Rev. Lett. 2017, 6(21), 20-30.


How to cite


Meften, M. Eur. J. Chem. 2017, 8(3), 229-239. doi:10.5155/eurjchem.8.3.229-239.1589
Meften, M. Preparation of novel compounds, characterization and studying experimentally and theoretically as inhibitors through thermodynamic and quantum chemistry. Eur. J. Chem. 2017, 8(3), 229-239. doi:10.5155/eurjchem.8.3.229-239.1589
Meften, M. (2017). Preparation of novel compounds, characterization and studying experimentally and theoretically as inhibitors through thermodynamic and quantum chemistry. European Journal of Chemistry, 8(3), 229-239. doi:10.5155/eurjchem.8.3.229-239.1589
Meften, Mushtaq. "Preparation of novel compounds, characterization and studying experimentally and theoretically as inhibitors through thermodynamic and quantum chemistry." European Journal of Chemistry [Online], 8.3 (2017): 229-239. Web. 19 Nov. 2019
Meften, Mushtaq. "Preparation of novel compounds, characterization and studying experimentally and theoretically as inhibitors through thermodynamic and quantum chemistry" European Journal of Chemistry [Online], Volume 8 Number 3 (30 September 2017)

DOI Link: https://doi.org/10.5155/eurjchem.8.3.229-239.1589

Refbacks

  • There are currently no refbacks.




Copyright (c)




© Copyright 2019  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2019 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 4614 Lavista road, Tucker, GA, 30084, USA. Registered in USA.