European Journal of Chemistry

Thermodynamic and kinetic studies on interaction of some transition metal ions with tryptophan



Main Article Content

Ebrahim Ghiamati
Zahra Abazari

Abstract

Amino acid of tryptophan (Trp) was chosen as a drug. A systematic approach was made to study its interaction with some transition metal ions, and qualitatively and quantitatively examine the thermodynamic and kinetic phenomena on this model drug. To accomplish these tasks, the stability constants of Trp complexes with Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Pb(II) at temperatures of 25, 30, 35, and 40 °C were determined potentiometrically, utilizing modified Bjerrum’s method. Potentiometric titrations were carried out in water, and water:dioxane mixture (50:50, v:v). Our findings showed that the stability constants of the complexes increased as the dioxane content was raised or temperature was elevated. The negative values of ΔG° are indication of spontaneity of the processes. ΔH° values are positive, conveying the complex formation is an endothermic process and ΔS° values are positive contributing more to spontaneity, causing reaction favoring and disordering. The variations of natural logarithm of the stability constants versus 1/T are linear leading to evaluation of the stability constant of the complexes at any temperature. Moreover, kinetic study gave rise to estimation of rate constant and activation energy for each complex formation process. It was concluded that the order of increasing stability of the complexes is: kf Co(II)-Trp » kf Zn(II)-Trp < kf Pb(II)-Trp < kf Ni(II)-Trp < kf Cu(II)-Trp < kf Fe (III)- Trp. Furthermore the activation energy values for the aforementioned complexes in water-dioxane mixture obeyed the following trend Ea Zn(II)-trp < Ea Fe(III)-Trp < Ea Ni(II)-trp < Ea Co(II)-trp <Ea Cu(II)-trp <Ea Pb(II)-trp.


icon graph This Abstract was viewed 4048 times | icon graph Article PDF downloaded 605 times

How to Cite
(1)
Ghiamati, E.; Abazari, Z. Thermodynamic and Kinetic Studies on Interaction of Some Transition Metal Ions With Tryptophan. Eur. J. Chem. 2017, 8, 333-338.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Ruan, C.; Rodgers, M. T. J. Am. Chem. Soc. 2004, 126, 14600-14610.
https://doi.org/10.1021/ja048297e

[2]. Bjerrum, J. Metal-ammine formation in aqueous solution, J. P. Haase and Son, Copenhagen, 1941.

[3]. Calvin, M.; Wilson, K. W. J. Am. Chem. Soc. 1945, 67, 2003-2007.
https://doi.org/10.1021/ja01227a043

[4]. Irving, H. M.; Rossotti, H. S. J. Chem. Soc. 1954, 2904-2910.
https://doi.org/10.1039/jr9540002904

[5]. Perkins, D. J. Biochem. J. 1953, 55, 649-652.
https://doi.org/10.1042/bj0550649

[6]. Rosenberg, B.; Sigel, H.; Marcel, D.; Marzilli, L. G. (Ed.) Metal Ions in Biological Systems. Wiley-Interscience, New York, 1980.

[7]. Beck, M. T.; Nagypal, I., Chemistry of Complex Equilibria. Chapter 1, Ellis Horwood, New York, 1990.

[8]. Smith, R. M.; Motekaitis, R. J.; Martell, A. E. Inorg. Chim. Acta 1985, 103, 73-82.
https://doi.org/10.1016/S0020-1693(00)85215-9

[9]. Sovago, I.; Kiss, T.; Gergely, A. Pure Appl. Chem. 1993, 65, 1029-1080.
https://doi.org/10.1351/pac199365051029

[10]. Shoukry, M. M.; Shehata, M. R.; Mohamed, M. M. A. Mikrochim. Acta 1998, 129, 107-113.
https://doi.org/10.1007/BF01246857

[11]. Martell, A. E.; Huncock, R. D. Metal complexes in aqueous solutions. Plenum Press, 1996.
https://doi.org/10.1007/978-1-4899-1486-6

[12]. Martell, A. E.; Motekaitis, R. J. The determination and use of stability constants. Wiley-VCH, 1992.

[13]. Silva, A. M.; Merce, A. L. R.; Mangrich, A. S.; Souto, C. A. T.; Felcman, J. Polyhedron 2006, 25, 1319-1326.
https://doi.org/10.1016/j.poly.2005.09.016

[14]. Pettit, L. D. Pure Appl. Chem. 1984, 56, 247-292.
https://doi.org/10.1351/pac198456020247

[15]. Taha, M.; Khalil, M. M. Chem. Eng. Data 2005, 50, 157-163.
https://doi.org/10.1021/je049766v

[16]. Demirelli, H.; Koseoglu, F. J. Solution Chem. 2005, 34, 561-577.
https://doi.org/10.1007/s10953-005-5592-9

[17]. Podsiadly, H.; Karwecka, Z. Polyhedron 2009, 28, 1568-1572.
https://doi.org/10.1016/j.poly.2009.03.015

[18]. Sajadi, S. A. A. Natural Sci. 2010, 2, 85-90.
https://doi.org/10.4236/ns.2010.22013

[19]. Rani, R. S.; Rao, G. N. Bull. Chem. Soc. Ethiop. 2013, 27, 367-376.

[20]. Turkel, N. Bioinorg. Chem. Appl. 2015, Article ID 374782, 1-9.

[21]. Mohamed, A. A.; Bakr, M. F.; Abd El-Fattah, K. A. Thermochim. Acta 1990, 405, 235-253.
https://doi.org/10.1016/S0040-6031(03)00197-7

[22]. Masoud, M. S.; Abdel-Nabby, B. A. Thermochim. Acta 1988, 128, 75-80.
https://doi.org/10.1016/0040-6031(88)85353-X

[23]. Casale, A.; De Robertis, A.; De Stefano, C.; Gianguzza, A.; Patane, G.; Riango, C. Thermochim. Acta 1995, 255, 109-141.
https://doi.org/10.1016/0040-6031(94)02181-M

[24]. Fazary, A. E.; Mohamed, A. F.; Lebedeva, N. S. J. Chem. Thermodyn. 2006, 38, 1467-1473.
https://doi.org/10.1016/j.jct.2006.01.003

[25]. Ghiamati, E.; Oliaei, S. SOJ Biochem. 2017, 3, 6-12.

[26]. Ghiamati, E.; Jalaeian, E. Asian J. Phys. Chem. Sci. 2017, 2, 1-10.

[27]. Ghiamati, E.; Baniasadi, M.; Farrokhi, A. Chem. Sci. Int. J. 2017, 19, 1-15.
https://doi.org/10.9734/CSJI/2017/34611

[28]. Ghiamati, E.; Lashkari, M.; Hasheminia, M. Asian J. Chem. 2013, 25, 1361-1365.

[29]. Chaudhari, U. E. Orient. J. Chem. 2011, 27, 297-300.

[30]. Chaudhari, U. E. Int. J. Chem. Sci. 2009, 7, 1746-1750.

[31]. Rathore, M. M.; Parhate, V. V.; Rajput, P. R. Res. J. Chem. Sci. 2013, 3, 77-79.

[32]. Mohamed, A. A.; El-Dossoki, F. I.; Gumaa, H. A. J. Chem. Eng. Data 2010, 55, 673-678.
https://doi.org/10.1021/je900358n

[33]. Sahadev; Sharma, R. K.; Sindhwani, S. K.; Monatsh. Fur Chemie Chem. Monthly 1992, 123, 1099-1105.
https://doi.org/10.1007/BF00808272

[34]. Dogan, A.; Aslan, N.; Canel, E.; Kilic, E. J. Solution Chem. 2010, 39, 1589-1596.
https://doi.org/10.1007/s10953-010-9612-z

[35]. Tang, X.; Liu, Y.; Hou, H.; You, T. Talanta 2010, 80, 2182-2186.
https://doi.org/10.1016/j.talanta.2009.11.027

[36]. Chalmers, R. A. Chemistry of Complex equilibria: Van Nostrand Reinhold Company, London, UK, 1970.

[37]. Azab, H. A.; El-Nady, A. M.; El-Shatoury, S. A.; Hassan, A. Talanta 1994, 41, 1255-1259.
https://doi.org/10.1016/0039-9140(93)E0056-J

Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).