European Journal of Chemistry 2018, 9(3), 213-221 | doi: https://doi.org/10.5155/eurjchem.9.3.213-221.1713 | Get rights and content






  OPEN ACCESS | PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Application of Hammett equation to intramolecular hydrogen bond strength in para-substituted phenyl ring of trifluorobenzoylacetone and 1-aryl-1,3-diketone malonates


Vahidreza Darugar (1) orcid , Mohammad Vakili (2,*) orcid , Sayyed Faramarz Tayyari (3) orcid , Fadhil Suleiman Kamounah (4) orcid , Raheleh Afzali (5) orcid

(1) Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 91775-1436, Iran
(2) Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 91775-1436, Iran
(3) Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 91775-1436, Iran
(4) Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen, Denmark
(5) Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 91775-1436, Iran
(*) Corresponding Author

Received: 13 Apr 2018 | Revised: 29 May 2018 | Accepted: 02 Jun 2018 | Published: 30 Sep 2018 | Issue Date: September 2018

Abstract


The stability of two stable cis-enol forms in two categories of β-diketones, including para-substituted of trifluorobenzoylacetone (X-TFBA) and 1-aryl-1,3-diketone malonates (X-ADM, X: H, NO2, OCH3, CH3, OH, CF3, F, Cl, and NH2) has been obtained by different theoretical methods. According to our results, the energy difference between the mentioned stable chelated enol forms for the titled compounds is negligible. The theoretical equilibrium constants between the two stable cis-enol of the mentioned molecules are in excellent agreement with the reported experimental equilibrium constant. In addition, the effect of different substitutions on the intramolecular hydrogen bond strength has been evaluated. The correlation between Hammett para-substituent constants, σp. with the theoretical and experimental parameters related to the strength of hydrogen bond in p-X-TFBA and p-X-ADM molecules also investigated by means of density functional theory calculations. The electronic effects of para-substitutions on the intramolecular hydrogen bond strength were determined by NMR and IR data related to intramolecular hydrogen bond strength, geometry, natural bond orbital results, and topological parameters. These parameters were correlated with the Hammett para-substituent constants, σp. Good linear correlations between σp and the several parameters related to the hydrogen bond strength, in this study were obtained.


Keywords


AIM; DFT; NBO; Hammett LFER; Substituent effect; Intramolecular hydrogen bond

Full Text:

PDF /    /


DOI: 10.5155/eurjchem.9.3.213-221.1713

Links for Article


| | | | | | |

| | | | | | |

Related Articles




Article Metrics

This Abstract was viewed 2321 times | PDF Article downloaded 265 times

Funding information


The University of Ferdowsi, Project no: 42453, Mashhad, Iran.

Citations

/


[1]. Mohammad Suhail, Sofi Danish Mukhtar, Imran Ali, Ariba Ansari, Saiyam Arora
Theoretical DFT study of Cannizzaro reaction mechanism: A mini perspective
European Journal of Chemistry  11(2), 139, 2020
DOI: 10.5155/eurjchem.11.2.139-144.1975
/


References

[1]. Huggins M.; Thesis, University of California, 1919.

[2]. Fuster, F.; Grabowski, S. J. J. Phys. Chem. A 2011, 115, 10078-10086.
https://doi.org/10.1021/jp2056859

[3]. Lopes Jesus, A. J.; Redinha, J. S. J. Phys. Chem. A 2011, 115, 14069-14077.
https://doi.org/10.1021/jp206193a

[4]. Zahedi-Tabrizi, M.; Farahati, R. Comp. Theor. Chem. 2011, 977, 195-200.
https://doi.org/10.1016/j.comptc.2011.09.034

[5]. Bende, A. Theor. Chem. Acc. 2010, 125, 253-268.
https://doi.org/10.1007/s00214-009-0645-6

[6]. Vakili, M.; Tayyari, S. F.; Kanaani, A.; Nekoei, A. R.; Salemi, S.; Miremad, H.; Berenji, A. R.; Sammelson, R. E. J. Mol. Struct. 2011, 998, 99-109.
https://doi.org/10.1016/j.molstruc.2011.04.045

[7]. Vakili, M.; Nekoei, A. R.; Tayyari, S. F.; Kanaani, A.; Sanati, N. J. Mol. Struct. 2012, 1021, 102-111.
https://doi.org/10.1016/j.molstruc.2012.04.009

[8]. Berenji, A. R.; Tayyari, S. F.; Rahimizadeh, M.; Eshghi, H.; Vakili, M.; Shiri, A. Spectrochim. Acta A 2013, 102, 350-357.
https://doi.org/10.1016/j.saa.2012.10.042

[9]. Gilli, G.; Gilli, P. The nature of hydrogen bond, Oxford: Oxford University Press, 2009.
https://doi.org/10.1093/acprof:oso/9780199558964.001.0001

[10]. Gilli, G.; Belluci, F.; Ferreti, V.; Bertolasi, V. J. Am. Chem. Soc. 1989, 111, 1023-1028.
https://doi.org/10.1021/ja00185a035

[11]. Bertolasi, V.; Gilli, P.; Ferreti, V.; Gilli, G. J. Am. Chem. Soc. 1991, 113, 4917-4925.
https://doi.org/10.1021/ja00013a030

[12]. Gilli, P.; Bertolasi, V.; Ferreti, V.; Gilli, G. J. Am. Chem. Soc. 1994, 116, 909-915.
https://doi.org/10.1021/ja00082a011

[13]. Tayyari, S. F.; Najafi, A.; Emamian, S.; Afzali, R.; Wang, Y. A. J. Mol. Struct. 2008, 878, 10-21.
https://doi.org/10.1016/j.molstruc.2007.07.040

[14]. Zahedi-Tabrizi, M.; Tayyari, F.; Moosavi-Tekyeh, Z.; Jalali, A.; Tayyari, S. F. Spectrochim. Acta A 2006, 65, 387-396.
https://doi.org/10.1016/j.saa.2005.11.019

[15]. Tayyari, S. F.; Milani-Nejad, F.; Rahemi, H. Spectrochim. Acta A 2002, 58, 1669-1679.
https://doi.org/10.1016/S1386-1425(01)00619-9

[16]. Darugar, V. R.; Vakili, M.; Nekoei, A. R.; Tayyari, S. F.; Afzali. R. J. Mol. Struct. 2017, 1150, 427-437.
https://doi.org/10.1016/j.molstruc.2017.09.004

[17]. Schwarzenbach, R. P.; Gschwend, P. M.; Imboden, D. M. Environmental Organic Chemistry, 2nd Ed.; Wiley-Interscience Publishers, 2003, 8, 253-268.

[18]. Jaffe, H. H. Chem. Rev. 1953, 53(2), 191-261.
https://doi.org/10.1021/cr60165a003

[19]. Yingst, A.; Mcdaniel, D. H. J. Inorg. Nucl. Chem. 1966, 28, 2919-2929.
https://doi.org/10.1016/0022-1902(66)80018-0

[20]. May, W. R.; Jones, M. M. J. Inorg. Nucl. Chem. 1962, 24, 511-517.
https://doi.org/10.1016/0022-1902(62)80237-1

[21]. Jimenez-Cruz, F. J.; Olivares, H. R.; Gutierrez, J. L.; Fragoza, M. L. J. Mol. Struc. 2015, 1101, 162-169.
https://doi.org/10.1016/j.molstruc.2015.08.022

[22]. Jimenez-Cruz, F. J.; Mar, L. F.; Gutierrez, J. L. J. Mol. Struc. 2013, 1034, 43-50.
https://doi.org/10.1016/j.molstruc.2012.09.010

[23]. Darugar, V. R.; Vakili, M.; Tayyari, S. F.; Eshghi, H.; Afzali, R. Orient. J. Chem. 2017, 5, 2579-2590.
https://doi.org/10.13005/ojc/330555

[24]. Bader, R. W. F.; Atoms in Molecules, A Quantum Theory, Oxford University Press, New York, 1990.

[25]. Emamian, S. R.; Tayyari, S. F. J. Chem. Sci. 2013, 125, 939-948.
https://doi.org/10.1007/s12039-013-0466-y

[26]. Frisch, M. J.; Trucks G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; A. J. Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc.; Gaussian 09, Revision A. 02, Wallingford CT, 2009.

[27]. Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.
https://doi.org/10.1063/1.464913

[28]. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789.
https://doi.org/10.1103/PhysRevB.37.785

[29]. Muller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618-622.
https://doi.org/10.1103/PhysRev.46.618

[30]. Frisch, M. J.; Head-Gordon, M.; Pople, J. A. Chem. Phys. Lett. 1990, 166, 275-280.
https://doi.org/10.1016/0009-2614(90)80029-D

[31]. Tao, J. M.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. Phys. Rev. Lett. 2003, 91, 146401-146404.
https://doi.org/10.1103/PhysRevLett.91.146401

[32]. Tomasi, J.; Persico, M. Chem. Rev. 1994, 94, 2027-2094.
https://doi.org/10.1021/cr00031a013

[33]. Biegler-König, F.; Schönbohm, J. J. Comput. Chem. 2002, 23, 1489-1494.
https://doi.org/10.1002/jcc.10085

[34]. Bader, R. F. W.; Tang, Y. H.; Tal, Y.; Biegler-König, F. W. J. Am. Chem. Soc. 1982, 104, 946-952.
https://doi.org/10.1021/ja00368a004

[35]. Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.; Weinhold, F. Theor. Chem. Inst.; University of Wisconsin, Madison, WI, 2001.

[36]. McWeeny, R. Phys. Rev. 1962, 126, 1028-1034.
https://doi.org/10.1103/PhysRev.126.1028

[37]. London, F. J. Phys. Radium 1937, 8, 397-409.
https://doi.org/10.1051/jphysrad:01937008010039700

[38]. Afzali, R.; Vakili, M.; Tayyari, S. F.; Eshghi, H.; Nekoei, A. R. Spectrochim. Acta A 2014, 117, 284-298.
https://doi.org/10.1016/j.saa.2013.08.032

[39]. Tayyari, S. F.; Vakili, M.; Nekoei, A. R.; Rahemi, H.; Wang, Y. A. Spectrochim. Acta A 2007, 66, 626-636.
https://doi.org/10.1016/j.saa.2006.04.002

[40]. Sloop, J. C.; Bumgardner, C. L.; Washington, G.; Loehle, W. D.; Sankar, S. S.; Lewis, A. B. J. Fluorine Chem. 2006, 127, 780-786.
https://doi.org/10.1016/j.jfluchem.2006.02.012

[41]. Lopes, A. J.; Redinha, J. S. J. Phys. Chem. A 2011, 115, 14069-14077.
https://doi.org/10.1021/jp110705c

[42]. Espinosa, E.; Molins, E.; Lecomte, C. Chem. Phys. Lett. 1998, 285, 170-173.
https://doi.org/10.1016/S0009-2614(98)00036-0

[43]. Afzali, R.; Vakili, M.; Nekoei, A. R.; Tayyari, S. F. J. Mol. Struct. 2014, 1076, 262-271.
https://doi.org/10.1016/j.molstruc.2014.07.059

[44]. Vakili, M.; Tayyari, S. F.; Nekoei, A. R.; Miremad, H.; Salemi, S.; Sammelson, R. E. J. Mol. Struct. 2010, 970, 160-170
https://doi.org/10.1016/j.molstruc.2010.02.072

[45]. Tayyari, S. F.; Emampour, J. S.; Vakili, M.; Nekoei, A. R.; Eshghi, H.; Salemi, S.; Hassanpour, M. J. Mol. Struct. 2006, 794, 204-214.
https://doi.org/10.1016/j.molstruc.2006.02.011

[46]. Cotman, A. E.; Cahard, D.; Mohar, B. Angew. Chem. 2016, 55, 5294-5298.
https://doi.org/10.1002/anie.201600812

[47]. Buttner, S.; Riahi, A.; Hussain, I.; Yawer, M. A.; Lubbe, M.; Villinger, A.; Reinke, H.; Fischer, C.; Langer, P. Tetrahedron 2009, 65, 2124-2135.
https://doi.org/10.1016/j.tet.2008.12.076

[48]. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899-926.
https://doi.org/10.1021/cr00088a005

[49]. Wiberg, K. W. Tetrahedron 1968, 24, 1083-1096.
https://doi.org/10.1016/0040-4020(68)88057-3

[50]. Raj, R. K.; Gunasekaran, S.; Gnanasambandan, T.; Seshadri, S. Spectrochim. Acta A 2015, 139, 505-514.
https://doi.org/10.1016/j.saa.2014.12.024

[51]. Kosar, B.; Albayrak, C. Spectrochim. Acta A 2011, 87, 160-167.
https://doi.org/10.1016/j.saa.2010.09.016

[52]. Kanaani, A.; Ajloo, D.; Kiyani, H.; Ghasemian, H.; Vakili, M.; Feizabadi, M. Mol. Phys. 2016, 114, 2081-2097.
https://doi.org/10.1080/00268976.2016.1178822

[53]. Kanaani, A.; Ajloo, D.; Kiyani, H.; Ghasemian, H.; Vakili, M.; Mosallanezhad, A. Struct. Chem. 2015, 26, 1095-1113.
https://doi.org/10.1007/s11224-015-0571-2

[54]. Akman, F. Can. J. Phys. 2016, 94, 583-593.
https://doi.org/10.1139/cjp-2016-0041

[55]. Esmaeili, B.; Beyramabadi, S. A.; Sanavi-khoshnood, R.; Morsali, A. Orient. J. Chem. 2015, 31(4), 2129-2135.
https://doi.org/10.13005/ojc/310434

Supporting information


The Supplementary Material for this article can be found online at: Supplementary files

How to cite


Darugar, V.; Vakili, M.; Tayyari, S.; Kamounah, F.; Afzali, R. Eur. J. Chem. 2018, 9(3), 213-221. doi:10.5155/eurjchem.9.3.213-221.1713
Darugar, V.; Vakili, M.; Tayyari, S.; Kamounah, F.; Afzali, R. Application of Hammett equation to intramolecular hydrogen bond strength in para-substituted phenyl ring of trifluorobenzoylacetone and 1-aryl-1,3-diketone malonates. Eur. J. Chem. 2018, 9(3), 213-221. doi:10.5155/eurjchem.9.3.213-221.1713
Darugar, V., Vakili, M., Tayyari, S., Kamounah, F., & Afzali, R. (2018). Application of Hammett equation to intramolecular hydrogen bond strength in para-substituted phenyl ring of trifluorobenzoylacetone and 1-aryl-1,3-diketone malonates. European Journal of Chemistry, 9(3), 213-221. doi:10.5155/eurjchem.9.3.213-221.1713
Darugar, Vahidreza, Mohammad Vakili, Sayyed Faramarz Tayyari, Fadhil Suleiman Kamounah, & Raheleh Afzali. "Application of Hammett equation to intramolecular hydrogen bond strength in para-substituted phenyl ring of trifluorobenzoylacetone and 1-aryl-1,3-diketone malonates." European Journal of Chemistry [Online], 9.3 (2018): 213-221. Web. 22 Oct. 2020
Darugar, Vahidreza, Vakili, Mohammad, Tayyari, Sayyed, Kamounah, Fadhil, AND Afzali, Raheleh. "Application of Hammett equation to intramolecular hydrogen bond strength in para-substituted phenyl ring of trifluorobenzoylacetone and 1-aryl-1,3-diketone malonates" European Journal of Chemistry [Online], Volume 9 Number 3 (30 September 2018)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item


DOI Link: https://doi.org/10.5155/eurjchem.9.3.213-221.1713

| | | | | | |

| | | | | |

Save to Zotero Save to Mendeley



European Journal of Chemistry 2018, 9(3), 213-221 | doi: https://doi.org/10.5155/eurjchem.9.3.213-221.1713 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2018 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).


© Copyright 2010 - 2020  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2020 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.