European Journal of Chemistry 2019, 10(4), 336-344 | doi: https://doi.org/10.5155/eurjchem.10.4.336-344.1852 | Get rights and content






  OPEN ACCESS | PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Indirect detection of 5-hydroxytryptamine and tyramine by using tris(2,2’-bipyridyl)ruthenium-graphene modified electrode coupled with capillary electrophoresis


Zi Wei Zhao (1) orcid , Fan Lin Li (2) orcid , Ming Su (3,*) orcid

(1) Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, P. R. China
(2) Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, P. R. China
(3) Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, P. R. China
(*) Corresponding Author

Received: 22 Mar 2019 | Revised: 15 May 2019 | Accepted: 01 Sep 2019 | Published: 31 Dec 2019 | Issue Date: December 2019

Abstract


A highly sensitive and stable solid-state electrochemiluminescence (ECL) sensor was developed based on tris(2,2’-bipyridyl)ruthenium(II) (Ru(bpy)32+) integrating with 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) functionalized graphene. Ru(bpy)32+ is incorporated with the ABTS functionalized graphene based on not only the π-π stacking but also electrostatic interactions. Coupled with capillary electrophoresis (CE), this ECL sensor was used to detect tyramine and 5-hydroxytryptamine (5-HT) based on their quenching effects for the Ru(bpy)32+/tripropylamine (TPA) system. The quenching mechanism was illustrated and the conditions for CE separation and ECL detection were optimized. Based on an S/N = 3, the limit of detection (LOD) for tyramine and 5-HT were 0.1 μM and 0.02 μM, respectively. The applicability of the proposed method was further illustrated in the determination of tyramine and 5-HT in human plasma samples from small intestine carcinoid patients.


Keywords


Graphene; Tyramine; 5-Hydroxytryptamine; Electrochemical sensor; Capillary electrophoresis; Electrochemiluminescence

Full Text:

PDF /    /


DOI: 10.5155/eurjchem.10.4.336-344.1852

Links for Article


| | | | |

| | | | | | |

Related Articles




Article Metrics

This Abstract was viewed 60 times | PDF Article downloaded 16 times

Funding information


The project is supported by Natural Science Foundation of Hebei province (B2015201193). Science and Technology Research Project of Hebei Higher Education (QN2016087), Science and Technology Research Program of Baoding City (16ZF190).

References

[1]. Richter, M. M. Chem. Rev. 2004, 104, 3003-3036.
https://doi.org/10.1021/cr020373d

[2]. Richter, M. M.; in: Bard (Eds.), A. J. Electrogenerated Chemilumi-nescence, Marcel Dekker, New York, 2004, 306-308.

[3]. Fahnrich, K. A.; Pravda, M.; Guilbault, G. G. Talanta 2001, 54, 531-559.
https://doi.org/10.1016/S0039-9140(01)00312-5

[4]. Tokel, N. E.; Bard, A. J. J. Am. Chem. Soc. 1972, 94, 2862-2863.
https://doi.org/10.1021/ja00763a056

[5]. Deiss, F.; LaFratta, C. N.; Symer, M.; Blicharz, T. M.; Sojic, N.; Walt, D. R. J. Am. Chem. Soc. 2009, 131, 6088-6089.
https://doi.org/10.1021/ja901876z

[6]. Van Ingen, H. E.; Chan, D. W.; Hubl, W.; Miyachi, H.; Molina, R.; Pitzel, L.; Ruibal, A.; Rymer, J. C.; Domke, I. Clin. Chem. 1998, 44, 2530-2536.

[7]. Tao, Y. W.; Zhang, X. J.; Wang, J. W.; Wang, X. X.; Yang, N. J. J. Electroanal. Chem. 2012, 674, 65-70.
https://doi.org/10.1016/j.jelechem.2012.03.009

[8]. Liu, Y. M.; Cao, J. T.; Zheng, Y. L.; Chen, Y. H. J. Sep. Sci. 2008, 31, 2463-2469.
https://doi.org/10.1002/jssc.200800034

[9]. Pittman, T. L.; Thomson, B. W. J. Anal. Chim. Acta. 2009, 632, 197-202.
https://doi.org/10.1016/j.aca.2008.11.032

[10]. Rivera, V. R.; Gamez, F. J.; Keener, W. K.; White, J. A.; Poli, M. A. Anal. Biochem. 2006, 353, 248-256.
https://doi.org/10.1016/j.ab.2006.02.030

[11]. Zhang, J.; Qi, H. L.; Li, Y.; Yang, J.; Gao, Q.; Zhang, C. X. Anal. Chem. 2008, 80, 2888-2894.
https://doi.org/10.1021/ac701995g

[12]. Su, M.; Wei, W.; Liu, S. Q. Anal. Chim. Acta. 2011, 704, 16-32.
https://doi.org/10.1016/j.aca.2011.07.016

[13]. Chen, Y. T.; Lin, Z. Y.; Chen, J. H.; Sun, J. J.; Zhang, L.; Chen, G. N. J. Chromatogr. A. 2007, 1172, 84-91.
https://doi.org/10.1016/j.chroma.2007.09.049

[14]. Wei, H.; Wang, E. K. Trends Anal. Chem. 2008, 27, 447-459.
https://doi.org/10.1016/j.trac.2008.02.009

[15]. Xu, Y. H.; Lou, B. H.; Lv, Z. Z.; Zhou, Z. X.; Zhang, L. B.; Wang, E. K. Anal. Chim. Acta. 2013, 763, 20-27.
https://doi.org/10.1016/j.aca.2012.12.009

[16]. Su, M.; Liu, S. Q. Anal. Biochem. 2010, 402, 1-12.
https://doi.org/10.1016/j.ab.2010.03.027

[17]. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science. 2004, 306, 666-669.

[18]. Allen, M. J.; Tung, V. C.; Kaner, R. B. Chem. Rev. 2010, 110, 132-45.
https://doi.org/10.1021/cr900070d

[19]. Loh, K. P.; Bao, Q.; Eda, G.; Chhowalla, M. Nat. Chem. 2010, 2, 1015-1024.
https://doi.org/10.1038/nchem.907

[20]. Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Nat. Nanotechnol. 2008, 3, 101-105.
https://doi.org/10.1038/nnano.2007.451

[21]. Wu, X. M.; Hu, Y. J.; Jin, J.; Zhou, N. L.; Wu, P.; Zhang, H.; Cai, C. X. Anal. Chem. 2010, 82, 3588-3596.
https://doi.org/10.1021/ac100621r

[22]. Kovtyukhova, N. I.; Ollivier, P. J.; Martin, B. R.; Mallouk, T. E.; Chizhik, S. A.; Buzaneva, E. V.; Gorchinskiy, A. D. Chem. Mater. 1999, 11, 771-778.
https://doi.org/10.1021/cm981085u

[23]. William, S.; Hummers, J. R.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339.
https://doi.org/10.1021/ja01539a017

[24]. Wei, W.; Li, D. F.; Pan, X. H.; Liu, S. Q. Analyst. 2012, 137, 2101-2106.
https://doi.org/10.1039/c2an35059a

[25]. Su, M.; Wei, M.; Zhou, Z. X.; Liu, S. Q. Biomed. Chromatogr. 2013, 27, 946-952.
https://doi.org/10.1002/bmc.2890

[26]. Wang, D. D.; Li, F. L.; Su, M.; Sun, H. W. J. Appl. Pharm. Sci. 2018, 8, 007-014.

[27]. Zhou, M.; Zhai, Y.; Dong, S. J. Anal. Chem. 2009, 81, 5603-5613.
https://doi.org/10.1021/ac900136z

[28]. Zhou, M.; Wang, Y.; Zhai, Y.; Zhai, J. F.; Ren, W.; Wang, F.; Dong, S. J. Chem. Eur. J. 2009, 15, 6116-6120.
https://doi.org/10.1002/chem.200900596

[29]. Schniepp, H. C.; Li, J. L.; McAllister, M. J.; Sai, H.; Margarita, H. A.; Adamson, D. H.; Prud'homme, R. K.; Car, R.; Saville, D. A.; Aksay, I. A. J. Phys. Chem. B. 2006, 110, 8535-8539.
https://doi.org/10.1021/jp060936f

[30]. Rillema, D. P.; Jones, D. S.; Levy, H. A. J. Chem. Soc. Chem. Commun. 1979, 19, 849-851.
https://doi.org/10.1039/C39790000849

[31]. Karnicka, K.; Miecznikowski, K.; Kowalewska, B.; Skunik, M.; Opallo, M.; Rogalski, J.; Schuhmann, W.; Kulesza, P. J. Anal. Chem. 2008, 80, 7643-7648.
https://doi.org/10.1021/ac8011297

[32]. Miao, W. J.; Choi, J. P.; Bard, A. J. J. Am. Chem. Soc. 2002, 124, 14478-14485.
https://doi.org/10.1021/ja027532v

[33]. Chi, Y. W.; Dong, Y. Q.; Chen, G. N. Anal. Chem. 2007, 79, 4521-4528.
https://doi.org/10.1021/ac0702443

[34]. Heitele, H.; Pöllinger, F.; Kremer, K.; Michel-Beyerle, M. E. Chem. Phys. Lett. 1992, 188, 270-278.
https://doi.org/10.1016/0009-2614(92)90021-E

[35]. Berthon, R. A.; Colbran, S. B.; Moran, G. M. Inorg. Chim. Acta. 1993, 204, 3-7.
https://doi.org/10.1016/S0020-1693(00)88106-2

[36]. Zheng, H. Z.; Zu, B. J. Phys. Chem. B 2005, 109, 16047-16051.
https://doi.org/10.1021/jp052843o

[37]. Zhu, Y. H.; Zhao, B. Y.; Li, L. S. Anal. Sci. 2009, 25, 785-788.
https://doi.org/10.2116/analsci.25.785

[38]. Zorzi, M.; Pastore, P.; Magno, F. A Anal. Chem. 2000, 72, 4934-4939.
https://doi.org/10.1021/ac991222m

[39]. Creutz, C.; Sutin, N. Proc. Nat. Acad. Sci. 1975, 72, 2858-2862.
https://doi.org/10.1073/pnas.72.8.2858

Supporting information


The Supplementary Material for this article can be found online at: Supplementary files

How to cite


Zhao, Z.; Li, F.; Su, M. Eur. J. Chem. 2019, 10(4), 336-344. doi:10.5155/eurjchem.10.4.336-344.1852
Zhao, Z.; Li, F.; Su, M. Indirect detection of 5-hydroxytryptamine and tyramine by using tris(2,2’-bipyridyl)ruthenium-graphene modified electrode coupled with capillary electrophoresis. Eur. J. Chem. 2019, 10(4), 336-344. doi:10.5155/eurjchem.10.4.336-344.1852
Zhao, Z., Li, F., & Su, M. (2019). Indirect detection of 5-hydroxytryptamine and tyramine by using tris(2,2’-bipyridyl)ruthenium-graphene modified electrode coupled with capillary electrophoresis. European Journal of Chemistry, 10(4), 336-344. doi:10.5155/eurjchem.10.4.336-344.1852
Zhao, Zi, Fan Lin Li, & Ming Su. "Indirect detection of 5-hydroxytryptamine and tyramine by using tris(2,2’-bipyridyl)ruthenium-graphene modified electrode coupled with capillary electrophoresis." European Journal of Chemistry [Online], 10.4 (2019): 336-344. Web. 20 Jan. 2020
Zhao, Zi, Li, Fan, AND Su, Ming. "Indirect detection of 5-hydroxytryptamine and tyramine by using tris(2,2’-bipyridyl)ruthenium-graphene modified electrode coupled with capillary electrophoresis" European Journal of Chemistry [Online], Volume 10 Number 4 (31 December 2019)

DOI Link: https://doi.org/10.5155/eurjchem.10.4.336-344.1852

| | | | |

| | | | | |

Save to Zotero Save to Mendeley

European Journal of Chemistry 2019, 10(4), 336-344 | doi: https://doi.org/10.5155/eurjchem.10.4.336-344.1852 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2019 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).


© Copyright 2019  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2019 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 4614 Lavista road, Tucker, GA, 30084, USA. Registered in USA.