European Journal of Chemistry

Indirect detection of 5-hydroxytryptamine and tyramine by using tris(2,2’-bipyridyl)ruthenium-graphene modified electrode coupled with capillary electrophoresis

Crossmark


Main Article Content

Zi Wei Zhao
Fan Lin Li
Ming Su

Abstract

A highly sensitive and stable solid-state electrochemiluminescence (ECL) sensor was developed based on tris(2,2’-bipyridyl)ruthenium(II) (Ru(bpy)32+) integrating with 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) functionalized graphene. Ru(bpy)32+ is incorporated with the ABTS functionalized graphene based on not only the π-π stacking but also electrostatic interactions. Coupled with capillary electrophoresis (CE), this ECL sensor was used to detect tyramine and 5-hydroxytryptamine (5-HT) based on their quenching effects for the Ru(bpy)32+/tripropylamine (TPA) system. The quenching mechanism was illustrated and the conditions for CE separation and ECL detection were optimized. Based on an S/N = 3, the limit of detection (LOD) for tyramine and 5-HT were 0.1 μM and 0.02 μM, respectively. The applicability of the proposed method was further illustrated in the determination of tyramine and 5-HT in human plasma samples from small intestine carcinoid patients.


icon graph This Abstract was viewed 1021 times | icon graph Article PDF downloaded 464 times icon graph Article SUPPLEMENTARY FILE downloaded 0 times

How to Cite
(1)
Zhao, Z. W.; Li, F. L.; Su, M. Indirect Detection of 5-Hydroxytryptamine and Tyramine by Using tris(2,2’-bipyridyl)ruthenium-Graphene Modified Electrode Coupled With Capillary Electrophoresis. Eur. J. Chem. 2019, 10, 336-344.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Richter, M. M. Chem. Rev. 2004, 104, 3003-3036.
https://doi.org/10.1021/cr020373d

[2]. Richter, M. M.; in: Bard (Eds.), A. J. Electrogenerated Chemilumi-nescence, Marcel Dekker, New York, 2004, 306-308.

[3]. Fahnrich, K. A.; Pravda, M.; Guilbault, G. G. Talanta 2001, 54, 531-559.
https://doi.org/10.1016/S0039-9140(01)00312-5

[4]. Tokel, N. E.; Bard, A. J. J. Am. Chem. Soc. 1972, 94, 2862-2863.
https://doi.org/10.1021/ja00763a056

[5]. Deiss, F.; LaFratta, C. N.; Symer, M.; Blicharz, T. M.; Sojic, N.; Walt, D. R. J. Am. Chem. Soc. 2009, 131, 6088-6089.
https://doi.org/10.1021/ja901876z

[6]. Van Ingen, H. E.; Chan, D. W.; Hubl, W.; Miyachi, H.; Molina, R.; Pitzel, L.; Ruibal, A.; Rymer, J. C.; Domke, I. Clin. Chem. 1998, 44, 2530-2536.

[7]. Tao, Y. W.; Zhang, X. J.; Wang, J. W.; Wang, X. X.; Yang, N. J. J. Electroanal. Chem. 2012, 674, 65-70.
https://doi.org/10.1016/j.jelechem.2012.03.009

[8]. Liu, Y. M.; Cao, J. T.; Zheng, Y. L.; Chen, Y. H. J. Sep. Sci. 2008, 31, 2463-2469.
https://doi.org/10.1002/jssc.200800034

[9]. Pittman, T. L.; Thomson, B. W. J. Anal. Chim. Acta. 2009, 632, 197-202.
https://doi.org/10.1016/j.aca.2008.11.032

[10]. Rivera, V. R.; Gamez, F. J.; Keener, W. K.; White, J. A.; Poli, M. A. Anal. Biochem. 2006, 353, 248-256.
https://doi.org/10.1016/j.ab.2006.02.030

[11]. Zhang, J.; Qi, H. L.; Li, Y.; Yang, J.; Gao, Q.; Zhang, C. X. Anal. Chem. 2008, 80, 2888-2894.
https://doi.org/10.1021/ac701995g

[12]. Su, M.; Wei, W.; Liu, S. Q. Anal. Chim. Acta. 2011, 704, 16-32.
https://doi.org/10.1016/j.aca.2011.07.016

[13]. Chen, Y. T.; Lin, Z. Y.; Chen, J. H.; Sun, J. J.; Zhang, L.; Chen, G. N. J. Chromatogr. A. 2007, 1172, 84-91.
https://doi.org/10.1016/j.chroma.2007.09.049

[14]. Wei, H.; Wang, E. K. Trends Anal. Chem. 2008, 27, 447-459.
https://doi.org/10.1016/j.trac.2008.02.009

[15]. Xu, Y. H.; Lou, B. H.; Lv, Z. Z.; Zhou, Z. X.; Zhang, L. B.; Wang, E. K. Anal. Chim. Acta. 2013, 763, 20-27.
https://doi.org/10.1016/j.aca.2012.12.009

[16]. Su, M.; Liu, S. Q. Anal. Biochem. 2010, 402, 1-12.
https://doi.org/10.1016/j.ab.2010.03.027

[17]. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science. 2004, 306, 666-669.

[18]. Allen, M. J.; Tung, V. C.; Kaner, R. B. Chem. Rev. 2010, 110, 132-45.
https://doi.org/10.1021/cr900070d

[19]. Loh, K. P.; Bao, Q.; Eda, G.; Chhowalla, M. Nat. Chem. 2010, 2, 1015-1024.
https://doi.org/10.1038/nchem.907

[20]. Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Nat. Nanotechnol. 2008, 3, 101-105.
https://doi.org/10.1038/nnano.2007.451

[21]. Wu, X. M.; Hu, Y. J.; Jin, J.; Zhou, N. L.; Wu, P.; Zhang, H.; Cai, C. X. Anal. Chem. 2010, 82, 3588-3596.
https://doi.org/10.1021/ac100621r

[22]. Kovtyukhova, N. I.; Ollivier, P. J.; Martin, B. R.; Mallouk, T. E.; Chizhik, S. A.; Buzaneva, E. V.; Gorchinskiy, A. D. Chem. Mater. 1999, 11, 771-778.
https://doi.org/10.1021/cm981085u

[23]. William, S.; Hummers, J. R.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339.
https://doi.org/10.1021/ja01539a017

[24]. Wei, W.; Li, D. F.; Pan, X. H.; Liu, S. Q. Analyst. 2012, 137, 2101-2106.
https://doi.org/10.1039/c2an35059a

[25]. Su, M.; Wei, M.; Zhou, Z. X.; Liu, S. Q. Biomed. Chromatogr. 2013, 27, 946-952.
https://doi.org/10.1002/bmc.2890

[26]. Wang, D. D.; Li, F. L.; Su, M.; Sun, H. W. J. Appl. Pharm. Sci. 2018, 8, 007-014.

[27]. Zhou, M.; Zhai, Y.; Dong, S. J. Anal. Chem. 2009, 81, 5603-5613.
https://doi.org/10.1021/ac900136z

[28]. Zhou, M.; Wang, Y.; Zhai, Y.; Zhai, J. F.; Ren, W.; Wang, F.; Dong, S. J. Chem. Eur. J. 2009, 15, 6116-6120.
https://doi.org/10.1002/chem.200900596

[29]. Schniepp, H. C.; Li, J. L.; McAllister, M. J.; Sai, H.; Margarita, H. A.; Adamson, D. H.; Prud'homme, R. K.; Car, R.; Saville, D. A.; Aksay, I. A. J. Phys. Chem. B. 2006, 110, 8535-8539.
https://doi.org/10.1021/jp060936f

[30]. Rillema, D. P.; Jones, D. S.; Levy, H. A. J. Chem. Soc. Chem. Commun. 1979, 19, 849-851.
https://doi.org/10.1039/C39790000849

[31]. Karnicka, K.; Miecznikowski, K.; Kowalewska, B.; Skunik, M.; Opallo, M.; Rogalski, J.; Schuhmann, W.; Kulesza, P. J. Anal. Chem. 2008, 80, 7643-7648.
https://doi.org/10.1021/ac8011297

[32]. Miao, W. J.; Choi, J. P.; Bard, A. J. J. Am. Chem. Soc. 2002, 124, 14478-14485.
https://doi.org/10.1021/ja027532v

[33]. Chi, Y. W.; Dong, Y. Q.; Chen, G. N. Anal. Chem. 2007, 79, 4521-4528.
https://doi.org/10.1021/ac0702443

[34]. Heitele, H.; Pöllinger, F.; Kremer, K.; Michel-Beyerle, M. E. Chem. Phys. Lett. 1992, 188, 270-278.
https://doi.org/10.1016/0009-2614(92)90021-E

[35]. Berthon, R. A.; Colbran, S. B.; Moran, G. M. Inorg. Chim. Acta. 1993, 204, 3-7.
https://doi.org/10.1016/S0020-1693(00)88106-2

[36]. Zheng, H. Z.; Zu, B. J. Phys. Chem. B 2005, 109, 16047-16051.
https://doi.org/10.1021/jp052843o

[37]. Zhu, Y. H.; Zhao, B. Y.; Li, L. S. Anal. Sci. 2009, 25, 785-788.
https://doi.org/10.2116/analsci.25.785

[38]. Zorzi, M.; Pastore, P.; Magno, F. A Anal. Chem. 2000, 72, 4934-4939.
https://doi.org/10.1021/ac991222m

[39]. Creutz, C.; Sutin, N. Proc. Nat. Acad. Sci. 1975, 72, 2858-2862.
https://doi.org/10.1073/pnas.72.8.2858

Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).