European Journal of Chemistry 2019, 10(3), 244-255. doi:10.5155/eurjchem.10.3.244-255.1883

Joule-Thomson coefficients and inversion curves from newly developed cubic equations of state


Binay Prakash Akhouri (1) orcid , Sumit Kaur (2,*) orcid

(1) Department of Physics, Birsa College, Khunti-835210, Jharkhand, India
(2) Department of Physics, Nirmala College, Ranchi-834002, Jharkhand, India
(*) Corresponding Author

Received: 23 Apr 2019, Accepted: 09 Jul 2019, Published: 30 Sep 2019

Abstract


In this work, we have generalized different parametric forms of cubic equations of state (EoSs) to predict complete Joule-Thomson (J-T) inversion curves for methane at wide temperature and pressure ranges. EoSs of the Soave-Redlich-Kwong (SRK), Peng-Robinson (PR), Patel-Teja (PT), Esmaeilzadeh-Roshanfekr (ER) and the Hagtalab-Kamali-Mazloumi-Mahmoodi (HKMM) along with frequently used cohesion functions α(Tr) have been considered for plot of J-T inversion curves. The PR EoS along with different cohesion functions such as those of the Soave, Antonin Chapoy and the Tau-Sim-Tassone have been also tested for accurate prediction of the inversion curves. The four parametric EoSs of Adachi-Lu-Sugie (ALS), and Lawal-Lake-Silberberg (LLS) with their associated cohesion functions have been used for the prediction of J-T inversion curves. It has been observed that for the plot of inversion curves the LLS EoS is inadequate while the ER EoS agrees well with the previous measurements made in Laboratory. Besides, the J-T coefficient measurements from EoSs have been made for carbon dioxide and nitrogen gases at temperatures from 273.15 to 473.15 K and at pressures from 10 to 1000 atm, respectively. The uncertainties of experimental J-T coefficients data of carbon dioxide from values calculated using EoSs at constant pressure of 1 atm and 20 atm and with varying temperatures have been studied.


Keywords


Uncertainty; Equations of state; Cohesion functions; Newton Raphson method; Joule-Thomson coefficients; Joule Thomson inversion curves

Full Text:

PDF /    /


DOI: 10.5155/eurjchem.10.3.244-255.1883

Article Metrics


This Abstract was viewed 50 times | PDF Article downloaded 22 times

References

[1]. Roebuck, J. R.; Osterberg, H. Physic. Rev. 1935, 48, 450-457.
https://doi.org/10.1103/PhysRev.48.450

[2]. Sage, B. H. Soc. Petrol. Engin. 1943, 151, 1-9.
https://doi.org/10.2118/943216-G

[3]. Kenneth, J. K.; Wenzel, L. A. AIChE Jour. 1972, 18, 684-688.
https://doi.org/10.1002/aic.690180404

[4]. Adachi, Y.; Benjamin, C.; Lu, Y.; Sugie, H. Fluid Phase Equilib. 1983, 11, 29-48.
https://doi.org/10.1016/0378-3812(83)85004-3

[5]. Matin, N. S.; Haghighi, H. Fluid Phase Equilib. 2000, 175, 273-284.
https://doi.org/10.1016/S0378-3812(00)00443-X

[6]. Vrabec, J.; Kumar, A.; Hasse, H. Fluid Phase Equilib. 2009, 258, 34-40.
https://doi.org/10.1016/j.fluid.2007.05.024

[7]. Chacin, A.; Vazquez, J. M.; Muller, E. A. Fluid Phase Equilib. 1999, 165, 147-155.
https://doi.org/10.1016/S0378-3812(99)00264-2

[8]. Rde Groot, S.; Michels, A. Physica. 1948, 14, 218-222.
https://doi.org/10.1016/0031-8914(48)90039-1

[9]. Matin, N. S. J. Chem. Engin. Japan 1997, 30, 520-525.
https://doi.org/10.1252/jcej.30.520

[10]. Abbas, R.; Ihmels, C.; Enders, S; Gmehling, J. Fuel Energy 2011, 30, 181-189.
https://doi.org/10.1016/j.fluid.2011.03.028

[11]. Prausnitz, J. M.; Gunn, R. D.; Chueh, P. L. Cryogen 1966, 6, 324-329.
https://doi.org/10.1016/0011-2275(66)90128-7

[12]. Potter, J. H. J. Eng. Indust. 1970, 92, 257-262.
https://doi.org/10.1115/1.3427726

[13]. Nichita, D. V.; Leibovici, C. Fluid Phase Equilib. 2006, 246, 167-176.
https://doi.org/10.1016/j.fluid.2006.05.025

[14]. Coleman, T. C.; Stewart, R. B., Presented at the NAS-NRC 13th International Congress of Refrigeration, Washington, DC, 1971.

[15]. Bender, E., Proceedings of the Fifth Symposium on Thermophysic. Propert. ASME, 1970, pp. 227-235.

[16]. Brown, E. H.; Dean, J. W. J. Res. Nation Burea Stand. 1958, 60, 161-168.
https://doi.org/10.6028/jres.060.020

[17]. Miller, D. G. Ind. Eng. Chem. Fund. 1970, 9, 585-589.
https://doi.org/10.1021/i160036a010

[18]. Deiters, U. K.; DeReuck, K. M. Pure Appl. Chem. 1997, 69, 1237-1249.
https://doi.org/10.1351/pac199769061237

[19]. Nasrifar, K.; Bolland, O. Ind. Eng. Chem. Res. 2004, 43, 6901-6909.
https://doi.org/10.1021/ie049545i

[20]. Soave, G. Chem. Eng. Scie. 1972, 27, 1197-1203.
https://doi.org/10.1016/0009-2509(72)80096-4

[21]. Redlich, O.; Kwong, J. N. S. Chem. Rev. 1949, 44, 233-244.
https://doi.org/10.1021/cr60137a013

[22]. Dilay, G. W.; Heidemann, R. A. Ind. Engin. Chem. Fund. 1986, 25 152-158.
https://doi.org/10.1021/i100021a024

[23]. Colina, C. M.; Lisal, M.; Siperstein, F. R.; Gubbins, K. E. Fluid Phase Equilib. 2002, 202, 253-262.
https://doi.org/10.1016/S0378-3812(02)00126-7

[24]. Esmaeilzadeh, F.; Roshanfekr, M. Fluid Phase Equilib. 2006, 293, 83-90.
https://doi.org/10.1016/j.fluid.2005.10.013

[25]. Hagtalab, A.; Kamali. M. J.; Mazloumi, S. H.; Mahmoodi, P. Fluid Phase Equilib. 2010, 293, 209-218.
https://doi.org/10.1016/j.fluid.2010.03.029

[26]. Teja, A. S.; Patel, N. C. Chem. Eng. Sci. 1982, 37, 463-473.
https://doi.org/10.1016/0009-2509(82)80099-7

[27]. Adachi, Y.; Sugie, H.; Nakanishi, K.; Lu B. C. Fluid Phase Equilib. 1989, 52, 83-90.
https://doi.org/10.1016/0378-3812(89)80314-0

[28]. Lawal, A. S.; Silberberg, I. H. Soc. Pet. Eng. 1985, 1, 1-21.

[29]. Peng, D. Y.; Robinson, D. B. Ind. Eng. Chem. Fund. 1976, 15, 59-64.
https://doi.org/10.1021/i160057a011

[30]. Taylor, H. S.; Gasstone, S., A treatise on Physical Chemistry, 3rd edition , D. Van Nostrand Company, Inc, New York 18, New York, 1924.

[31]. Coquelet, C.; Chapoy, A.; Richon, D. Intern. J. Thermophys. 2004, 25(1), 133-158.

[32]. Twu, C. H.; Sim, W. D. Tassone, V. Fluid Phase Equilib. 2002, 194, 385-399.
https://doi.org/10.1016/S0378-3812(01)00663-X

[33]. Green, D. W.; Perry, R. H., Perry chemical engineering handbook, McGraw-Hill, New York United States, 7th edition, 1934.