European Journal of Chemistry

Joule-Thomson coefficients and inversion curves from newly developed cubic equations of state

Crossmark


Main Article Content

Binay Prakash Akhouri
Sumit Kaur

Abstract

In this work, we have generalized different parametric forms of cubic equations of state (EoSs) to predict complete Joule-Thomson (J-T) inversion curves for methane at wide temperature and pressure ranges. EoSs of the Soave-Redlich-Kwong (SRK), Peng-Robinson (PR), Patel-Teja (PT), Esmaeilzadeh-Roshanfekr (ER) and the Hagtalab-Kamali-Mazloumi-Mahmoodi (HKMM) along with frequently used cohesion functions α(Tr) have been considered for plot of J-T inversion curves. The PR EoS along with different cohesion functions such as those of the Soave, Antonin Chapoy and the Tau-Sim-Tassone have been also tested for accurate prediction of the inversion curves. The four parametric EoSs of Adachi-Lu-Sugie (ALS), and Lawal-Lake-Silberberg (LLS) with their associated cohesion functions have been used for the prediction of J-T inversion curves. It has been observed that for the plot of inversion curves the LLS EoS is inadequate while the ER EoS agrees well with the previous measurements made in Laboratory. Besides, the J-T coefficient measurements from EoSs have been made for carbon dioxide and nitrogen gases at temperatures from 273.15 to 473.15 K and at pressures from 10 to 1000 atm, respectively. The uncertainties of experimental J-T coefficients data of carbon dioxide from values calculated using EoSs at constant pressure of 1 atm and 20 atm and with varying temperatures have been studied.


icon graph This Abstract was viewed 1137 times | icon graph Article PDF downloaded 547 times

How to Cite
(1)
Akhouri, B. P.; Kaur, S. Joule-Thomson Coefficients and Inversion Curves from Newly Developed Cubic Equations of State. Eur. J. Chem. 2019, 10, 244-255.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Roebuck, J. R.; Osterberg, H. Physic. Rev. 1935, 48, 450-457.
https://doi.org/10.1103/PhysRev.48.450

[2]. Sage, B. H. Soc. Petrol. Engin. 1943, 151, 1-9.
https://doi.org/10.2118/943216-G

[3]. Kenneth, J. K.; Wenzel, L. A. AIChE Jour. 1972, 18, 684-688.
https://doi.org/10.1002/aic.690180404

[4]. Adachi, Y.; Benjamin, C.; Lu, Y.; Sugie, H. Fluid Phase Equilib. 1983, 11, 29-48.
https://doi.org/10.1016/0378-3812(83)85004-3

[5]. Matin, N. S.; Haghighi, H. Fluid Phase Equilib. 2000, 175, 273-284.
https://doi.org/10.1016/S0378-3812(00)00443-X

[6]. Vrabec, J.; Kumar, A.; Hasse, H. Fluid Phase Equilib. 2009, 258, 34-40.
https://doi.org/10.1016/j.fluid.2007.05.024

[7]. Chacin, A.; Vazquez, J. M.; Muller, E. A. Fluid Phase Equilib. 1999, 165, 147-155.
https://doi.org/10.1016/S0378-3812(99)00264-2

[8]. Rde Groot, S.; Michels, A. Physica. 1948, 14, 218-222.
https://doi.org/10.1016/0031-8914(48)90039-1

[9]. Matin, N. S. J. Chem. Engin. Japan 1997, 30, 520-525.
https://doi.org/10.1252/jcej.30.520

[10]. Abbas, R.; Ihmels, C.; Enders, S; Gmehling, J. Fuel Energy 2011, 30, 181-189.
https://doi.org/10.1016/j.fluid.2011.03.028

[11]. Prausnitz, J. M.; Gunn, R. D.; Chueh, P. L. Cryogen 1966, 6, 324-329.
https://doi.org/10.1016/0011-2275(66)90128-7

[12]. Potter, J. H. J. Eng. Indust. 1970, 92, 257-262.
https://doi.org/10.1115/1.3427726

[13]. Nichita, D. V.; Leibovici, C. Fluid Phase Equilib. 2006, 246, 167-176.
https://doi.org/10.1016/j.fluid.2006.05.025

[14]. Coleman, T. C.; Stewart, R. B., Presented at the NAS-NRC 13th International Congress of Refrigeration, Washington, DC, 1971.

[15]. Bender, E., Proceedings of the Fifth Symposium on Thermophysic. Propert. ASME, 1970, pp. 227-235.

[16]. Brown, E. H.; Dean, J. W. J. Res. Nation Burea Stand. 1958, 60, 161-168.
https://doi.org/10.6028/jres.060.020

[17]. Miller, D. G. Ind. Eng. Chem. Fund. 1970, 9, 585-589.
https://doi.org/10.1021/i160036a010

[18]. Deiters, U. K.; DeReuck, K. M. Pure Appl. Chem. 1997, 69, 1237-1249.
https://doi.org/10.1351/pac199769061237

[19]. Nasrifar, K.; Bolland, O. Ind. Eng. Chem. Res. 2004, 43, 6901-6909.
https://doi.org/10.1021/ie049545i

[20]. Soave, G. Chem. Eng. Scie. 1972, 27, 1197-1203.
https://doi.org/10.1016/0009-2509(72)80096-4

[21]. Redlich, O.; Kwong, J. N. S. Chem. Rev. 1949, 44, 233-244.
https://doi.org/10.1021/cr60137a013

[22]. Dilay, G. W.; Heidemann, R. A. Ind. Engin. Chem. Fund. 1986, 25 152-158.
https://doi.org/10.1021/i100021a024

[23]. Colina, C. M.; Lisal, M.; Siperstein, F. R.; Gubbins, K. E. Fluid Phase Equilib. 2002, 202, 253-262.
https://doi.org/10.1016/S0378-3812(02)00126-7

[24]. Esmaeilzadeh, F.; Roshanfekr, M. Fluid Phase Equilib. 2006, 293, 83-90.
https://doi.org/10.1016/j.fluid.2005.10.013

[25]. Hagtalab, A.; Kamali. M. J.; Mazloumi, S. H.; Mahmoodi, P. Fluid Phase Equilib. 2010, 293, 209-218.
https://doi.org/10.1016/j.fluid.2010.03.029

[26]. Teja, A. S.; Patel, N. C. Chem. Eng. Sci. 1982, 37, 463-473.
https://doi.org/10.1016/0009-2509(82)80099-7

[27]. Adachi, Y.; Sugie, H.; Nakanishi, K.; Lu B. C. Fluid Phase Equilib. 1989, 52, 83-90.
https://doi.org/10.1016/0378-3812(89)80314-0

[28]. Lawal, A. S.; Silberberg, I. H. Soc. Pet. Eng. 1985, 1, 1-21.

[29]. Peng, D. Y.; Robinson, D. B. Ind. Eng. Chem. Fund. 1976, 15, 59-64.
https://doi.org/10.1021/i160057a011

[30]. Taylor, H. S.; Gasstone, S., A treatise on Physical Chemistry, 3rd edition , D. Van Nostrand Company, Inc, New York 18, New York, 1924.

[31]. Coquelet, C.; Chapoy, A.; Richon, D. Intern. J. Thermophys. 2004, 25(1), 133-158.

[32]. Twu, C. H.; Sim, W. D. Tassone, V. Fluid Phase Equilib. 2002, 194, 385-399.
https://doi.org/10.1016/S0378-3812(01)00663-X

[33]. Green, D. W.; Perry, R. H., Perry chemical engineering handbook, McGraw-Hill, New York United States, 7th edition, 1934.

Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).