European Journal of Chemistry

FeF3 as a green catalyst for the synthesis of dihydropyrimidines via Biginelli reaction

Crossmark


Main Article Content

Thalishetti Krishna
Eppakayala Laxminarayana
Dipak Kalita

Abstract

A facile and highly efficient FeF3-catalyzed method has been developed for the direct synthesis of functionalized dihydropyrimidines from readily available starting materials via Biginelli reaction. These reactions proceed at low-catalyst loadings with high functional group tolerance under mild conditions. This method provides efficient reusability of the catalyst and good to excellent yields of the products, making the protocol more attractive, economical, and environmentally benign. FeF3 is an attractive catalyst for the Biginelli reaction because of its high acidity, thermal stability and water tolerance.


icon graph This Abstract was viewed 1262 times | icon graph Article PDF downloaded 523 times

How to Cite
(1)
Krishna, T.; Laxminarayana, E.; Kalita, D. FeF3 As a Green Catalyst for the Synthesis of Dihydropyrimidines via Biginelli Reaction. Eur. J. Chem. 2020, 11, 206-212.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Domling, A.; Wang, W.; Wang, K. Chem. Rev. 2012, 112, 3083-3135.
https://doi.org/10.1021/cr100233r

[2]. Rotstein, B. H.; Zaretsky, S.; Rai, V.; Yudin, A. K. Chem. Rev. 2014, 114, 8323-8359.
https://doi.org/10.1021/cr400615v

[3]. Zhu, J.; Bienayme, H. Multicomponent Reactions, Wiley-VCH, Weinheim, 2005.
https://doi.org/10.1002/3527605118

[4]. Brauch, S.; van Berkel, S. S.; Westermann, B. Chem. Soc. Rev. 2013, 42, 4948-4962.
https://doi.org/10.1039/c3cs35505e

[5]. Cioc, R. C.; Ruijter, E.; Orru, R. V. A. Green Chem. 2014, 16, 2958-2975.
https://doi.org/10.1039/C4GC00013G

[6]. Biginelli, P. Gazz. Chim. Ital. 1893, 23, 360-416.

[7]. Biginelli, P. Ber. Dtsch. Chem. Ges. 1893, 26, 447-450.
https://doi.org/10.1002/cber.18930260199

[8]. Folkers, K.; Johnson, T. B. J. Am. Chem. Soc. 1933, 55, 3784-3791.
https://doi.org/10.1021/ja01336a054

[9]. Sweet, F. S.; Fissekis, J. D. J. Am. Chem. Soc. 1973, 95, 8741-8749.
https://doi.org/10.1021/ja00807a040

[10]. Kappe, C. O. J. Org. Chem. 1997, 62, 7201. -7204
https://doi.org/10.1021/jo971010u

[11]. De Souza, R.; Penha, E. T.; Milagre, H. M. S.; Garden, S. J.; Esteves, P. M.; Eberlin, M. N.; Antunes, O. A. C. Chem. Eur. J. 2009, 15, 9799-9804.
https://doi.org/10.1002/chem.200900470

[12]. Raj, M. K.; Prakash Rao, H. S.; Manjunatha, S. G.; Sridharan, R.; Nambiar, S.; Keshwan, J.; Rappai, J.; Bhagat, S.; Shwetha, B. S.; Hegde, D.; Santhosh, U. Tetrahedron Lett. 2011, 52, 3605-3609.
https://doi.org/10.1016/j.tetlet.2011.05.011

[13]. Ramos, L. M.; Tobio, A. Y. P. L.; Santos, M. R.; Oliveira, H. C. B.; Gomes, A. F.; Gozzo, F. C.; Oliveira, A. L.; Neto, B. A. D. J. Org. Chem. 2012, 77, 10184-10193.
https://doi.org/10.1021/jo301806n

[14]. Puripat, M.; Ramozzi, R.; Hatanaka, M.; Parasuk, W.; Parasuk, V.; Morokuma, K. J. Org. Chem. 2015, 80, 6959-6967.
https://doi.org/10.1021/acs.joc.5b00407

[15]. Nagarajaiah, H.; Mukhopadhyay, A.; Moorthy, J. N. Tetrahedron Lett. 2016, 57, 5135-5296.
https://doi.org/10.1016/j.tetlet.2016.09.047

[16]. Kappe, C. O. QSAR Comb. Sci. 2003, 22, 630-645.
https://doi.org/10.1002/qsar.200320001

[17]. Kappe, C. O.; Stadler, A. Org. React. 2004, 63, 1-117.
https://doi.org/10.1002/0471264180.or063.01

[18]. Aron, Z. D.; Overman, L. E. Chem. Commun. 2004, 253-265.
https://doi.org/10.1039/b309910e

[19]. Gong, L. Z.; Chen, X. H.; Xu, X. Y. Chem. Eur. J. 2007, 13, 8920-8926.
https://doi.org/10.1002/chem.200700840

[20]. Suresh; Sandhu, J. S. Arkivoc 2012, 66-133.
https://doi.org/10.5005/jp/books/11565_17

[21]. Panda, S. S.; Khanna, P.; Khanna, L. Curr. Org. Chem. 2012, 16, 507-520.
https://doi.org/10.2174/138527212799499859

[22]. Kappe, C. O. Acc. Chem. Res. 2000, 33, 879-888.
https://doi.org/10.1021/ar000048h

[23]. Fatima, A.; Terra, B. S.; Neto, L. S.; Braga, T. C. In Green Synthetic Approaches for Biologically Relevant Heterocycles; Brahmachari, G. , Ed.; Elsevier Inc: Netherlands, 2015, pp. 317-337, Ch. 12.
https://doi.org/10.1016/B978-0-12-800070-0.00012-8

[24]. Fatima, A.; Braga, T. C.; Neto, L. S.; Terra, B. S.; Oliveira, B. G. F.; Silva, D. L.; Modolo, L. V. J. Adv. Res. 2015, 6, 363-373.
https://doi.org/10.1016/j.jare.2014.10.006

[25]. Rovnyak, G. C.; Kimball, S. D.; Beyer, B.; Cucinotta, G.; Dimarco, J. D.; Gougoutas, J.; Hedberg, A.; Malley, M.; McCarthy, J. P.; Zhang, R.; Moreland, S. J. Med. Chem. 1995, 38, 119-129.
https://doi.org/10.1021/jm00001a017

[26]. Bruce, M. A.; Pointdexter, G. S.; Johnson, G. PCT Int. Appl. WO 98 33, 791, 1998.

[27]. Atwal, K. S.; Swanson, B. N.; Unger, S. E.; Floyd, D. M.; Moreland, S.; Hedberg, A.; O'Reilly, B. C. J. Med. Chem. 1991, 34, 806-811.
https://doi.org/10.1021/jm00106a048

[28]. Dallinger, D.; Kappe, C. O. Nat. Protoc. 2007, 2, 317-321.
https://doi.org/10.1038/nprot.2006.436

[29]. Terracciano, S.; Lauro, G.; Strocchia, M.; Fischer, K.; Werz, O.; Riccio, R.; Bruno, I.; Bifulco, G. ACS Med. Chem. Lett. 2015, 6, 187-191.
https://doi.org/10.1021/ml500433j

[30]. Barrow, J. C.; Nantermet, P. G.; Selnick, H. G.; Glass, K. L.; Rittle, K. E.; Gilbert, K. F.; Steele, T. G.; Homnick, C. F.; Freidinger, R. M.; Ransom, R. W.; Kling, P.; Reiss, D.; Broten, T. P.; Schorn, T. W.; Chang, R. S. L.; OMalley, S. S.; Olah, T. V.; Ellis, J. D.; Barrish, A.; Kassahun, K.; Leppert, P.; Nagarathnam, D.; Forray, C. J. Med. Chem. 2000, 43, 2703-2718.
https://doi.org/10.1021/jm990612y

[31]. Crespo, A.; Maatougui, A. E.; Biagini, P.; Azuaje, J.; Coelho, A.; Loza, J. M. I.; Cadavid, M. I.; Garcia-Mera, X.; Gutierrez- de-Teran, H.; Sotelo, E. ACS Med. Chem. Lett. 2013, 4, 1031-1036.
https://doi.org/10.1021/ml400185v

[32]. Patil, S. R.; Choudhary, A. S.; Patil, V. S.; Sekar, N. Fibers Polym. 2015, 16, 2349-2358.
https://doi.org/10.1007/s12221-015-5233-x

[33]. Boukis, A. C.; Llevot, A.; Meier, M. A. R. Macromol. Rapid Commun. 2016, 37, 643-649.
https://doi.org/10.1002/marc.201500717

[34]. Zhao, Y.; Yu, Y.; Zhang, Y.; Wang, X.; Yang, B.; Zhang, Y.; Zhang, Q.; Fu, C.; Weia, Y.; Tao, L. Polym. Chem. 2015, 6, 4940-4945.
https://doi.org/10.1039/C5PY00684H

[35]. Lu, J.; Bai, Y.; Wang, Z.; Yang, B.; Ma, H. Tetrahedron Lett. 2000, 41, 9075-9078.
https://doi.org/10.1016/S0040-4039(00)01645-2

[36]. Fu, N. Y.; Yuan, Y. F.; Cao, Z.; Wang, S. W.; Wang, J. T.; Peppe, C. Tetrahedron 2002, 58, 4801-4807.
https://doi.org/10.1016/S0040-4020(02)00455-6

[37]. Lu, J.; Bai, Y. Synthesis 2002, 466-470.
https://doi.org/10.1055/s-2002-20956

[38]. Maiti, G.; Kundu, P.; Guin, C. Tetrahedron Lett. 2003, 44, 2757-2758.
https://doi.org/10.1016/S0040-4039(02)02859-9

[39]. Bose, D. S.; Fatima, L.; Mereyala, H. B. J. Org. Chem. 2003, 68, 587-590.
https://doi.org/10.1021/jo0205199

[40]. Gohain, M.; Prajapati, D.; Sandhu, J. S. Synlett. 2004, 235-238.

[41]. Narsaiah, A. V.; Basak, A. K.; Nagaiah, K. Synthesis 2004, 8, 1253-1256.
https://doi.org/10.1055/s-2004-822383

[42]. Jenner, G. Tetrahedron Lett. 2004, 45, 6195-6198.
https://doi.org/10.1016/j.tetlet.2004.05.106

[43]. Han, X.; Xu, F.; Luo, Y.; Shen, Q. Eur. J. Org. Chem. 2005, 1500-1504.
https://doi.org/10.1002/ejoc.200400753

[44]. El Badaoui, H.; Bazi, F.; Tahir, R.; Lazrek, H. B.; Sebti, S. CatalCommun. 2005, 6, 455-458.
https://doi.org/10.1016/j.catcom.2005.04.003

[45]. Kalita, H. R.; Phukan, P. CatalCommun. 2007, 8, 179-183.
https://doi.org/10.1016/j.catcom.2006.06.004

[46]. Atar, A. B.; Jeong, Y. T. Mol. Divers. 2014, 18, 389-401.
https://doi.org/10.1007/s11030-014-9506-x

[47]. Saini, A.; Kumar, S.; Sandhu, J. S. Indian J. Chem. B 2007, 46, 1690-1694.

[48]. Guo, W. S.; Wen, L. R.; Li, Y. F.; Yang, H. Z. J. Mol. Catal. A: Chem. 2006, 258, 133-138.
https://doi.org/10.1016/j.molcata.2006.05.028

[49]. Peng, X. C. Y. Catal. Lett. 2008, 122, 310-313.
https://doi.org/10.1016/j.msea.2006.11.180

[50]. Li, D.; Mao, H.; An, L.; Zhao, Z.; Zou, J. Chin J Chem. 2010, 28, 2025-2032.
https://doi.org/10.1002/cjoc.201090338

[51]. Kore, R.; Srivastava, R. J. Mol. Catal. A: Chem. 2011, 345, 117-126.
https://doi.org/10.1016/j.molcata.2011.06.003

[52]. Joseph, J. K.; Jain, S. L.; Singhal, S.; Sain, B. Ind. Eng. Chem. Res. 2011, 50, 11463-11466.
https://doi.org/10.1021/ie200522t

[53]. Alvim, H. G. O.; Lima, T. B.; de Oliveira, H. C. B.; de Gozzo, F. C.; Macedo, J. L.; de Abdelnur, P. V.; Silva, W. A.; Neto, B. A. D. ACS Catal. 2013, 3, 1420-1430.
https://doi.org/10.1021/cs400291t

[54]. Ramos, L. M.; Guido, B. C.; Nobrega, C. C.; Correa, J. R.; Silva, R. G.; Oliveira, Heibbe C. B. de; Gomes, A. F.; Gozzo, F. C.; Neto, B. A. D. Chem. Eur. J. 2013, 19, 4156-4168.
https://doi.org/10.1002/chem.201204314

[55]. Ladole, C. A.; Salunkhe, N. G.; Aswar, A. S. J. Indian Chem. Soc. 2016, 93, 337-341.

[56]. Yuan, H.; Zhang, K.; Xiam, J.; Hu, X.; Yuan, S. Cogent Chem. 2017, 3, 1318692-1318697.
https://doi.org/10.1080/23312009.2017.1318692

[57]. Chen, P.; Tu, M. Tetrahedron Lett. 2018, 59, 987-990.
https://doi.org/10.1016/j.tetlet.2018.01.070

[58]. Bolm, C.; Legros, J.; Le Paih, J.; Zani, L. Chem. Rev. 2004, 104, 6217-6254.
https://doi.org/10.1021/cr040664h

[59]. Bauer, I.; Knölker, H. J. Chem. Rev. 2015, 115, 3170-3387.
https://doi.org/10.1021/cr500425u

[60]. Shang, R.; Ilies, L.; Nakamura, E. Chem. Rev. 2017, 117, 9086-9139.
https://doi.org/10.1021/acs.chemrev.6b00772

[61]. Surasani, R.; Kalita, D.; Dhanunjaya, R. A. V.; Yarbagi, K.; Chandrasekhar, K. B. J. Fluorine Chem. 2012, 135, 91-96.
https://doi.org/10.1016/j.jfluchem.2011.09.005

[62]. Narendar R. T.; Jayathirth, a R. V. Tetrahedron Lett. 2018, 59, 2859-2875.
https://doi.org/10.1016/j.tetlet.2018.06.023

[63]. Narendar R. T.; Beatriz, A.; Jayathirtha, R. V.; de Lima, D. P. Chem. Asian J. 2019, 14, 344-388.
https://doi.org/10.1002/asia.201801560

[64]. Fu, N. Y.; Yuan, Y. F.; Cao, Z.; Wang, S. W.; Wang, J. T.; Peppe, C. Tetrahedron 2002, 58, 4801-4807.
https://doi.org/10.1016/S0040-4020(02)00455-6

[65]. Lu, J.; Bai, Y.; Wang, Z.; Yang, B.; Ma, H. Tetrahedron Lett. 2000, 41, 9075-9078.
https://doi.org/10.1016/S0040-4039(00)01645-2

[66]. Maiti, G.; Kundu, P.; Guin, C. Tetrahedron Lett. 2003, 44, 2757-2758.
https://doi.org/10.1016/S0040-4039(02)02859-9

[67]. Adib, M.; Ghanbary, K.; Mostofi, M.; Ganjali, M. R. Molecules 2006, 11, 649-654.
https://doi.org/10.3390/11080649

[68]. Chen, X. H.; Xu, X. Y.; Liu, H.; Cun, L. F.; Gong, L. Z. J. Am. Chem. Soc. 2006, 128, 14802-14803.
https://doi.org/10.1021/ja065267y

[69]. Roy, S. R.; Jadhavar, P. S.; Seth, K.; Sharma, K. K.; Chakraborti, A. K. Synthesis 2011, 14, 2261-2267.
https://doi.org/10.1055/s-0030-1260067

[70]. Pasunooti, K. K.; Chai, H.; Jensen, C. N.; Gorityala, B. K.; Wang, S.; Liu, X. W. Tetrahedron Lett. 2011, 52, 80-84
https://doi.org/10.1016/j.tetlet.2010.10.150

Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).