European Journal of Chemistry 2010, 1(1), 54-60. doi:

1,4-Diazabicyclo[2.2.2]octane (DABCO) as a useful catalyst in organic synthesis

Baghernejad Bita (1,*)

(1) Department of Chemistry, School of Sciences, Payame Noor University, Tehran, IR-19569, Iran
(*) Corresponding Author

Received: 23 Mar 2010, Accepted: 24 Mar 2010, Published: 31 Mar 2010


1,4-diazabicyclo[2.2.2]octane (DABCO) has been used in many organic preparations as a good solid catalyst. DABCO has received considerable attention as an inexpensive, eco-friendly, high reactive, easy to handle and non-toxic base catalyst for various organic transformations, affording the corresponding products in excellent yields with high selectivity. In this review, some applications of this catalyst in organic reactions were discussed.



DABCO; 1,4-diazabicyclo[2.2.2]octane; Organic reactions

Full Text:

PDF /    /

DOI: 10.5155/eurjchem.1.1.54-60.2

Article Metrics

This Abstract was viewed 11797 times | PDF Article downloaded 2038 times



[1]. Cyprian M. M’thiruaine, Holger B. Friedrich, Evans O. Changamu, Muhammad D. Bala
Reactions of N-heterocyclic ligands with substitutionally labile organometallic complexes, [(η5-C5R5)Fe(CO)2E]BF4
Inorganica Chimica Acta  390, 83, 2012
DOI: 10.1016/j.ica.2012.04.003

[2]. Haiyang Wang, Liye Huang, Xiaohui Cao, Dacheng Liang, Ai-Yun Peng
Synthesis of phostones via DABCO-catalyzed bromocyclization of alkenylphosphonic acid monoesters
Organic & Biomolecular Chemistry  15(35), 7396, 2017
DOI: 10.1039/C7OB01436H

[3]. Manoj Kumar, Sourav Bagchi, Anuj Sharma
The first vinyl acetate mediated organocatalytic transesterification of phenols: a step towards sustainability
New Journal of Chemistry  39(11), 8329, 2015
DOI: 10.1039/C5NJ01436K

[4]. Alireza Hasaninejad, Fatemeh Mandegani, Maryam Beyrati, Ammar Maryamabadi, Gholamhossein Mohebbi
Highly Efficient Synthesis of Spirooxindole, Spiroacenaphthylene and Bisbenzo[b]pyran Derivatives and Evaluation of Their Inhibitory Activity against Sirtuin 2
ChemistrySelect  2(23), 6784, 2017
DOI: 10.1002/slct.201701364

[5]. Adam J. Rosenberg, Daniel A. Clark
Total Synthesis of Pentosidine
Organic Letters  14(17), 4678, 2012
DOI: 10.1021/ol3021226

[6]. Ramin Ghorbani-Vaghei, Azadeh Shahriari, Jafar Mahmoodi, Yaser Maghbooli
Effective DABCO-catalyzed synthesis of new tetrazolo[1,5-a]pyrimidine analogs
Molecular Diversity  21(4), 865, 2017
DOI: 10.1007/s11030-017-9760-9

[7]. Georgeta Mocanu, Marieta Nichifor, Magdalena C. Stanciu
New shell crosslinked micelles from dextran with hydrophobic end groups and their interaction with bioactive molecules
Carbohydrate Polymers  119, 228, 2015
DOI: 10.1016/j.carbpol.2014.11.047

[8]. James E. Wells, Frederick C. Wilhelm, James F. White, Nance K. Dicciani
Synthesis of 1,4-Diazabicyclo [2,2,2] Octane with Alkaline Earth Phosphate Catalysts
Organic Process Research & Development  20(6), 1044, 2016
DOI: 10.1021/acs.oprd.6b00096

[9]. J. R. Patel, B. Z. Dholakiya
Synthesis of 1-(4-((E)-3-arylacryloyl) phenyl)-3,4-dibromo-1H-pyrrole-2,5-diones and screening for anti-Candida and antituberculosis activity
Medicinal Chemistry Research  21(8), 1977, 2012
DOI: 10.1007/s00044-011-9718-x

[10]. Razieh Mohebat, Afshin Yazdani-Elah-Abadi, Malek-Taher Maghsoodlou, Nourallah Hazeri
DABCO-catalyzed multi-component domino reactions for green and efficient synthesis of novel 3-oxo-3 H -benzo[ a ]pyrano[2,3- c ]phenazine-1-carboxylate and 3-(5-hydroxybenzo[ a ]phenazin-6-yl)acrylate derivatives in water
Chinese Chemical Letters  28(5), 943, 2017
DOI: 10.1016/j.cclet.2016.12.042

[11]. Mohammad Ali Nasseri, Seyed Mohsen Sadeghzadeh
Diazabicyclo[2.2.2]octane stabilized on Fe3O4 as catalysts for synthesis of coumarin under solvent-free conditions
Journal of the Iranian Chemical Society  11(1), 27, 2014
DOI: 10.1007/s13738-013-0270-0

[12]. Ensieh Safari, Alireza Hasaninejad
One-pot, Multi-Component Synthesis of Novel Bis-Spiro Pyranopyrazole Derivatives in the Presence of DABCO as an Efficient and Reusable Solid Base Catalyst
ChemistrySelect  3(12), 3529, 2018
DOI: 10.1002/slct.201800410

[13]. I. V. Ukrainets, L. A. Petrushova, S. V. Shishkina, G. Sim
2,1-Benzothiazine 2,2-Dioxides. 9*. Alkylation of Methyl 4-Hydroxy-1-Methyl-2,2-Dioxo-1Н-2λ6,1-Benzothiazine-3-Carboxylate with Ethyl Iodide
Chemistry of Heterocyclic Compounds  50(12), 1741, 2015
DOI: 10.1007/s10593-015-1646-0

[14]. Bita Baghernejad
ChemInform Abstract: 1,4-Diazabicyclo[2.2.2]octane (DABCO) as a Useful Catalyst in Organic Synthesis
ChemInform  42(49), no, 2011
DOI: 10.1002/chin.201149222

[15]. Pramod B. Thakur, Harshadas M. Meshram
An Exploration of Organocatalyst 1,4-Diazabicyclo[2.2.2]octane in the Direct Regioselective and Chemoselective γ-Addition of β-Keto Amide on Isatin to Afford Structurally Diverse Molecular Frameworks
Australian Journal of Chemistry  68(3), 453, 2015
DOI: 10.1071/CH14239

[16]. Dipali N. Lande, Maneesha N. Shewale, Shridhar P. Gejji
Host–Guest Interactions Accompanying the Encapsulation of 1,4-Diazabicyclo[2.2.2]octane within endo-Functionalized Macrocycles
The Journal of Physical Chemistry A  121(19), 3792, 2017
DOI: 10.1021/acs.jpca.7b02238

[17]. Dmitry I. Bugaenko
1,4-Diazabicyclo[2.2.2]octane in the synthesis of piperazine derivatives (microreview)
Chemistry of Heterocyclic Compounds  53(12), 1277, 2017
DOI: 10.1007/s10593-018-2205-2

[18]. Nenad Maraš, Marijan Kočevar
Effects of tertiary amine catalysis on the regioselectivity of anisole chlorination with trichloroisocyanuric acid
Monatshefte für Chemie - Chemical Monthly  146(4), 697, 2015
DOI: 10.1007/s00706-014-1383-6

[19]. Ali Reza Kiasat, Jamal Davarpanah
n-Propyl-4-aza-1-azoniabicyclo[2.2.2]octane chloride-SBA-15 (SBA-DABCO) as basic mesoporous catalyst for the synthesis of 1,4-dihydropyridine hetrocyclic compounds
Catalysis Communications  69, 179, 2015
DOI: 10.1016/j.catcom.2015.06.019

[20]. Anton S. Nizovtsev, Maxim R. Ryzhikov, Svetlana G. Kozlova
Structural flexibility of DABCO. Ab initio and DFT benchmark study
Chemical Physics Letters  667, 87, 2017
DOI: 10.1016/j.cplett.2016.11.042

[21]. Takallum Khan, Ritu Yadav, Surendra Singh Gound
An Efficient Synthesis and Antibacterial Activity of Some Novel 2-Azetidinone Derivatives of 4H-1,2,4-Triazoles Under Mild Conditions
Journal of Heterocyclic Chemistry  55(4), 1042, 2018
DOI: 10.1002/jhet.3136

[22]. Pradeep Paliwal, Srinivasa Rao Jetti, Anjna Bhatewara, Tanuja Kadre, Shubha Jain
DABCO Catalyzed Synthesis of Xanthene Derivatives in Aqueous Media
ISRN Organic Chemistry  2013, 1, 2013
DOI: 10.1155/2013/526173

[23]. Eileen Hao Yu, Richard Burkitt, Xu Wang, Keith Scott
Application of anion exchange ionomer for oxygen reduction catalysts in microbial fuel cells
Electrochemistry Communications  21, 30, 2012
DOI: 10.1016/j.elecom.2012.05.011

[24]. Anssi Peuronen, Arto Valkonen, Minna Kortelainen, Kari Rissanen, Manu Lahtinen
Halogen Bonding-Based “Catch and Release”: Reversible Solid-State Entrapment of Elemental Iodine with Monoalkylated DABCO Salts
Crystal Growth & Design  12(8), 4157, 2012
DOI: 10.1021/cg300669t

[25]. Alireza Hasaninejad, Mohsen Shekouhy, Nooshin Golzar, Abdolkarim Zare, Mohammad Mahdi Doroodmand
Silica bonded n-propyl-4-aza-1-azoniabicyclo[2.2.2]octane chloride (SB-DABCO): A highly efficient, reusable and new heterogeneous catalyst for the synthesis of 4H-benzo[b]pyran derivatives
Applied Catalysis A: General  402(1-2), 11, 2011
DOI: 10.1016/j.apcata.2011.04.012

[26]. Ratnasekhar Ch, Mohit Tyagi, Premanand Ramrao Patil, K.P. Ravindranathan Kartha
DABCO: an efficient promoter for the acetylation of carbohydrates and other substances under solvent-free conditions
Tetrahedron Letters  52(44), 5841, 2011
DOI: 10.1016/j.tetlet.2011.08.141

[27]. Shubha Jain, Deepika Rajguru, Balwant S. Keshwal, Aman D. Acharya
Solvent-Free Green and Efficient One-Pot Synthesis of Dihydropyrano[3,2-c]chromene Derivatives
ISRN Organic Chemistry  2013, 1, 2013
DOI: 10.1155/2013/185120

[28]. Ponnam Satyanarayana, Ganapam Manohar Reddy, Hariharasharma Maheswaran, Mannepalli Lakshmi Kantam
Tris(acetylacetonato)rhodium(III)-Catalyzed α-Alkylation of Ketones, β-Alkylation of Secondary Alcohols and Alkylation of Amines with Primary Alcohols
Advanced Synthesis & Catalysis  355(9), 1859, 2013
DOI: 10.1002/adsc.201300061

[29]. Arjun Kumbhar
Functionalized nitrogen ligands for palladium catalyzed cross-coupling reactions (part I)
Journal of Organometallic Chemistry  848, 22, 2017
DOI: 10.1016/j.jorganchem.2017.07.009


[1]. Yang, H.; Tian, R.; Li, Y. Front. Chem. China. 2008, 3, 279-287.

[2]. Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis. 3rd ed. New York: Wiley, 1999, 115-122.

[3]. Khodabakhsh, N.; Zolfigol, M. A.; Chehardoli, Gh.; dehghanian, M. Chin. J. Catal, 2008, 29, 901-906.

[4]. Calinaud, P.; Gelas, J. In Preparative Carbohydrate Chemistry; Hanessian, S., Ed.; Marcel Dekker: New York, 1996, pp 3-33.

[5]. Clode, D. M. Chem. Rev. 1979, 79, 491-513.

[6]. Meng, X. B.; Li, Y. F.; Li, Z. J. Carbohydr. Res. 2007, 342, 1101-1104.

[7]. Gadakh, B. K.; Patil, P. R.; Malik, S.; Kartha, K. P. R. A Synth. Commun. 2009, 39, 2430-2438.

[8]. Pawda, A.; Pearson, W. H., Lian, B. W.; Bergmeier, S. C., in: Comprehensive Heterocyclic Chemistry II (Eds.: A. R. Katritzky, C. W. Rees, E. F. V. Scriven); Pergamon: New York, 1996.

[9]. Wu, J.; Sun, X.; Li, Y. Eur. J. Org. Chem. 2005, 4271-4275.

[10]. Fernandez, J. M. G.; Mellet, C. O.; Blanco, J. L. J.; Mota, J. F.; Gadelle, A.; Coste Sarguet, A.; Defaye, J. Carbohydr. Res. 1995, 268, 57-71.

[11]. Mukerjee, A. K.; Ashare, R. Chem. Rev. 1991, 91, 1-24.

[12]. Munch, H.; Hansen, J. S.; Pittelkow, M. S.; Christensen, J. B.; Boas, U. Tetrahedron Lett. 2008, 49, 3117-3119.

[13]. Green, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, JohnWiley, New York, 1991, 2nd ed.

[14]. Corey, E. J.; Ching, X. M. The Logic of Chemical Synthesis, John Wiley & Sons, New York, 1989.

[15]. Sharafi, T.; Heravi, M. M. Phosphorus. Sulfur. Silicon. Relat. Elem. 2004, 179, 2437-2440.

[16]. Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, 3rd edn.;Wiley-Interscience: New York, 1999, 49-54.

[17]. Heravi, M.; Derikvand, F.; Ghassemzadeh, M.; Neumuller, B. Tetrahedron Lett. 2005, 46, 6243-6245.

[18]. Tajbakhsh, M.; Heravi, M. M.; Habibzadeh, S. Synth. Commun. 2007, 37, 2967-2973.

[19]. Zorn, C.; Gnad, F.; Salmen, S.; Herpinb, T.; Reisera, O. Tetrahedron Lett. 2001, 42, 7049-7053.

[20]. Hajipour, A. R.; Mazloumi, A. Synth. Commun. 2002, 32, 23-30.

[21]. Asadolah, K.; Heravi, M. M.; Hekmatshoar, R. Rus. J. Org. Chem. 2009, 45, 1110-1111.

[22]. Ogliaruso, M. A.; Wolfe, J. F. Synthesis of Carboxylic Acids, Esters and Their Derivatives, John Wiley & Sons, New York, 1991, 198-217.

[23]. Fife, W. K.; Zhang, Z. D. Tetrahedron Lett. 1986, 27, 4933.

[24]. Kazemi, F.; Kiasat, A. L. Phosphorus. Sulfur. Silicon. Relat. Elem. 2003, 178, 2287-2291.

[25]. Onishi, H. R.; Pelak, B. A.; Silver, L. L.; Kahan, F. M.; Chen, M.-H.; Patchett, A. A.; Galloway, S. M.; Hyland, S. A.; Anderson, M. S.; Raetz, C. R. H. Science, 1996, 274, 980-982.

[26]. Wipf, P.; Venkatraman, S. J. J. Org. Chem. 1995, 60, 7224-7229.

[27]. Green, T. W.; Wutz, P. G. M. Protecting Groups in Organic Synthesis, 2nd ed.; John Wiley and Sons: New York, 1991.

[28]. McManus, H. A.; Guiry, P. J. Chem. Rev. 2004, 104, 4151-4202.

[29]. Cecchi, L.; Sarloa, F. D.; Machetti, F. Tetrahedron Lett. 2005, 46, 7877-7879.

[30]. Luzzio, F. A. Tetrahedron, 2001, 57, 915-945.

[31]. Palomo, C.; Oiarbide, M.; Mielgo, A. Angew. Chem. Int. Ed. 2004, 43, 5442-5444.

[32]. Mastryukova, T. A.; Baranov, G. M.; Perekalin, V. V.; Kabachinick, M. I. Dol. Akad.Nauk, SSSR. 1966, 171, 1341-1346.

[33]. Samanta, S.; Zhao, C. C. Arkivoc, 2007, 13, 218-226.

[34]. Heck, R. F. Palladium Reagents in Organic Synthesis, Academic Press, London, 1985.

[35]. Li, J.-H.; Wang, D.-P.; Xie, Y.-X. Synthesis, 2005, 13, 2193-2197.

[36]. Morita, K.; Suzuki, Z.; Hirose, H. Bull. Chem. Soc. Jpn. 1968, 41, 2815.

[37]. Vesely, J.; Rios, R.; Cordova, L. Tetrahedron Lett. 2008, 49, 1137-1140.

[38]. Richter, H.; Jung, G. Tetrahedron Lett. 1998, 39, 2729-2730.

[39]. Zhang, F.; Wang, X. J.; Cai, C. X.; Liu, J. T. Tetrahedron. 2009, 65, 83-86.

[40]. Basavaiah, V. V. L. Gowriswari, T. K. Tetrahedron Lett. 1987, 28, 4591-4592.

[41]. Shi, M.; Xu, Y.-M. Chem. Commun. 2001, 1876-1877.

[42]. Bhuniya, D.; Mohan, S.; Narayanan, S. Synthesis, 2003, 1018-1024.

[43]. Zhao, G. L.; Shi, M. Tetrahedron, 2005, 61, 7277-7288.

[44]. Heravi, M. M.; Derikvanda, F.; Ghassemzadeh, M. South. Afr. J. Chem. 2006, 59, 125-128.

[45]. Fey, T.; Fischer, H.; Bachmann, S.; Albert, K.; Bolm, C. J. Org. Chem. 2001, 99, 8154.

[46]. Heravi, M. M.; Derikvand, F.; Ghassemzadeh, M.; Neumuller, B. Tetrahedron Lett. 2005, 46, 6243-6245.

[47]. Lima, L. M.; Castro, P.; Machado, A. L.; Fraga, C. A. M.; Lugniur, C.; Moraes, V. L. G.; Barreiro, E. J. Bio Org. Med. Chem. 2002, 10, 3067-3073.

[48]. Heravi, M. M.; Hekmat Shoar, R.; Pedram. L. J. Mol. Catal. A: Chem. 2005, 231, 89-91.

[49]. Shi, Y. J.; Humphrey, G.; Maligres, P. E.; Reamer, R. A.; Williams, J. M. Adv. Synth. Catal. 2006, 348, 309 - 312.

[50]. Shieh, W. C.; Lozanov, M.; Loo, M.; Repic, L.; Blacklock, T. J. Tetrahedron Lett. 2003, 44, 4563-4565.

[51]. Shieh, W. C.; Lozanov, M.; Repic, O. Tetrahedron Lett. 2003, 44, 6943-6945.

[52]. Ramachandran, P. V.; Rudd, M. T.; Reddy, M. V. R. Tetrahedron Lett. 1999, 40, 3819-3822.

[53]. Turki, T.; Villierasb, J.; Amr, H. Tetrahedron Lett. 2005, 46, 3071-3072.

[54]. Balalaie, S.; Ramezanpour, S.; Bararjanian, M.; Gross, J. H. Synth. Commun. 2008, 38, 1078-1089.

[55]. Heravi, M. M.; Derikvand, F.; Ghassemzadeh, M. Synth. Commun. 2006, 36, 581-585.

[56]. Yang, L.; Xu; L.; Yu, C. Phosphorus. Sulfur. Silicon. Relat. Elem. 2009, 184, 2049.

[57]. Diana, G. D.; Cutcliffe, D.; Volkots, D. L.; Mallamo, J. P.; Bailey, T. R.; Vescio, N.; Oglesby, R.C.; Nitz, T. J.; Wetzel, J.; Giranda, V.; Pevear, D. C.; Dutko, F. J. J. Med. Chem. 1993, 36, 3240-3250.

[58]. Romero, M.; Renard, P.; Caignard, D. H.; Atassi, G.; Solans, X.; Constans, P.; Bailly, C.; Pujol, M. D. J. Med. Chem. 2007, 50, 294-315.

[59]. Heravi, M. M.; Bakhtiari, K.; Hekmat Shoar, R.; Oskooie, H. A. J. Chem. Res. 2005, 9, 590-591.

[60]. Krishna, P. R.; Sekhar, E. R.; Mongin, F. Tetrahedron Lett. 2008, 49, 6768-6772.

[61]. Hon, Y. S.; Kao, Ch. Y. Tetrahedron Lett. 2009, 50, 748-751.

[62]. Ding, Q.; Wanga, B.; Wu, J. Tetrahedron Lett. 2007, 48, 8599-8602.

[63]. Hudlick, M. Oxidations in Organic Chemistry; American Chemical Society: Washington, DC, 1990.

[64]. Jiang, N.; Ragauskas, A. R. Tetrahedron Lett. 2007, 48, 273-276.

[65]. Mason, P. H.; Emslie, N. D. Tetrahedron, 1994, 50, 12001-12008.

How to cite

Bita, B. Eur. J. Chem. 2010, 1(1), 54-60. doi:
Bita, B. Eur. J. Chem. 1,4-Diazabicyclo[2.2.2]octane (DABCO) as a useful catalyst in organic synthesis. 2010, 1(1), 54-60. doi:
Bita, B. (2010). 1,4-Diazabicyclo[2.2.2]octane (DABCO) as a useful catalyst in organic synthesis. European Journal of Chemistry, 1(1), 54-60. doi:
Bita, Baghernejad. "1,4-Diazabicyclo[2.2.2]octane (DABCO) as a useful catalyst in organic synthesis." European Journal of Chemistry [Online], 1.1 (2010): 54-60. Web. 21 Apr. 2018
Bita, Baghernejad. "1,4-Diazabicyclo[2.2.2]octane (DABCO) as a useful catalyst in organic synthesis" European Journal of Chemistry [Online], Volume 1 Number 1 (31 March 2010)



  • There are currently no refbacks.

Copyright (c)

© Copyright 2018  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2018 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 4614 Lavista road, Tucker, GA, 30084, USA. Registred in USA.