1,4-Diazabicyclo[2.2.2]octane (DABCO) as a useful catalyst in organic synthesis

Baghernejad Bita

Abstract


1,4-diazabicyclo[2.2.2]octane (DABCO) has been used in many organic preparations as a good solid catalyst. DABCO has received considerable attention as an inexpensive, eco-friendly, high reactive, easy to handle and non-toxic base catalyst for various organic transformations, affording the corresponding products in excellent yields with high selectivity. In this review, some applications of this catalyst in organic reactions were discussed.

1_1_54_60_800


Keyword(s)


DABCO; 1,4-diazabicyclo[2.2.2]octane; Organic reactions

European Journal of Chemistry, 1 (1), (2010), 54-60

Full Text:

PDF    /    /

DOI: http://dx.doi.org/10.5155/eurjchem.1.1.54-60.2

Cited by

[1]. Cyprian M. M’thiruaine, Holger B. Friedrich, Evans O. Changamu, Muhammad D. Bala
Reactions of N-heterocyclic ligands with substitutionally labile organometallic complexes, [(η5-C5R5)Fe(CO)2E]BF4
Inorganica Chimica Acta  390, 83, 2012
DOI: 10.1016/j.ica.2012.04.003
/


[2]. Haiyang Wang, Liye Huang, Xiaohui Cao, Dacheng Liang, Ai-Yun Peng
Synthesis of phostones via DABCO-catalyzed bromocyclization of alkenylphosphonic acid monoesters
Organic & Biomolecular Chemistry  15(35), 7396, 2017
DOI: 10.1039/C7OB01436H
/


[3]. Manoj Kumar, Sourav Bagchi, Anuj Sharma
The first vinyl acetate mediated organocatalytic transesterification of phenols: a step towards sustainability
New Journal of Chemistry  39(11), 8329, 2015
DOI: 10.1039/C5NJ01436K
/


[4]. Alireza Hasaninejad, Fatemeh Mandegani, Maryam Beyrati, Ammar Maryamabadi, Gholamhossein Mohebbi
Highly Efficient Synthesis of Spirooxindole, Spiroacenaphthylene and Bisbenzo[b]pyran Derivatives and Evaluation of Their Inhibitory Activity against Sirtuin 2
ChemistrySelect  2(23), 6784, 2017
DOI: 10.1002/slct.201701364
/


[5]. Adam J. Rosenberg, Daniel A. Clark
Total Synthesis of Pentosidine
Organic Letters  14(17), 4678, 2012
DOI: 10.1021/ol3021226
/


[6]. Ramin Ghorbani-Vaghei, Azadeh Shahriari, Jafar Mahmoodi, Yaser Maghbooli
Effective DABCO-catalyzed synthesis of new tetrazolo[1,5-a]pyrimidine analogs
Molecular Diversity  21(4), 865, 2017
DOI: 10.1007/s11030-017-9760-9
/


[7]. Georgeta Mocanu, Marieta Nichifor, Magdalena C. Stanciu
New shell crosslinked micelles from dextran with hydrophobic end groups and their interaction with bioactive molecules
Carbohydrate Polymers  119, 228, 2015
DOI: 10.1016/j.carbpol.2014.11.047
/


[8]. James E. Wells, Frederick C. Wilhelm, James F. White, Nance K. Dicciani
Synthesis of 1,4-Diazabicyclo [2,2,2] Octane with Alkaline Earth Phosphate Catalysts
Organic Process Research & Development  20(6), 1044, 2016
DOI: 10.1021/acs.oprd.6b00096
/


[9]. J. R. Patel, B. Z. Dholakiya
Synthesis of 1-(4-((E)-3-arylacryloyl) phenyl)-3,4-dibromo-1H-pyrrole-2,5-diones and screening for anti-Candida and antituberculosis activity
Medicinal Chemistry Research  21(8), 1977, 2012
DOI: 10.1007/s00044-011-9718-x
/


[10]. Razieh Mohebat, Afshin Yazdani-Elah-Abadi, Malek-Taher Maghsoodlou, Nourallah Hazeri
DABCO-catalyzed multi-component domino reactions for green and efficient synthesis of novel 3-oxo-3 H -benzo[ a ]pyrano[2,3- c ]phenazine-1-carboxylate and 3-(5-hydroxybenzo[ a ]phenazin-6-yl)acrylate derivatives in water
Chinese Chemical Letters  28(5), 943, 2017
DOI: 10.1016/j.cclet.2016.12.042
/


[11]. Mohammad Ali Nasseri, Seyed Mohsen Sadeghzadeh
Diazabicyclo[2.2.2]octane stabilized on Fe3O4 as catalysts for synthesis of coumarin under solvent-free conditions
Journal of the Iranian Chemical Society  11(1), 27, 2014
DOI: 10.1007/s13738-013-0270-0
/


[12]. I. V. Ukrainets, L. A. Petrushova, S. V. Shishkina, G. Sim
2,1-Benzothiazine 2,2-Dioxides. 9*. Alkylation of Methyl 4-Hydroxy-1-Methyl-2,2-Dioxo-1Н-2λ6,1-Benzothiazine-3-Carboxylate with Ethyl Iodide
Chemistry of Heterocyclic Compounds  50(12), 1741, 2015
DOI: 10.1007/s10593-015-1646-0
/


[13]. Bita Baghernejad
ChemInform Abstract: 1,4-Diazabicyclo[2.2.2]octane (DABCO) as a Useful Catalyst in Organic Synthesis
ChemInform  42(49), no, 2011
DOI: 10.1002/chin.201149222
/


[14]. Pramod B. Thakur, Harshadas M. Meshram
An Exploration of Organocatalyst 1,4-Diazabicyclo[2.2.2]octane in the Direct Regioselective and Chemoselective γ-Addition of β-Keto Amide on Isatin to Afford Structurally Diverse Molecular Frameworks
Australian Journal of Chemistry  68(3), 453, 2015
DOI: 10.1071/CH14239
/


[15]. Dipali N. Lande, Maneesha N. Shewale, Shridhar P. Gejji
Host–Guest Interactions Accompanying the Encapsulation of 1,4-Diazabicyclo[2.2.2]octane within endo-Functionalized Macrocycles
The Journal of Physical Chemistry A  121(19), 3792, 2017
DOI: 10.1021/acs.jpca.7b02238
/


[16]. Nenad Maraš, Marijan Kočevar
Effects of tertiary amine catalysis on the regioselectivity of anisole chlorination with trichloroisocyanuric acid
Monatshefte für Chemie - Chemical Monthly  146(4), 697, 2015
DOI: 10.1007/s00706-014-1383-6
/


[17]. Ali Reza Kiasat, Jamal Davarpanah
n-Propyl-4-aza-1-azoniabicyclo[2.2.2]octane chloride-SBA-15 (SBA-DABCO) as basic mesoporous catalyst for the synthesis of 1,4-dihydropyridine hetrocyclic compounds
Catalysis Communications  69, 179, 2015
DOI: 10.1016/j.catcom.2015.06.019
/


[18]. Anton S. Nizovtsev, Maxim R. Ryzhikov, Svetlana G. Kozlova
Structural flexibility of DABCO. Ab initio and DFT benchmark study
Chemical Physics Letters  667, 87, 2017
DOI: 10.1016/j.cplett.2016.11.042
/


[19]. Pradeep Paliwal, Srinivasa Rao Jetti, Anjna Bhatewara, Tanuja Kadre, Shubha Jain
DABCO Catalyzed Synthesis of Xanthene Derivatives in Aqueous Media
ISRN Organic Chemistry  2013, 1, 2013
DOI: 10.1155/2013/526173
/


[20]. Eileen Hao Yu, Richard Burkitt, Xu Wang, Keith Scott
Application of anion exchange ionomer for oxygen reduction catalysts in microbial fuel cells
Electrochemistry Communications  21, 30, 2012
DOI: 10.1016/j.elecom.2012.05.011
/


[21]. Anssi Peuronen, Arto Valkonen, Minna Kortelainen, Kari Rissanen, Manu Lahtinen
Halogen Bonding-Based “Catch and Release”: Reversible Solid-State Entrapment of Elemental Iodine with Monoalkylated DABCO Salts
Crystal Growth & Design  12(8), 4157, 2012
DOI: 10.1021/cg300669t
/


[22]. Alireza Hasaninejad, Mohsen Shekouhy, Nooshin Golzar, Abdolkarim Zare, Mohammad Mahdi Doroodmand
Silica bonded n-propyl-4-aza-1-azoniabicyclo[2.2.2]octane chloride (SB-DABCO): A highly efficient, reusable and new heterogeneous catalyst for the synthesis of 4H-benzo[b]pyran derivatives
Applied Catalysis A: General  402(1-2), 11, 2011
DOI: 10.1016/j.apcata.2011.04.012
/


[23]. Ratnasekhar Ch, Mohit Tyagi, Premanand Ramrao Patil, K.P. Ravindranathan Kartha
DABCO: an efficient promoter for the acetylation of carbohydrates and other substances under solvent-free conditions
Tetrahedron Letters  52(44), 5841, 2011
DOI: 10.1016/j.tetlet.2011.08.141
/


[24]. Shubha Jain, Deepika Rajguru, Balwant S. Keshwal, Aman D. Acharya
Solvent-Free Green and Efficient One-Pot Synthesis of Dihydropyrano[3,2-c]chromene Derivatives
ISRN Organic Chemistry  2013, 1, 2013
DOI: 10.1155/2013/185120
/


[25]. Ponnam Satyanarayana, Ganapam Manohar Reddy, Hariharasharma Maheswaran, Mannepalli Lakshmi Kantam
Tris(acetylacetonato)rhodium(III)-Catalyzed α-Alkylation of Ketones, β-Alkylation of Secondary Alcohols and Alkylation of Amines with Primary Alcohols
Advanced Synthesis & Catalysis  355(9), 1859, 2013
DOI: 10.1002/adsc.201300061
/


[26]. Arjun Kumbhar
Functionalized nitrogen ligands for palladium catalyzed cross-coupling reactions (part I)
Journal of Organometallic Chemistry  848, 22, 2017
DOI: 10.1016/j.jorganchem.2017.07.009
/


References

[1]. Yang, H.; Tian, R.; Li, Y. Front. Chem. China. 2008, 3, 279-287.
doi:10.1007/s11458-008-0049-5

[2]. Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis. 3rd ed. New York: Wiley, 1999, 115-122.
doi:10.1002/0471220574

[3]. Khodabakhsh, N.; Zolfigol, M. A.; Chehardoli, Gh.; dehghanian, M. Chin. J. Catal, 2008, 29, 901-906.

[4]. Calinaud, P.; Gelas, J. In Preparative Carbohydrate Chemistry; Hanessian, S., Ed.; Marcel Dekker: New York, 1996, pp 3-33.

[5]. Clode, D. M. Chem. Rev. 1979, 79, 491-513.
doi:10.1021/cr60322a002

[6]. Meng, X. B.; Li, Y. F.; Li, Z. J. Carbohydr. Res. 2007, 342, 1101-1104.
doi:10.1016/j.carres.2007.02.005
PMid:17336949

[7]. Gadakh, B. K.; Patil, P. R.; Malik, S.; Kartha, K. P. R. A Synth. Commun. 2009, 39, 2430-2438.
doi:10.1080/00397910802656067

[8]. Pawda, A.; Pearson, W. H., Lian, B. W.; Bergmeier, S. C., in: Comprehensive Heterocyclic Chemistry II (Eds.: A. R. Katritzky, C. W. Rees, E. F. V. Scriven); Pergamon: New York, 1996.

[9]. Wu, J.; Sun, X.; Li, Y. Eur. J. Org. Chem. 2005, 4271-4275.
doi:10.1002/ejoc.200500576

[10]. Fernandez, J. M. G.; Mellet, C. O.; Blanco, J. L. J.; Mota, J. F.; Gadelle, A.; Coste Sarguet, A.; Defaye, J. Carbohydr. Res. 1995, 268, 57-71.

[11]. Mukerjee, A. K.; Ashare, R. Chem. Rev. 1991, 91, 1-24.
doi:10.1021/cr00001a001

[12]. Munch, H.; Hansen, J. S.; Pittelkow, M. S.; Christensen, J. B.; Boas, U. Tetrahedron Lett. 2008, 49, 3117-3119.
doi:10.1016/j.tetlet.2008.03.045

[13]. Green, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, JohnWiley, New York, 1991, 2nd ed.

[14]. Corey, E. J.; Ching, X. M. The Logic of Chemical Synthesis, John Wiley & Sons, New York, 1989.

[15]. Sharafi, T.; Heravi, M. M. Phosphorus. Sulfur. Silicon. Relat. Elem. 2004, 179, 2437-2440.
doi:10.1080/10426500490485327

[16]. Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, 3rd edn.;Wiley-Interscience: New York, 1999, 49-54.
doi:10.1002/0471220574

[17]. Heravi, M.; Derikvand, F.; Ghassemzadeh, M.; Neumuller, B. Tetrahedron Lett. 2005, 46, 6243-6245.
doi:10.1016/j.tetlet.2005.07.057

[18]. Tajbakhsh, M.; Heravi, M. M.; Habibzadeh, S. Synth. Commun. 2007, 37, 2967-2973.
doi:10.1080/00397910701473234

[19]. Zorn, C.; Gnad, F.; Salmen, S.; Herpinb, T.; Reisera, O. Tetrahedron Lett. 2001, 42, 7049-7053.
doi:10.1016/S0040-4039(01)01453-8

[20]. Hajipour, A. R.; Mazloumi, A. Synth. Commun. 2002, 32, 23-30.
doi:10.1081/SCC-120001504

[21]. Asadolah, K.; Heravi, M. M.; Hekmatshoar, R. Rus. J. Org. Chem. 2009, 45, 1110-1111.
doi:10.1134/S1070428009070215

[22]. Ogliaruso, M. A.; Wolfe, J. F. Synthesis of Carboxylic Acids, Esters and Their Derivatives, John Wiley & Sons, New York, 1991, 198-217.
doi:10.1002/9780470772423

[23]. Fife, W. K.; Zhang, Z. D. Tetrahedron Lett. 1986, 27, 4933.
doi:10.1016/S0040-4039(00)85100-X

[24]. Kazemi, F.; Kiasat, A. L. Phosphorus. Sulfur. Silicon. Relat. Elem. 2003, 178, 2287-2291.
doi:10.1080/713744563

[25]. Onishi, H. R.; Pelak, B. A.; Silver, L. L.; Kahan, F. M.; Chen, M.-H.; Patchett, A. A.; Galloway, S. M.; Hyland, S. A.; Anderson, M. S.; Raetz, C. R. H. Science, 1996, 274, 980-982.
doi:10.1126/science.274.5289.980
PMid:8875939

[26]. Wipf, P.; Venkatraman, S. J. J. Org. Chem. 1995, 60, 7224-7229.
doi:10.1021/jo00127a030

[27]. Green, T. W.; Wutz, P. G. M. Protecting Groups in Organic Synthesis, 2nd ed.; John Wiley and Sons: New York, 1991.

[28]. McManus, H. A.; Guiry, P. J. Chem. Rev. 2004, 104, 4151-4202.
doi:10.1021/cr040642v
PMid:15352789

[29]. Cecchi, L.; Sarloa, F. D.; Machetti, F. Tetrahedron Lett. 2005, 46, 7877-7879.
doi:10.1016/j.tetlet.2005.09.110

[30]. Luzzio, F. A. Tetrahedron, 2001, 57, 915-945.
doi:10.1016/S0040-4020(00)00965-0

[31]. Palomo, C.; Oiarbide, M.; Mielgo, A. Angew. Chem. Int. Ed. 2004, 43, 5442-5444.
doi:10.1002/anie.200460506
PMid:15455452

[32]. Mastryukova, T. A.; Baranov, G. M.; Perekalin, V. V.; Kabachinick, M. I. Dol. Akad.Nauk, SSSR. 1966, 171, 1341-1346.

[33]. Samanta, S.; Zhao, C. C. Arkivoc, 2007, 13, 218-226.

[34]. Heck, R. F. Palladium Reagents in Organic Synthesis, Academic Press, London, 1985.

[35]. Li, J.-H.; Wang, D.-P.; Xie, Y.-X. Synthesis, 2005, 13, 2193-2197.
doi:10.1055/s-2005-869980

[36]. Morita, K.; Suzuki, Z.; Hirose, H. Bull. Chem. Soc. Jpn. 1968, 41, 2815.
doi:10.1246/bcsj.41.2815

[37]. Vesely, J.; Rios, R.; Cordova, L. Tetrahedron Lett. 2008, 49, 1137-1140.
doi:10.1016/j.tetlet.2007.12.069

[38]. Richter, H.; Jung, G. Tetrahedron Lett. 1998, 39, 2729-2730.
doi:10.1016/S0040-4039(98)00429-8

[39]. Zhang, F.; Wang, X. J.; Cai, C. X.; Liu, J. T. Tetrahedron. 2009, 65, 83-86.
doi:10.1016/j.tet.2008.11.002

[40]. Basavaiah, V. V. L. Gowriswari, T. K. Tetrahedron Lett. 1987, 28, 4591-4592.
doi:10.1016/S0040-4039(00)96573-0

[41]. Shi, M.; Xu, Y.-M. Chem. Commun. 2001, 1876-1877.
doi:10.1039/b104931n
PMid:12240358

[42]. Bhuniya, D.; Mohan, S.; Narayanan, S. Synthesis, 2003, 1018-1024.
doi:10.1055/s-2003-39162

[43]. Zhao, G. L.; Shi, M. Tetrahedron, 2005, 61, 7277-7288.
doi:10.1016/j.tet.2005.04.071

[44]. Heravi, M. M.; Derikvanda, F.; Ghassemzadeh, M. South. Afr. J. Chem. 2006, 59, 125-128.

[45]. Fey, T.; Fischer, H.; Bachmann, S.; Albert, K.; Bolm, C. J. Org. Chem. 2001, 99, 8154.
doi:10.1021/jo010535q
PMid:11722219

[46]. Heravi, M. M.; Derikvand, F.; Ghassemzadeh, M.; Neumuller, B. Tetrahedron Lett. 2005, 46, 6243-6245.
doi:10.1016/j.tetlet.2005.07.057

[47]. Lima, L. M.; Castro, P.; Machado, A. L.; Fraga, C. A. M.; Lugniur, C.; Moraes, V. L. G.; Barreiro, E. J. Bio Org. Med. Chem. 2002, 10, 3067-3073.
doi:10.1016/S0968-0896(02)00152-9

[48]. Heravi, M. M.; Hekmat Shoar, R.; Pedram. L. J. Mol. Catal. A: Chem. 2005, 231, 89-91.
doi:10.1016/j.molcata.2005.01.005

[49]. Shi, Y. J.; Humphrey, G.; Maligres, P. E.; Reamer, R. A.; Williams, J. M. Adv. Synth. Catal. 2006, 348, 309 - 312.
doi:10.1002/adsc.200505431

[50]. Shieh, W. C.; Lozanov, M.; Loo, M.; Repic, L.; Blacklock, T. J. Tetrahedron Lett. 2003, 44, 4563-4565.
doi:10.1016/S0040-4039(03)00992-4

[51]. Shieh, W. C.; Lozanov, M.; Repic, O. Tetrahedron Lett. 2003, 44, 6943-6945.
doi:10.1016/S0040-4039(03)01711-8

[52]. Ramachandran, P. V.; Rudd, M. T.; Reddy, M. V. R. Tetrahedron Lett. 1999, 40, 3819-3822.
doi:10.1016/S0040-4039(99)00630-9

[53]. Turki, T.; Villierasb, J.; Amr, H. Tetrahedron Lett. 2005, 46, 3071-3072.
doi:10.1016/j.tetlet.2005.03.005

[54]. Balalaie, S.; Ramezanpour, S.; Bararjanian, M.; Gross, J. H. Synth. Commun. 2008, 38, 1078-1089.
doi:10.1080/00397910701862865

[55]. Heravi, M. M.; Derikvand, F.; Ghassemzadeh, M. Synth. Commun. 2006, 36, 581-585.
doi:10.1080/00397910500406476

[56]. Yang, L.; Xu; L.; Yu, C. Phosphorus. Sulfur. Silicon. Relat. Elem. 2009, 184, 2049.
doi:10.1080/10426500802418545

[57]. Diana, G. D.; Cutcliffe, D.; Volkots, D. L.; Mallamo, J. P.; Bailey, T. R.; Vescio, N.; Oglesby, R.C.; Nitz, T. J.; Wetzel, J.; Giranda, V.; Pevear, D. C.; Dutko, F. J. J. Med. Chem. 1993, 36, 3240-3250.
doi:10.1021/jm00074a004
PMid:8230114

[58]. Romero, M.; Renard, P.; Caignard, D. H.; Atassi, G.; Solans, X.; Constans, P.; Bailly, C.; Pujol, M. D. J. Med. Chem. 2007, 50, 294-315.
doi:10.1021/jm061184g
PMid:17228871

[59]. Heravi, M. M.; Bakhtiari, K.; Hekmat Shoar, R.; Oskooie, H. A. J. Chem. Res. 2005, 9, 590-591.
doi:10.3184/030823405774309005

[60]. Krishna, P. R.; Sekhar, E. R.; Mongin, F. Tetrahedron Lett. 2008, 49, 6768-6772.
doi:10.1016/j.tetlet.2008.09.037

[61]. Hon, Y. S.; Kao, Ch. Y. Tetrahedron Lett. 2009, 50, 748-751.
doi:10.1016/j.tetlet.2008.09.173

[62]. Ding, Q.; Wanga, B.; Wu, J. Tetrahedron Lett. 2007, 48, 8599-8602.
doi:10.1016/j.tetlet.2007.10.062

[63]. Hudlick, M. Oxidations in Organic Chemistry; American Chemical Society: Washington, DC, 1990.

[64]. Jiang, N.; Ragauskas, A. R. Tetrahedron Lett. 2007, 48, 273-276.
doi:10.1016/j.tetlet.2006.11.032

[65]. Mason, P. H.; Emslie, N. D. Tetrahedron, 1994, 50, 12001-12008.
doi:10.1016/S0040-4020(01)89311-X


Refbacks

  • There are currently no refbacks.