European Journal of Chemistry 2020, 11(3), 235-244 | doi: https://doi.org/10.5155/eurjchem.11.3.235-244.2011 | Get rights and content






  OPEN ACCESS | PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Computational approach for predicting the adsorption properties and inhibition of some antiretroviral drugs on copper corrosion in HNO3


Mougo André Tigori (1,*) orcid , Amadou Kouyaté (2) orcid , Victorien Kouakou (3) orcid , Paulin Marius Niamien (4) orcid , Albert Trokourey (5) orcid

(1) Unité de Formation et de Recherche Environnement, Université Jean Lorougnon Guédé, BP 150 Daloa, Côte d’Ivoire
(2) Unité de Formation et de Recherche Environnement, Université Jean Lorougnon Guédé, BP 150 Daloa, Côte d’Ivoire
(3) Laboratoire de Chimie Physique, Université Félix Houphouët Boigny, 22 BP 582 Abidjan 22, Côte d’Ivoire
(4) Laboratoire de Chimie Physique, Université Félix Houphouët Boigny, 22 BP 582 Abidjan 22, Côte d’Ivoire
(5) Laboratoire de Chimie Physique, Université Félix Houphouët Boigny, 22 BP 582 Abidjan 22, Côte d’Ivoire
(*) Corresponding Author

Received: 24 Jul 2020 | Revised: 22 Aug 2020 | Accepted: 23 Aug 2020 | Published: 30 Sep 2020 | Issue Date: September 2020

Abstract


The use of computational chemistry as an effective means of designing eco-friendly organic corrosion inhibitors has been greatly enhanced by the development of Density Functional Theory (DFT). In this study, the inhibitory activity of four antiretroviral drugs, namely, lamivudine, emtricitabine, didanosine and stavudine, was analyzed by this theory. The quantum chemical parameters/descriptors calculated using DFT at B3LYP/6-31G(d) level were used to explain the mechanism of electron transfer between the inhibitors and the copper surface. The results showed that these compounds adsorb on copper surface. It is important to consider the effect of films formed by the adsorption products. In addition, the Fukui functions and the dual descriptor were used as indicators to locate the electrophilic and nucleophilic attack sites within each compound. Finally, the DFT has enabled to accurately predict the adsorption properties and the good inhibition performance of the molecules in the solution studied.


Keywords


Corrosion; Adsorption; Eco-friendly; Antiretroviral; Dual descriptor; Density functional theory

Full Text:

PDF /    /


DOI: 10.5155/eurjchem.11.3.235-244.2011

Links for Article


| | | | | | |

| | | | | | |

| |

Related Articles




Article Metrics

This Abstract was viewed 200 times | PDF Article downloaded 44 times

Funding information


Environmental Training and Research Unit of Jean Lorougnon Guédé University of Daloa, Côte d’Ivoire and The Laboratory of Physical Chemistry of Felix Houphouet Boigny University of Abidjan, Côte d’Ivoire.

References

[1]. Ozcan, M.; Solmaz, R.; Kardas, G.; Dehri, I. Colloids Surf. A 2008, 325, 57-63.
https://doi.org/10.1016/j.colsurfa.2008.04.031

[2]. Scendo, M.; Hepel, M. J. Electroanal. Chem. 2008, 613, 35-50.
https://doi.org/10.1016/j.jelechem.2007.10.014

[3]. Laggoun, R.; Ferhat, M.; Saidat B.; Ali Benghia A.; Chaabani A. Corros. Sci. 2020, 165, 1-39.
https://doi.org/10.1016/j.corsci.2019.108363

[4]. Padash, R.; Sajadi, G. S.; Jafari, A. H.; Jamalizadeh, E.; Shokuhi, R. A. Mater. Chem. Phys. 2020, 244, 122681.
https://doi.org/10.1016/j.matchemphys.2020.122681

[5]. Deyab, M. A. J. Mol. Liq. 2020, 309, 113107.
https://doi.org/10.1016/j.molliq.2020.113107

[6]. Antonijevic, M. M.; Petrovic, M. B. Int. J. Electrochem. Sci. 2008, 3, 1-28.

[7]. Deyab, M. A. J. Ind. Eng. Chem. 2015, 25, 384-389.
https://doi.org/10.1016/j.jiec.2014.07.036

[8]. Pirvu, L.; Neagu, G.; Terchescu, I.; Albu, B.; Stefaniu, A. Open Chem. 2020, 18, 488-502.
https://doi.org/10.1515/chem-2020-0098

[9]. Shahraki, M.; Habibi-Khorassani, S. M.; Noroozifar, M.; Yavari, Z.; Darijani, M.; Dehdab, M. Iran. J. Mater. Sci. Eng. 2017, 14, 35-47.

[10]. Tamborim, S. M.; Dias, S. L. P.; Silva, S. N.; Dick, L. F. P.; Azambuja, D. S. Corros. Sci. 2011, 53, 1571-1580.
https://doi.org/10.1016/j.corsci.2011.01.034

[11]. Prabhu, R. A.; Shanbhag, A. V.; Venkatesha, T. V. J. Appl. Electrochem. 2007, 37, 491-497.
https://doi.org/10.1007/s10800-006-9280-2

[12]. Shylesha, B. S.; Venkatesha, T. V.; Praveen, B. M. J. Chem. Pharm. Res. 2011, 3, 501-507.

[13]. Abdallah, M.; Zaafarany, I.; Al-Karanee, S. O.; Abd El-Fattah, A. A. Arabian J. Chem. 2012, 5, 225-234.
https://doi.org/10.1016/j.arabjc.2010.08.017

[14]. Fouda, A. S.; El-Ewady, G. Y.; Shalabi, K. J. Korean Chem. Soc. 2011, 55, 268-278.
https://doi.org/10.5012/jkcs.2011.55.2.268

[15]. Ebenso, E. E.; Obot, I. B. Int. J. Electrochem. Sci. 2010, 5, 2012-2035.

[16]. Reza, I.; Saleemi, A. R.; S. Naveed, S. Polish J. Chem. Tech. 2011, 13, 67-71.
https://doi.org/10.2478/v10026-011-0014-9

[17]. Tigori, M. A.; Kouyate, A.; Assouma, D. C.; Kouakou, V.; Niamien, P. M. Am. J. Mater. Sci. Eng. 2020, 8, 6-16.

[18]. Abdallah, M.; azosulpha, R. Corros. Sci. 2002, 44, 717-728.
https://doi.org/10.1016/S0010-938X(01)00100-7

[19]. Ebenso, E. E.; Arslan, T.; Kandemirli, F.; Caner, N.; Love, I. Int. J. Quantum Chem. 2010, 110, 1003-1018.
https://doi.org/10.1002/qua.22249

[20]. Verma, C.; Haque, J.; Quraishi M. A.; Ebenso, E. E. J. Mol. Liq. 2019, 275, 18-40.
https://doi.org/10.1016/j.molliq.2018.11.040

[21]. Zulfareen, N.; Venugopal T.; Kannan. K. Int. J. Corros. 2018, 2018, 9372804, 1-18.
https://doi.org/10.1155/2018/9372804

[22]. Chauhan, D. S.; Ansari, K. R.; Sorour, A. A.; Quraishi, M. A.; Lgaz, H.; Salghi. R. Int. J. Biol. Macromol. 2018, 107, 1747-1757.
https://doi.org/10.1016/j.ijbiomac.2017.10.050

[23]. Azzaoui, K.; Mejdoubi, E.; Jodeh, S.; Lamhamdi, A.; Castellon, E. R.; Algarra, M.; Zarrouk, A.; Errich, A.; Salghi R.; Hassane L. G. Corros. Sci. 2017, 129, 70-81.
https://doi.org/10.1016/j.corsci.2017.09.027

[24]. Kayadibi, F.; Zor, S.; Sagdinc, S. G. Prot. Met. Phys. Chem. Surf. 2016, 52, 356-371.
https://doi.org/10.1134/S2070205116020131

[25]. Qiang Y.; Zhang, S.; Xu, S.; Li, W. J. Colloid Interface Sci. 2016, 472, 52-59.
https://doi.org/10.1016/j.jcis.2016.03.023

[26]. Fatima, S.; Sharma, R.; Asghar, F.; Kamal, A.; Badshah, A.; Kraatz. H. B. J. Ind. Eng. Chem. 2019, 76, 374-387.
https://doi.org/10.1016/j.jiec.2019.04.003

[27]. Ozturk, S. Prot. Met. Phys. Chem. Surf. 2018, 545, 953-962.
https://doi.org/10.1134/S2070205118050167

[28]. Zhang, D.; Gao, L.; Zhou, G. Corros. Sci. 2004, 46, 3031-3040.
https://doi.org/10.1016/j.corsci.2004.04.012

[29]. Padash, R.; Rahimi-Nasrabadi, M.; Shokuhi Rad, A. Appl. Phys. A. 2019, 125, 78, 1-11.
https://doi.org/10.1007/s00339-018-2376-9

[30]. Kumar, D.; Jain, Jain, N. V.; Rai, B. Appl. Surf. Sci. 2020, 514, 145905.
https://doi.org/10.1016/j.apsusc.2020.145905

[31]. Guo L.; Kaya, S.; Obot, I. B.; Zheng, X.; Qiang. Y. J. Colloid Interface Sci. 2017, 506, 478-485.
https://doi.org/10.1016/j.jcis.2017.07.082

[32]. Mo, S.; QunLuo, H.; Li, N. B. J. Colloid Interface Sci. 2017, 505, 929-939.
https://doi.org/10.1016/j.jcis.2017.06.075

[33]. Obot, I. B.; Macdonald, D. D.; Gasem, Z. M. Corros. Sci. 2015, 99, 1-30.
https://doi.org/10.1016/j.corsci.2015.01.037

[34]. Elmsellem, H.; Harit, T.; Aouniti, A.; Malek, F.; Riahi, A.; Chetouani, A.; Hammouti. B. Prot. Met. Phys. Chem. Surf. 2015, 51, 873-884.
https://doi.org/10.1134/S207020511505007X

[35]. Guo, L.; Dong, W.; Zhang, S. RSC Adv. 2014, 4, 41956-41967.
https://doi.org/10.1039/C4RA04931D

[36]. John, S.; Joy, J.; Prajila, M.; Joseph, A. Mater. Corros. 2011, 62, 1031-1041.

[37]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B. , Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M. , Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, P. Salvador, G. A.; Dannenberg, S. Dapprich, J. J.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski J.; Fox, A. D. J. Gaussian 09. Gaussian, Inc., Wallingford, CT, 2009.

[38]. Hohenberg, P.; Kohn, W. Phys. Rev. B 1964, 136, 864-887.
https://doi.org/10.1103/PhysRev.136.B864

[39]. Lee, C.; Yang, W.; Parr. R. G. Phys. Rev. B 1988, 37, 785-789.
https://doi.org/10.1103/PhysRevB.37.785

[40]. Koopmans, T. Atoms. Physica. 1934, 1, 104-113.
https://doi.org/10.1016/S0031-8914(34)90011-2

[41]. Parr, R. G.; Szentpaly, L. V.; Liu, S. J. Am. Chem. Soc. 1999, 121, 1922-1924.
https://doi.org/10.1021/ja983494x

[42]. Yang, W.; Parr, R. G. Proc. Natl. Acad. Sci. 1986, 83, 8440-8441.
https://doi.org/10.1073/pnas.83.22.8440

[43]. Gazquez, J. L.; Cedillo, A.; Vela, A. J. Phys. Chem. A 2007, 111, 1966-1970.
https://doi.org/10.1021/jp065459f

[44]. Pearson, R. G. Inorg. Chem. 1988, 27, 734-740.
https://doi.org/10.1021/ic00277a030

[45]. Michaelson, H. B. J. Appl. Phys. 1977, 48, 4729-4733.
https://doi.org/10.1063/1.323539

[46]. Martinez-Araya, J. I. J. Math. Chem. 2015, 53, 451-465.
https://doi.org/10.1007/s10910-014-0437-7

[47]. Morell, C.; Grand, A.; Toro Labbe, A. J. Phys. Chem. A 2004, 109, 205-212.
https://doi.org/10.1021/jp046577a

[48]. Lebrini, M.; Traisnel, M.; Lagrenee, M.; Mernari, B.; Bentiss, F. Corros. Sci. 2008, 50, 473-479.
https://doi.org/10.1016/j.corsci.2007.05.031

[49]. Yurt, A.; Ulutas, S.; Dal, H. Appl. Surf. Sci. 2006, 253, 919-925.
https://doi.org/10.1016/j.apsusc.2006.01.026

[50]. Xiao-Ci, Y.; Hong, Z.; Ming-Dao, L.; Hong-Xuan, R.; Lu-An, Y. Corros. Sci. 2000, 42, 645-653.
https://doi.org/10.1016/S0010-938X(99)00091-8

[51]. Awad, M. K.; Mustafa, M. R.; Abo Elnga, M. M. J. Mol. Struct. Theochem. 2010, 959, 66-74.
https://doi.org/10.1016/j.theochem.2010.08.008

[52]. Fernandes, C. M.; Mello, M. V. P.; Santos, N. E. D.; Souza, A. M. T.; Lanznaster, M.; Ponzio, E. A. Mater. Corros. 2019, 71, 280-291.
https://doi.org/10.1002/maco.201911065

[53]. El Faydy, M.; Benhiba, F.; About, H.; Kerroum, Y.; Guenbour, A.; Lakhrissi, B.; Warad, I.; Verma, C.; El-Sayed M. S.; Ebenso, E. E.; Zarrouk, A. J. Colloid Interface Sci. 2020, 576, 330-344.
https://doi.org/10.1016/j.jcis.2020.05.010

[54]. Chakraborty, T.; Gazi, K.; Ghosh, D. C. Mol. Phys. 2010, 108, 2081-2092.
https://doi.org/10.1080/00268976.2010.505208

[55]. Quraishi, M.; Sardar, R. J. Appl. Electrochem. 2003, 33, 1163-1168.
https://doi.org/10.1023/B:JACH.0000003865.08986.fb

[56]. Pavithra, M. K.; Venkatesha, T. V.; Punith Kumar, M. K. Int. J. Electrochem. 2013, 2013, 1-9.
https://doi.org/10.1155/2013/714372

[57]. Obot, I. B.; Gasem, Z. M. Corros. Sci. 2014, 83, 359-366.
https://doi.org/10.1016/j.corsci.2014.03.008

[58]. Lukovits, I.; Kalman, E.; Zucchi, F. Corros. 2011, 57, 3-8.
https://doi.org/10.5006/1.3290328

[59]. Hegazy, M. A.; Atlam, F. M. J. Mol. Liq. 2016, 218, 649-662.
https://doi.org/10.1016/j.molliq.2016.03.008

[60]. Koch, E. C. Explos. Pyrotech. 2005, 30, 5-16.

[61]. Gomez, B.; Likhanova, N. V.; Dominguez-Aguilar, M. A.; Martinez-Palou, R.; Vela, A.; Gazquez, J. L. J. Phys. Chem. B 2006, 110, 8928-8934.
https://doi.org/10.1021/jp057143y

[62]. Obot, I. B.; Gasem, Z. M. Corros. Sci. 2014, 83, 359-366.
https://doi.org/10.1016/j.corsci.2014.03.008

[63]. El Faydy, M.; Benhiba, F.; About, H.; Kerroum, Y.; Guenbour, A.; Lakhrissi, B.; Warad, I.; Verma, C.; El-Sayed M. S.; Ebenso, E. E.; Zarrouk, A. J. Colloid Interface Sci. 2020, 576, 330-344.
https://doi.org/10.1016/j.jcis.2020.05.010

[64]. Obot, I. B.; Umoren, S. A.; Gasem, Z. M.; Suleiman, R.; El Ali, B. J. Ind. Eng. Chem. 2015, 21, 1328-1329.
https://doi.org/10.1016/j.jiec.2014.05.049

How to cite


Tigori, M.; Kouyaté, A.; Kouakou, V.; Niamien, P.; Trokourey, A. Eur. J. Chem. 2020, 11(3), 235-244. doi:10.5155/eurjchem.11.3.235-244.2011
Tigori, M.; Kouyaté, A.; Kouakou, V.; Niamien, P.; Trokourey, A. Computational approach for predicting the adsorption properties and inhibition of some antiretroviral drugs on copper corrosion in HNO3. Eur. J. Chem. 2020, 11(3), 235-244. doi:10.5155/eurjchem.11.3.235-244.2011
Tigori, M., Kouyaté, A., Kouakou, V., Niamien, P., & Trokourey, A. (2020). Computational approach for predicting the adsorption properties and inhibition of some antiretroviral drugs on copper corrosion in HNO3. European Journal of Chemistry, 11(3), 235-244. doi:10.5155/eurjchem.11.3.235-244.2011
Tigori, Mougo, Amadou Kouyaté, Victorien Kouakou, Paulin Marius Niamien, & Albert Trokourey. "Computational approach for predicting the adsorption properties and inhibition of some antiretroviral drugs on copper corrosion in HNO3." European Journal of Chemistry [Online], 11.3 (2020): 235-244. Web. 3 Dec. 2020
Tigori, Mougo, Kouyaté, Amadou, Kouakou, Victorien, Niamien, Paulin, AND Trokourey, Albert. "Computational approach for predicting the adsorption properties and inhibition of some antiretroviral drugs on copper corrosion in HNO3" European Journal of Chemistry [Online], Volume 11 Number 3 (30 September 2020)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item


DOI Link: https://doi.org/10.5155/eurjchem.11.3.235-244.2011

| | | | | | | |

| | | | | |

Save to Zotero Save to Mendeley



European Journal of Chemistry 2020, 11(3), 235-244 | doi: https://doi.org/10.5155/eurjchem.11.3.235-244.2011 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).


© Copyright 2010 - 2020  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2020 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.